File size: 15,101 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# Copyright (c) Facebook, Inc. and its affiliates.
import math
from typing import List, Tuple, Union
import torch
from fvcore.nn import giou_loss, smooth_l1_loss
from torch.nn import functional as F

from detectron2.layers import cat, ciou_loss, diou_loss
from detectron2.structures import Boxes

# Value for clamping large dw and dh predictions. The heuristic is that we clamp
# such that dw and dh are no larger than what would transform a 16px box into a
# 1000px box (based on a small anchor, 16px, and a typical image size, 1000px).
_DEFAULT_SCALE_CLAMP = math.log(1000.0 / 16)


__all__ = ["Box2BoxTransform", "Box2BoxTransformRotated", "Box2BoxTransformLinear"]


@torch.jit.script
class Box2BoxTransform:
    """
    The box-to-box transform defined in R-CNN. The transformation is parameterized
    by 4 deltas: (dx, dy, dw, dh). The transformation scales the box's width and height
    by exp(dw), exp(dh) and shifts a box's center by the offset (dx * width, dy * height).
    """

    def __init__(
        self, weights: Tuple[float, float, float, float], scale_clamp: float = _DEFAULT_SCALE_CLAMP
    ):
        """
        Args:
            weights (4-element tuple): Scaling factors that are applied to the
                (dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set
                such that the deltas have unit variance; now they are treated as
                hyperparameters of the system.
            scale_clamp (float): When predicting deltas, the predicted box scaling
                factors (dw and dh) are clamped such that they are <= scale_clamp.
        """
        self.weights = weights
        self.scale_clamp = scale_clamp

    def get_deltas(self, src_boxes, target_boxes):
        """
        Get box regression transformation deltas (dx, dy, dw, dh) that can be used
        to transform the `src_boxes` into the `target_boxes`. That is, the relation
        ``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
        any delta is too large and is clamped).

        Args:
            src_boxes (Tensor): source boxes, e.g., object proposals
            target_boxes (Tensor): target of the transformation, e.g., ground-truth
                boxes.
        """
        assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
        assert isinstance(target_boxes, torch.Tensor), type(target_boxes)

        src_widths = src_boxes[:, 2] - src_boxes[:, 0]
        src_heights = src_boxes[:, 3] - src_boxes[:, 1]
        src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths
        src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights

        target_widths = target_boxes[:, 2] - target_boxes[:, 0]
        target_heights = target_boxes[:, 3] - target_boxes[:, 1]
        target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths
        target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights

        wx, wy, ww, wh = self.weights
        dx = wx * (target_ctr_x - src_ctr_x) / src_widths
        dy = wy * (target_ctr_y - src_ctr_y) / src_heights
        dw = ww * torch.log(target_widths / src_widths)
        dh = wh * torch.log(target_heights / src_heights)

        deltas = torch.stack((dx, dy, dw, dh), dim=1)
        assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!"
        return deltas

    def apply_deltas(self, deltas, boxes):
        """
        Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.

        Args:
            deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
                deltas[i] represents k potentially different class-specific
                box transformations for the single box boxes[i].
            boxes (Tensor): boxes to transform, of shape (N, 4)
        """
        deltas = deltas.float()  # ensure fp32 for decoding precision
        boxes = boxes.to(deltas.dtype)

        widths = boxes[:, 2] - boxes[:, 0]
        heights = boxes[:, 3] - boxes[:, 1]
        ctr_x = boxes[:, 0] + 0.5 * widths
        ctr_y = boxes[:, 1] + 0.5 * heights

        wx, wy, ww, wh = self.weights
        dx = deltas[:, 0::4] / wx
        dy = deltas[:, 1::4] / wy
        dw = deltas[:, 2::4] / ww
        dh = deltas[:, 3::4] / wh

        # Prevent sending too large values into torch.exp()
        dw = torch.clamp(dw, max=self.scale_clamp)
        dh = torch.clamp(dh, max=self.scale_clamp)

        pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
        pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
        pred_w = torch.exp(dw) * widths[:, None]
        pred_h = torch.exp(dh) * heights[:, None]

        x1 = pred_ctr_x - 0.5 * pred_w
        y1 = pred_ctr_y - 0.5 * pred_h
        x2 = pred_ctr_x + 0.5 * pred_w
        y2 = pred_ctr_y + 0.5 * pred_h
        pred_boxes = torch.stack((x1, y1, x2, y2), dim=-1)
        return pred_boxes.reshape(deltas.shape)


# @torch.jit.script
class Box2BoxTransformRotated:
    """
    The box-to-box transform defined in Rotated R-CNN. The transformation is parameterized
    by 5 deltas: (dx, dy, dw, dh, da). The transformation scales the box's width and height
    by exp(dw), exp(dh), shifts a box's center by the offset (dx * width, dy * height),
    and rotate a box's angle by da (radians).
    Note: angles of deltas are in radians while angles of boxes are in degrees.
    """

    def __init__(
        self,
        weights: Tuple[float, float, float, float, float],
        scale_clamp: float = _DEFAULT_SCALE_CLAMP,
    ):
        """
        Args:
            weights (5-element tuple): Scaling factors that are applied to the
                (dx, dy, dw, dh, da) deltas. These are treated as
                hyperparameters of the system.
            scale_clamp (float): When predicting deltas, the predicted box scaling
                factors (dw and dh) are clamped such that they are <= scale_clamp.
        """
        self.weights = weights
        self.scale_clamp = scale_clamp

    def get_deltas(self, src_boxes, target_boxes):
        """
        Get box regression transformation deltas (dx, dy, dw, dh, da) that can be used
        to transform the `src_boxes` into the `target_boxes`. That is, the relation
        ``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
        any delta is too large and is clamped).

        Args:
            src_boxes (Tensor): Nx5 source boxes, e.g., object proposals
            target_boxes (Tensor): Nx5 target of the transformation, e.g., ground-truth
                boxes.
        """
        assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
        assert isinstance(target_boxes, torch.Tensor), type(target_boxes)

        src_ctr_x, src_ctr_y, src_widths, src_heights, src_angles = torch.unbind(src_boxes, dim=1)

        target_ctr_x, target_ctr_y, target_widths, target_heights, target_angles = torch.unbind(
            target_boxes, dim=1
        )

        wx, wy, ww, wh, wa = self.weights
        dx = wx * (target_ctr_x - src_ctr_x) / src_widths
        dy = wy * (target_ctr_y - src_ctr_y) / src_heights
        dw = ww * torch.log(target_widths / src_widths)
        dh = wh * torch.log(target_heights / src_heights)
        # Angles of deltas are in radians while angles of boxes are in degrees.
        # the conversion to radians serve as a way to normalize the values
        da = target_angles - src_angles
        da = (da + 180.0) % 360.0 - 180.0  # make it in [-180, 180)
        da *= wa * math.pi / 180.0

        deltas = torch.stack((dx, dy, dw, dh, da), dim=1)
        assert (
            (src_widths > 0).all().item()
        ), "Input boxes to Box2BoxTransformRotated are not valid!"
        return deltas

    def apply_deltas(self, deltas, boxes):
        """
        Apply transformation `deltas` (dx, dy, dw, dh, da) to `boxes`.

        Args:
            deltas (Tensor): transformation deltas of shape (N, k*5).
                deltas[i] represents box transformation for the single box boxes[i].
            boxes (Tensor): boxes to transform, of shape (N, 5)
        """
        assert deltas.shape[1] % 5 == 0 and boxes.shape[1] == 5

        boxes = boxes.to(deltas.dtype).unsqueeze(2)

        ctr_x = boxes[:, 0]
        ctr_y = boxes[:, 1]
        widths = boxes[:, 2]
        heights = boxes[:, 3]
        angles = boxes[:, 4]

        wx, wy, ww, wh, wa = self.weights

        dx = deltas[:, 0::5] / wx
        dy = deltas[:, 1::5] / wy
        dw = deltas[:, 2::5] / ww
        dh = deltas[:, 3::5] / wh
        da = deltas[:, 4::5] / wa

        # Prevent sending too large values into torch.exp()
        dw = torch.clamp(dw, max=self.scale_clamp)
        dh = torch.clamp(dh, max=self.scale_clamp)

        pred_boxes = torch.zeros_like(deltas)
        pred_boxes[:, 0::5] = dx * widths + ctr_x  # x_ctr
        pred_boxes[:, 1::5] = dy * heights + ctr_y  # y_ctr
        pred_boxes[:, 2::5] = torch.exp(dw) * widths  # width
        pred_boxes[:, 3::5] = torch.exp(dh) * heights  # height

        # Following original RRPN implementation,
        # angles of deltas are in radians while angles of boxes are in degrees.
        pred_angle = da * 180.0 / math.pi + angles
        pred_angle = (pred_angle + 180.0) % 360.0 - 180.0  # make it in [-180, 180)

        pred_boxes[:, 4::5] = pred_angle

        return pred_boxes


class Box2BoxTransformLinear:
    """
    The linear box-to-box transform defined in FCOS. The transformation is parameterized
    by the distance from the center of (square) src box to 4 edges of the target box.
    """

    def __init__(self, normalize_by_size=True):
        """
        Args:
            normalize_by_size: normalize deltas by the size of src (anchor) boxes.
        """
        self.normalize_by_size = normalize_by_size

    def get_deltas(self, src_boxes, target_boxes):
        """
        Get box regression transformation deltas (dx1, dy1, dx2, dy2) that can be used
        to transform the `src_boxes` into the `target_boxes`. That is, the relation
        ``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true.
        The center of src must be inside target boxes.

        Args:
            src_boxes (Tensor): square source boxes, e.g., anchors
            target_boxes (Tensor): target of the transformation, e.g., ground-truth
                boxes.
        """
        assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
        assert isinstance(target_boxes, torch.Tensor), type(target_boxes)

        src_ctr_x = 0.5 * (src_boxes[:, 0] + src_boxes[:, 2])
        src_ctr_y = 0.5 * (src_boxes[:, 1] + src_boxes[:, 3])

        target_l = src_ctr_x - target_boxes[:, 0]
        target_t = src_ctr_y - target_boxes[:, 1]
        target_r = target_boxes[:, 2] - src_ctr_x
        target_b = target_boxes[:, 3] - src_ctr_y

        deltas = torch.stack((target_l, target_t, target_r, target_b), dim=1)
        if self.normalize_by_size:
            stride_w = src_boxes[:, 2] - src_boxes[:, 0]
            stride_h = src_boxes[:, 3] - src_boxes[:, 1]
            strides = torch.stack([stride_w, stride_h, stride_w, stride_h], axis=1)
            deltas = deltas / strides

        return deltas

    def apply_deltas(self, deltas, boxes):
        """
        Apply transformation `deltas` (dx1, dy1, dx2, dy2) to `boxes`.

        Args:
            deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
                deltas[i] represents k potentially different class-specific
                box transformations for the single box boxes[i].
            boxes (Tensor): boxes to transform, of shape (N, 4)
        """
        # Ensure the output is a valid box. See Sec 2.1 of https://arxiv.org/abs/2006.09214
        deltas = F.relu(deltas)
        boxes = boxes.to(deltas.dtype)

        ctr_x = 0.5 * (boxes[:, 0] + boxes[:, 2])
        ctr_y = 0.5 * (boxes[:, 1] + boxes[:, 3])
        if self.normalize_by_size:
            stride_w = boxes[:, 2] - boxes[:, 0]
            stride_h = boxes[:, 3] - boxes[:, 1]
            strides = torch.stack([stride_w, stride_h, stride_w, stride_h], axis=1)
            deltas = deltas * strides

        l = deltas[:, 0::4]
        t = deltas[:, 1::4]
        r = deltas[:, 2::4]
        b = deltas[:, 3::4]

        pred_boxes = torch.zeros_like(deltas)
        pred_boxes[:, 0::4] = ctr_x[:, None] - l  # x1
        pred_boxes[:, 1::4] = ctr_y[:, None] - t  # y1
        pred_boxes[:, 2::4] = ctr_x[:, None] + r  # x2
        pred_boxes[:, 3::4] = ctr_y[:, None] + b  # y2
        return pred_boxes


def _dense_box_regression_loss(
    anchors: List[Union[Boxes, torch.Tensor]],
    box2box_transform: Box2BoxTransform,
    pred_anchor_deltas: List[torch.Tensor],
    gt_boxes: List[torch.Tensor],
    fg_mask: torch.Tensor,
    box_reg_loss_type="smooth_l1",
    smooth_l1_beta=0.0,
):
    """
    Compute loss for dense multi-level box regression.
    Loss is accumulated over ``fg_mask``.

    Args:
        anchors: #lvl anchor boxes, each is (HixWixA, 4)
        pred_anchor_deltas: #lvl predictions, each is (N, HixWixA, 4)
        gt_boxes: N ground truth boxes, each has shape (R, 4) (R = sum(Hi * Wi * A))
        fg_mask: the foreground boolean mask of shape (N, R) to compute loss on
        box_reg_loss_type (str): Loss type to use. Supported losses: "smooth_l1", "giou",
            "diou", "ciou".
        smooth_l1_beta (float): beta parameter for the smooth L1 regression loss. Default to
            use L1 loss. Only used when `box_reg_loss_type` is "smooth_l1"
    """
    if isinstance(anchors[0], Boxes):
        anchors = type(anchors[0]).cat(anchors).tensor  # (R, 4)
    else:
        anchors = cat(anchors)
    if box_reg_loss_type == "smooth_l1":
        gt_anchor_deltas = [box2box_transform.get_deltas(anchors, k) for k in gt_boxes]
        gt_anchor_deltas = torch.stack(gt_anchor_deltas)  # (N, R, 4)
        loss_box_reg = smooth_l1_loss(
            cat(pred_anchor_deltas, dim=1)[fg_mask],
            gt_anchor_deltas[fg_mask],
            beta=smooth_l1_beta,
            reduction="sum",
        )
    elif box_reg_loss_type == "giou":
        pred_boxes = [
            box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
        ]
        loss_box_reg = giou_loss(
            torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
        )
    elif box_reg_loss_type == "diou":
        pred_boxes = [
            box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
        ]
        loss_box_reg = diou_loss(
            torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
        )
    elif box_reg_loss_type == "ciou":
        pred_boxes = [
            box2box_transform.apply_deltas(k, anchors) for k in cat(pred_anchor_deltas, dim=1)
        ]
        loss_box_reg = ciou_loss(
            torch.stack(pred_boxes)[fg_mask], torch.stack(gt_boxes)[fg_mask], reduction="sum"
        )
    else:
        raise ValueError(f"Invalid dense box regression loss type '{box_reg_loss_type}'")
    return loss_box_reg