File size: 8,654 Bytes
b213d84 16c2627 b213d84 24e151d b213d84 afadbd4 16c2627 24e151d 16c2627 afadbd4 b213d84 24e151d b213d84 16c2627 b213d84 16c2627 b213d84 24e151d b213d84 24e151d 9ed5c4d 24e151d 16c2627 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import numpy as np
from PIL import Image
from huggingface_hub import snapshot_download
from leffa.transform import LeffaTransform
from leffa.model import LeffaModel
from leffa.inference import LeffaInference
from utils.garment_agnostic_mask_predictor import AutoMasker
from utils.densepose_predictor import DensePosePredictor
from utils.utils import resize_and_center
import gradio as gr
# Download checkpoints
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts")
def leffa_predict(src_image_path, ref_image_path, control_type):
assert control_type in [
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type)
src_image = Image.open(src_image_path)
ref_image = Image.open(ref_image_path)
src_image = resize_and_center(src_image, 768, 1024)
ref_image = resize_and_center(ref_image, 768, 1024)
src_image_array = np.array(src_image)
ref_image_array = np.array(ref_image)
# Mask
if control_type == "virtual_tryon":
automasker = AutoMasker(
densepose_path="./ckpts/densepose",
schp_path="./ckpts/schp",
)
src_image = src_image.convert("RGB")
mask = automasker(src_image, "upper")["mask"]
elif control_type == "pose_transfer":
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
# DensePose
densepose_predictor = DensePosePredictor(
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
weights_path="./ckpts/densepose/model_final_162be9.pkl",
)
src_image_iuv_array = densepose_predictor.predict_iuv(src_image_array)
src_image_seg_array = densepose_predictor.predict_seg(src_image_array)
src_image_iuv = Image.fromarray(src_image_iuv_array)
src_image_seg = Image.fromarray(src_image_seg_array)
if control_type == "virtual_tryon":
densepose = src_image_seg
elif control_type == "pose_transfer":
densepose = src_image_iuv
# Leffa
transform = LeffaTransform()
if control_type == "virtual_tryon":
pretrained_model_name_or_path = "./ckpts/stable-diffusion-inpainting"
pretrained_model = "./ckpts/virtual_tryon.pth"
elif control_type == "pose_transfer":
pretrained_model_name_or_path = "./ckpts/stable-diffusion-xl-1.0-inpainting-0.1"
pretrained_model = "./ckpts/pose_transfer.pth"
model = LeffaModel(
pretrained_model_name_or_path=pretrained_model_name_or_path,
pretrained_model=pretrained_model,
)
inference = LeffaInference(model=model)
data = {
"src_image": [src_image],
"ref_image": [ref_image],
"mask": [mask],
"densepose": [densepose],
}
data = transform(data)
output = inference(data)
gen_image = output["generated_image"][0]
# gen_image.save("gen_image.png")
return np.array(gen_image)
def leffa_predict_vt(src_image_path, ref_image_path):
return leffa_predict(src_image_path, ref_image_path, "virtual_tryon")
def leffa_predict_pt(src_image_path, ref_image_path):
return leffa_predict(src_image_path, ref_image_path, "pose_transfer")
if __name__ == "__main__":
# import sys
# src_image_path = sys.argv[1]
# ref_image_path = sys.argv[2]
# control_type = sys.argv[3]
# leffa_predict(src_image_path, ref_image_path, control_type)
title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation"
description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)."
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tab("Control Appearance (Virtual Try-on)"):
with gr.Row():
with gr.Column():
gr.Markdown("#### Person Image")
vt_src_image = gr.Image(
sources=["upload"],
type="filepath",
label="Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=vt_src_image,
examples_per_page=5,
examples=["./ckpts/examples/person1/01320_00.jpg",
"./ckpts/examples/person1/01350_00.jpg",
"./ckpts/examples/person1/01365_00.jpg",
"./ckpts/examples/person1/01376_00.jpg",
"./ckpts/examples/person1/01416_00.jpg",],
)
with gr.Column():
gr.Markdown("#### Garment Image")
vt_ref_image = gr.Image(
sources=["upload"],
type="filepath",
label="Garment Image",
width=512,
height=512,
)
gr.Examples(
inputs=vt_ref_image,
examples_per_page=5,
examples=["./ckpts/examples/garment/01449_00.jpg",
"./ckpts/examples/garment/01486_00.jpg",
"./ckpts/examples/garment/01853_00.jpg",
"./ckpts/examples/garment/02070_00.jpg",
"./ckpts/examples/garment/03553_00.jpg",],
)
with gr.Column():
gr.Markdown("#### Generated Image")
vt_gen_image = gr.Image(
label="Generated Image",
width=512,
height=512,
)
with gr.Row():
vt_gen_button = gr.Button("Generate")
vt_gen_button.click(fn=leffa_predict_vt, inputs=[
vt_src_image, vt_ref_image], outputs=[vt_gen_image])
with gr.Tab("Control Pose (Pose Transfer)"):
with gr.Row():
with gr.Column():
gr.Markdown("#### Person Image")
pt_ref_image = gr.Image(
sources=["upload"],
type="filepath",
label="Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=pt_ref_image,
examples_per_page=5,
examples=["./ckpts/examples/person1/01320_00.jpg",
"./ckpts/examples/person1/01350_00.jpg",
"./ckpts/examples/person1/01365_00.jpg",
"./ckpts/examples/person1/01376_00.jpg",
"./ckpts/examples/person1/01416_00.jpg",],
)
with gr.Column():
gr.Markdown("#### Target Pose Person Image")
pt_src_image = gr.Image(
sources=["upload"],
type="filepath",
label="Target Pose Person Image",
width=512,
height=512,
)
gr.Examples(
inputs=pt_src_image,
examples_per_page=5,
examples=["./ckpts/examples/person2/01850_00.jpg",
"./ckpts/examples/person2/01875_00.jpg",
"./ckpts/examples/person2/02532_00.jpg",
"./ckpts/examples/person2/02902_00.jpg",
"./ckpts/examples/person2/05346_00.jpg",],
)
with gr.Column():
gr.Markdown("#### Generated Image")
pt_gen_image = gr.Image(
label="Generated Image",
width=512,
height=512,
)
with gr.Row():
pose_transfer_gen_button = gr.Button("Generate")
pose_transfer_gen_button.click(fn=leffa_predict_pt, inputs=[
pt_src_image, pt_ref_image], outputs=[pt_gen_image])
demo.launch(share=True, server_port=7860)
|