File size: 16,656 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Implementation of RegNet models from :paper:`dds` and :paper:`scaling`.

This code is adapted from https://github.com/facebookresearch/pycls with minimal modifications.
Some code duplication exists between RegNet and ResNets (e.g., ResStem) in order to simplify
model loading.
"""

import numpy as np
from torch import nn

from detectron2.layers import CNNBlockBase, ShapeSpec, get_norm

from .backbone import Backbone

__all__ = [
    "AnyNet",
    "RegNet",
    "ResStem",
    "SimpleStem",
    "VanillaBlock",
    "ResBasicBlock",
    "ResBottleneckBlock",
]


def conv2d(w_in, w_out, k, *, stride=1, groups=1, bias=False):
    """Helper for building a conv2d layer."""
    assert k % 2 == 1, "Only odd size kernels supported to avoid padding issues."
    s, p, g, b = stride, (k - 1) // 2, groups, bias
    return nn.Conv2d(w_in, w_out, k, stride=s, padding=p, groups=g, bias=b)


def gap2d():
    """Helper for building a global average pooling layer."""
    return nn.AdaptiveAvgPool2d((1, 1))


def pool2d(k, *, stride=1):
    """Helper for building a pool2d layer."""
    assert k % 2 == 1, "Only odd size kernels supported to avoid padding issues."
    return nn.MaxPool2d(k, stride=stride, padding=(k - 1) // 2)


def init_weights(m):
    """Performs ResNet-style weight initialization."""
    if isinstance(m, nn.Conv2d):
        # Note that there is no bias due to BN
        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(mean=0.0, std=np.sqrt(2.0 / fan_out))
    elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1.0)
        m.bias.data.zero_()
    elif isinstance(m, nn.Linear):
        m.weight.data.normal_(mean=0.0, std=0.01)
        m.bias.data.zero_()


class ResStem(CNNBlockBase):
    """ResNet stem for ImageNet: 7x7, BN, AF, MaxPool."""

    def __init__(self, w_in, w_out, norm, activation_class):
        super().__init__(w_in, w_out, 4)
        self.conv = conv2d(w_in, w_out, 7, stride=2)
        self.bn = get_norm(norm, w_out)
        self.af = activation_class()
        self.pool = pool2d(3, stride=2)

    def forward(self, x):
        for layer in self.children():
            x = layer(x)
        return x


class SimpleStem(CNNBlockBase):
    """Simple stem for ImageNet: 3x3, BN, AF."""

    def __init__(self, w_in, w_out, norm, activation_class):
        super().__init__(w_in, w_out, 2)
        self.conv = conv2d(w_in, w_out, 3, stride=2)
        self.bn = get_norm(norm, w_out)
        self.af = activation_class()

    def forward(self, x):
        for layer in self.children():
            x = layer(x)
        return x


class SE(nn.Module):
    """Squeeze-and-Excitation (SE) block: AvgPool, FC, Act, FC, Sigmoid."""

    def __init__(self, w_in, w_se, activation_class):
        super().__init__()
        self.avg_pool = gap2d()
        self.f_ex = nn.Sequential(
            conv2d(w_in, w_se, 1, bias=True),
            activation_class(),
            conv2d(w_se, w_in, 1, bias=True),
            nn.Sigmoid(),
        )

    def forward(self, x):
        return x * self.f_ex(self.avg_pool(x))


class VanillaBlock(CNNBlockBase):
    """Vanilla block: [3x3 conv, BN, Relu] x2."""

    def __init__(self, w_in, w_out, stride, norm, activation_class, _params):
        super().__init__(w_in, w_out, stride)
        self.a = conv2d(w_in, w_out, 3, stride=stride)
        self.a_bn = get_norm(norm, w_out)
        self.a_af = activation_class()
        self.b = conv2d(w_out, w_out, 3)
        self.b_bn = get_norm(norm, w_out)
        self.b_af = activation_class()

    def forward(self, x):
        for layer in self.children():
            x = layer(x)
        return x


class BasicTransform(nn.Module):
    """Basic transformation: [3x3 conv, BN, Relu] x2."""

    def __init__(self, w_in, w_out, stride, norm, activation_class, _params):
        super().__init__()
        self.a = conv2d(w_in, w_out, 3, stride=stride)
        self.a_bn = get_norm(norm, w_out)
        self.a_af = activation_class()
        self.b = conv2d(w_out, w_out, 3)
        self.b_bn = get_norm(norm, w_out)
        self.b_bn.final_bn = True

    def forward(self, x):
        for layer in self.children():
            x = layer(x)
        return x


class ResBasicBlock(CNNBlockBase):
    """Residual basic block: x + f(x), f = basic transform."""

    def __init__(self, w_in, w_out, stride, norm, activation_class, params):
        super().__init__(w_in, w_out, stride)
        self.proj, self.bn = None, None
        if (w_in != w_out) or (stride != 1):
            self.proj = conv2d(w_in, w_out, 1, stride=stride)
            self.bn = get_norm(norm, w_out)
        self.f = BasicTransform(w_in, w_out, stride, norm, activation_class, params)
        self.af = activation_class()

    def forward(self, x):
        x_p = self.bn(self.proj(x)) if self.proj else x
        return self.af(x_p + self.f(x))


class BottleneckTransform(nn.Module):
    """Bottleneck transformation: 1x1, 3x3 [+SE], 1x1."""

    def __init__(self, w_in, w_out, stride, norm, activation_class, params):
        super().__init__()
        w_b = int(round(w_out * params["bot_mul"]))
        w_se = int(round(w_in * params["se_r"]))
        groups = w_b // params["group_w"]
        self.a = conv2d(w_in, w_b, 1)
        self.a_bn = get_norm(norm, w_b)
        self.a_af = activation_class()
        self.b = conv2d(w_b, w_b, 3, stride=stride, groups=groups)
        self.b_bn = get_norm(norm, w_b)
        self.b_af = activation_class()
        self.se = SE(w_b, w_se, activation_class) if w_se else None
        self.c = conv2d(w_b, w_out, 1)
        self.c_bn = get_norm(norm, w_out)
        self.c_bn.final_bn = True

    def forward(self, x):
        for layer in self.children():
            x = layer(x)
        return x


class ResBottleneckBlock(CNNBlockBase):
    """Residual bottleneck block: x + f(x), f = bottleneck transform."""

    def __init__(self, w_in, w_out, stride, norm, activation_class, params):
        super().__init__(w_in, w_out, stride)
        self.proj, self.bn = None, None
        if (w_in != w_out) or (stride != 1):
            self.proj = conv2d(w_in, w_out, 1, stride=stride)
            self.bn = get_norm(norm, w_out)
        self.f = BottleneckTransform(w_in, w_out, stride, norm, activation_class, params)
        self.af = activation_class()

    def forward(self, x):
        x_p = self.bn(self.proj(x)) if self.proj else x
        return self.af(x_p + self.f(x))


class AnyStage(nn.Module):
    """AnyNet stage (sequence of blocks w/ the same output shape)."""

    def __init__(self, w_in, w_out, stride, d, block_class, norm, activation_class, params):
        super().__init__()
        for i in range(d):
            block = block_class(w_in, w_out, stride, norm, activation_class, params)
            self.add_module("b{}".format(i + 1), block)
            stride, w_in = 1, w_out

    def forward(self, x):
        for block in self.children():
            x = block(x)
        return x


class AnyNet(Backbone):
    """AnyNet model. See :paper:`dds`."""

    def __init__(
        self,
        *,
        stem_class,
        stem_width,
        block_class,
        depths,
        widths,
        group_widths,
        strides,
        bottleneck_ratios,
        se_ratio,
        activation_class,
        freeze_at=0,
        norm="BN",
        out_features=None,
    ):
        """
        Args:
            stem_class (callable): A callable taking 4 arguments (channels in, channels out,
                normalization, callable returning an activation function) that returns another
                callable implementing the stem module.
            stem_width (int): The number of output channels that the stem produces.
            block_class (callable): A callable taking 6 arguments (channels in, channels out,
                stride, normalization, callable returning an activation function, a dict of
                block-specific parameters) that returns another callable implementing the repeated
                block module.
            depths (list[int]): Number of blocks in each stage.
            widths (list[int]): For each stage, the number of output channels of each block.
            group_widths (list[int]): For each stage, the number of channels per group in group
                convolution, if the block uses group convolution.
            strides (list[int]): The stride that each network stage applies to its input.
            bottleneck_ratios (list[float]): For each stage, the ratio of the number of bottleneck
                channels to the number of block input channels (or, equivalently, output channels),
                if the block uses a bottleneck.
            se_ratio (float): The ratio of the number of channels used inside the squeeze-excitation
                (SE) module to it number of input channels, if SE the block uses SE.
            activation_class (callable): A callable taking no arguments that returns another
                callable implementing an activation function.
            freeze_at (int): The number of stages at the beginning to freeze.
                see :meth:`freeze` for detailed explanation.
            norm (str or callable): normalization for all conv layers.
                See :func:`layers.get_norm` for supported format.
            out_features (list[str]): name of the layers whose outputs should
                be returned in forward. RegNet's use "stem" and "s1", "s2", etc for the stages after
                the stem. If None, will return the output of the last layer.
        """
        super().__init__()
        self.stem = stem_class(3, stem_width, norm, activation_class)

        current_stride = self.stem.stride
        self._out_feature_strides = {"stem": current_stride}
        self._out_feature_channels = {"stem": self.stem.out_channels}
        self.stages_and_names = []
        prev_w = stem_width

        for i, (d, w, s, b, g) in enumerate(
            zip(depths, widths, strides, bottleneck_ratios, group_widths)
        ):
            params = {"bot_mul": b, "group_w": g, "se_r": se_ratio}
            stage = AnyStage(prev_w, w, s, d, block_class, norm, activation_class, params)
            name = "s{}".format(i + 1)
            self.add_module(name, stage)
            self.stages_and_names.append((stage, name))
            self._out_feature_strides[name] = current_stride = int(
                current_stride * np.prod([k.stride for k in stage.children()])
            )
            self._out_feature_channels[name] = list(stage.children())[-1].out_channels
            prev_w = w

        self.apply(init_weights)

        if out_features is None:
            out_features = [name]
        self._out_features = out_features
        assert len(self._out_features)
        children = [x[0] for x in self.named_children()]
        for out_feature in self._out_features:
            assert out_feature in children, "Available children: {} does not include {}".format(
                ", ".join(children), out_feature
            )
        self.freeze(freeze_at)

    def forward(self, x):
        """
        Args:
            x: Tensor of shape (N,C,H,W). H, W must be a multiple of ``self.size_divisibility``.

        Returns:
            dict[str->Tensor]: names and the corresponding features
        """
        assert x.dim() == 4, f"Model takes an input of shape (N, C, H, W). Got {x.shape} instead!"
        outputs = {}
        x = self.stem(x)
        if "stem" in self._out_features:
            outputs["stem"] = x
        for stage, name in self.stages_and_names:
            x = stage(x)
            if name in self._out_features:
                outputs[name] = x
        return outputs

    def output_shape(self):
        return {
            name: ShapeSpec(
                channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
            )
            for name in self._out_features
        }

    def freeze(self, freeze_at=0):
        """
        Freeze the first several stages of the model. Commonly used in fine-tuning.

        Layers that produce the same feature map spatial size are defined as one
        "stage" by :paper:`FPN`.

        Args:
            freeze_at (int): number of stages to freeze.
                `1` means freezing the stem. `2` means freezing the stem and
                one residual stage, etc.

        Returns:
            nn.Module: this model itself
        """
        if freeze_at >= 1:
            self.stem.freeze()
        for idx, (stage, _) in enumerate(self.stages_and_names, start=2):
            if freeze_at >= idx:
                for block in stage.children():
                    block.freeze()
        return self


def adjust_block_compatibility(ws, bs, gs):
    """Adjusts the compatibility of widths, bottlenecks, and groups."""
    assert len(ws) == len(bs) == len(gs)
    assert all(w > 0 and b > 0 and g > 0 for w, b, g in zip(ws, bs, gs))
    vs = [int(max(1, w * b)) for w, b in zip(ws, bs)]
    gs = [int(min(g, v)) for g, v in zip(gs, vs)]
    ms = [np.lcm(g, b) if b > 1 else g for g, b in zip(gs, bs)]
    vs = [max(m, int(round(v / m) * m)) for v, m in zip(vs, ms)]
    ws = [int(v / b) for v, b in zip(vs, bs)]
    assert all(w * b % g == 0 for w, b, g in zip(ws, bs, gs))
    return ws, bs, gs


def generate_regnet_parameters(w_a, w_0, w_m, d, q=8):
    """Generates per stage widths and depths from RegNet parameters."""
    assert w_a >= 0 and w_0 > 0 and w_m > 1 and w_0 % q == 0
    # Generate continuous per-block ws
    ws_cont = np.arange(d) * w_a + w_0
    # Generate quantized per-block ws
    ks = np.round(np.log(ws_cont / w_0) / np.log(w_m))
    ws_all = w_0 * np.power(w_m, ks)
    ws_all = np.round(np.divide(ws_all, q)).astype(int) * q
    # Generate per stage ws and ds (assumes ws_all are sorted)
    ws, ds = np.unique(ws_all, return_counts=True)
    # Compute number of actual stages and total possible stages
    num_stages, total_stages = len(ws), ks.max() + 1
    # Convert numpy arrays to lists and return
    ws, ds, ws_all, ws_cont = (x.tolist() for x in (ws, ds, ws_all, ws_cont))
    return ws, ds, num_stages, total_stages, ws_all, ws_cont


class RegNet(AnyNet):
    """RegNet model. See :paper:`dds`."""

    def __init__(
        self,
        *,
        stem_class,
        stem_width,
        block_class,
        depth,
        w_a,
        w_0,
        w_m,
        group_width,
        stride=2,
        bottleneck_ratio=1.0,
        se_ratio=0.0,
        activation_class=None,
        freeze_at=0,
        norm="BN",
        out_features=None,
    ):
        """
        Build a RegNet from the parameterization described in :paper:`dds` Section 3.3.

        Args:
            See :class:`AnyNet` for arguments that are not listed here.
            depth (int): Total number of blocks in the RegNet.
            w_a (float): Factor by which block width would increase prior to quantizing block widths
                by stage. See :paper:`dds` Section 3.3.
            w_0 (int): Initial block width. See :paper:`dds` Section 3.3.
            w_m (float): Parameter controlling block width quantization.
                See :paper:`dds` Section 3.3.
            group_width (int): Number of channels per group in group convolution, if the block uses
                group convolution.
            bottleneck_ratio (float): The ratio of the number of bottleneck channels to the number
                of block input channels (or, equivalently, output channels), if the block uses a
                bottleneck.
            stride (int): The stride that each network stage applies to its input.
        """
        ws, ds = generate_regnet_parameters(w_a, w_0, w_m, depth)[0:2]
        ss = [stride for _ in ws]
        bs = [bottleneck_ratio for _ in ws]
        gs = [group_width for _ in ws]
        ws, bs, gs = adjust_block_compatibility(ws, bs, gs)

        def default_activation_class():
            return nn.ReLU(inplace=True)

        super().__init__(
            stem_class=stem_class,
            stem_width=stem_width,
            block_class=block_class,
            depths=ds,
            widths=ws,
            strides=ss,
            group_widths=gs,
            bottleneck_ratios=bs,
            se_ratio=se_ratio,
            activation_class=default_activation_class
            if activation_class is None
            else activation_class,
            freeze_at=freeze_at,
            norm=norm,
            out_features=out_features,
        )