File size: 37,701 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
# Copyright (c) Facebook, Inc. and its affiliates.
import inspect
import logging
import numpy as np
from typing import Dict, List, Optional, Tuple
import torch
from torch import nn

from detectron2.config import configurable
from detectron2.layers import ShapeSpec, nonzero_tuple
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou
from detectron2.utils.events import get_event_storage
from detectron2.utils.registry import Registry

from ..backbone.resnet import BottleneckBlock, ResNet
from ..matcher import Matcher
from ..poolers import ROIPooler
from ..proposal_generator.proposal_utils import add_ground_truth_to_proposals
from ..sampling import subsample_labels
from .box_head import build_box_head
from .fast_rcnn import FastRCNNOutputLayers
from .keypoint_head import build_keypoint_head
from .mask_head import build_mask_head

ROI_HEADS_REGISTRY = Registry("ROI_HEADS")
ROI_HEADS_REGISTRY.__doc__ = """
Registry for ROI heads in a generalized R-CNN model.
ROIHeads take feature maps and region proposals, and
perform per-region computation.

The registered object will be called with `obj(cfg, input_shape)`.
The call is expected to return an :class:`ROIHeads`.
"""

logger = logging.getLogger(__name__)


def build_roi_heads(cfg, input_shape):
    """
    Build ROIHeads defined by `cfg.MODEL.ROI_HEADS.NAME`.
    """
    name = cfg.MODEL.ROI_HEADS.NAME
    return ROI_HEADS_REGISTRY.get(name)(cfg, input_shape)


def select_foreground_proposals(
    proposals: List[Instances], bg_label: int
) -> Tuple[List[Instances], List[torch.Tensor]]:
    """
    Given a list of N Instances (for N images), each containing a `gt_classes` field,
    return a list of Instances that contain only instances with `gt_classes != -1 &&
    gt_classes != bg_label`.

    Args:
        proposals (list[Instances]): A list of N Instances, where N is the number of
            images in the batch.
        bg_label: label index of background class.

    Returns:
        list[Instances]: N Instances, each contains only the selected foreground instances.
        list[Tensor]: N boolean vector, correspond to the selection mask of
            each Instances object. True for selected instances.
    """
    assert isinstance(proposals, (list, tuple))
    assert isinstance(proposals[0], Instances)
    assert proposals[0].has("gt_classes")
    fg_proposals = []
    fg_selection_masks = []
    for proposals_per_image in proposals:
        gt_classes = proposals_per_image.gt_classes
        fg_selection_mask = (gt_classes != -1) & (gt_classes != bg_label)
        fg_idxs = fg_selection_mask.nonzero().squeeze(1)
        fg_proposals.append(proposals_per_image[fg_idxs])
        fg_selection_masks.append(fg_selection_mask)
    return fg_proposals, fg_selection_masks


def select_proposals_with_visible_keypoints(proposals: List[Instances]) -> List[Instances]:
    """
    Args:
        proposals (list[Instances]): a list of N Instances, where N is the
            number of images.

    Returns:
        proposals: only contains proposals with at least one visible keypoint.

    Note that this is still slightly different from Detectron.
    In Detectron, proposals for training keypoint head are re-sampled from
    all the proposals with IOU>threshold & >=1 visible keypoint.

    Here, the proposals are first sampled from all proposals with
    IOU>threshold, then proposals with no visible keypoint are filtered out.
    This strategy seems to make no difference on Detectron and is easier to implement.
    """
    ret = []
    all_num_fg = []
    for proposals_per_image in proposals:
        # If empty/unannotated image (hard negatives), skip filtering for train
        if len(proposals_per_image) == 0:
            ret.append(proposals_per_image)
            continue
        gt_keypoints = proposals_per_image.gt_keypoints.tensor
        # #fg x K x 3
        vis_mask = gt_keypoints[:, :, 2] >= 1
        xs, ys = gt_keypoints[:, :, 0], gt_keypoints[:, :, 1]
        proposal_boxes = proposals_per_image.proposal_boxes.tensor.unsqueeze(dim=1)  # #fg x 1 x 4
        kp_in_box = (
            (xs >= proposal_boxes[:, :, 0])
            & (xs <= proposal_boxes[:, :, 2])
            & (ys >= proposal_boxes[:, :, 1])
            & (ys <= proposal_boxes[:, :, 3])
        )
        selection = (kp_in_box & vis_mask).any(dim=1)
        selection_idxs = nonzero_tuple(selection)[0]
        all_num_fg.append(selection_idxs.numel())
        ret.append(proposals_per_image[selection_idxs])

    storage = get_event_storage()
    storage.put_scalar("keypoint_head/num_fg_samples", np.mean(all_num_fg))
    return ret


class ROIHeads(torch.nn.Module):
    """
    ROIHeads perform all per-region computation in an R-CNN.

    It typically contains logic to

    1. (in training only) match proposals with ground truth and sample them
    2. crop the regions and extract per-region features using proposals
    3. make per-region predictions with different heads

    It can have many variants, implemented as subclasses of this class.
    This base class contains the logic to match/sample proposals.
    But it is not necessary to inherit this class if the sampling logic is not needed.
    """

    @configurable
    def __init__(
        self,
        *,
        num_classes,
        batch_size_per_image,
        positive_fraction,
        proposal_matcher,
        proposal_append_gt=True,
    ):
        """
        NOTE: this interface is experimental.

        Args:
            num_classes (int): number of foreground classes (i.e. background is not included)
            batch_size_per_image (int): number of proposals to sample for training
            positive_fraction (float): fraction of positive (foreground) proposals
                to sample for training.
            proposal_matcher (Matcher): matcher that matches proposals and ground truth
            proposal_append_gt (bool): whether to include ground truth as proposals as well
        """
        super().__init__()
        self.batch_size_per_image = batch_size_per_image
        self.positive_fraction = positive_fraction
        self.num_classes = num_classes
        self.proposal_matcher = proposal_matcher
        self.proposal_append_gt = proposal_append_gt

    @classmethod
    def from_config(cls, cfg):
        return {
            "batch_size_per_image": cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE,
            "positive_fraction": cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION,
            "num_classes": cfg.MODEL.ROI_HEADS.NUM_CLASSES,
            "proposal_append_gt": cfg.MODEL.ROI_HEADS.PROPOSAL_APPEND_GT,
            # Matcher to assign box proposals to gt boxes
            "proposal_matcher": Matcher(
                cfg.MODEL.ROI_HEADS.IOU_THRESHOLDS,
                cfg.MODEL.ROI_HEADS.IOU_LABELS,
                allow_low_quality_matches=False,
            ),
        }

    def _sample_proposals(
        self, matched_idxs: torch.Tensor, matched_labels: torch.Tensor, gt_classes: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Based on the matching between N proposals and M groundtruth,
        sample the proposals and set their classification labels.

        Args:
            matched_idxs (Tensor): a vector of length N, each is the best-matched
                gt index in [0, M) for each proposal.
            matched_labels (Tensor): a vector of length N, the matcher's label
                (one of cfg.MODEL.ROI_HEADS.IOU_LABELS) for each proposal.
            gt_classes (Tensor): a vector of length M.

        Returns:
            Tensor: a vector of indices of sampled proposals. Each is in [0, N).
            Tensor: a vector of the same length, the classification label for
                each sampled proposal. Each sample is labeled as either a category in
                [0, num_classes) or the background (num_classes).
        """
        has_gt = gt_classes.numel() > 0
        # Get the corresponding GT for each proposal
        if has_gt:
            gt_classes = gt_classes[matched_idxs]
            # Label unmatched proposals (0 label from matcher) as background (label=num_classes)
            gt_classes[matched_labels == 0] = self.num_classes
            # Label ignore proposals (-1 label)
            gt_classes[matched_labels == -1] = -1
        else:
            gt_classes = torch.zeros_like(matched_idxs) + self.num_classes

        sampled_fg_idxs, sampled_bg_idxs = subsample_labels(
            gt_classes, self.batch_size_per_image, self.positive_fraction, self.num_classes
        )

        sampled_idxs = torch.cat([sampled_fg_idxs, sampled_bg_idxs], dim=0)
        return sampled_idxs, gt_classes[sampled_idxs]

    @torch.no_grad()
    def label_and_sample_proposals(
        self, proposals: List[Instances], targets: List[Instances]
    ) -> List[Instances]:
        """
        Prepare some proposals to be used to train the ROI heads.
        It performs box matching between `proposals` and `targets`, and assigns
        training labels to the proposals.
        It returns ``self.batch_size_per_image`` random samples from proposals and groundtruth
        boxes, with a fraction of positives that is no larger than
        ``self.positive_fraction``.

        Args:
            See :meth:`ROIHeads.forward`

        Returns:
            list[Instances]:
                length `N` list of `Instances`s containing the proposals
                sampled for training. Each `Instances` has the following fields:

                - proposal_boxes: the proposal boxes
                - gt_boxes: the ground-truth box that the proposal is assigned to
                  (this is only meaningful if the proposal has a label > 0; if label = 0
                  then the ground-truth box is random)

                Other fields such as "gt_classes", "gt_masks", that's included in `targets`.
        """
        # Augment proposals with ground-truth boxes.
        # In the case of learned proposals (e.g., RPN), when training starts
        # the proposals will be low quality due to random initialization.
        # It's possible that none of these initial
        # proposals have high enough overlap with the gt objects to be used
        # as positive examples for the second stage components (box head,
        # cls head, mask head). Adding the gt boxes to the set of proposals
        # ensures that the second stage components will have some positive
        # examples from the start of training. For RPN, this augmentation improves
        # convergence and empirically improves box AP on COCO by about 0.5
        # points (under one tested configuration).
        if self.proposal_append_gt:
            proposals = add_ground_truth_to_proposals(targets, proposals)

        proposals_with_gt = []

        num_fg_samples = []
        num_bg_samples = []
        for proposals_per_image, targets_per_image in zip(proposals, targets):
            has_gt = len(targets_per_image) > 0
            match_quality_matrix = pairwise_iou(
                targets_per_image.gt_boxes, proposals_per_image.proposal_boxes
            )
            matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix)
            sampled_idxs, gt_classes = self._sample_proposals(
                matched_idxs, matched_labels, targets_per_image.gt_classes
            )

            # Set target attributes of the sampled proposals:
            proposals_per_image = proposals_per_image[sampled_idxs]
            proposals_per_image.gt_classes = gt_classes

            if has_gt:
                sampled_targets = matched_idxs[sampled_idxs]
                # We index all the attributes of targets that start with "gt_"
                # and have not been added to proposals yet (="gt_classes").
                # NOTE: here the indexing waste some compute, because heads
                # like masks, keypoints, etc, will filter the proposals again,
                # (by foreground/background, or number of keypoints in the image, etc)
                # so we essentially index the data twice.
                for (trg_name, trg_value) in targets_per_image.get_fields().items():
                    if trg_name.startswith("gt_") and not proposals_per_image.has(trg_name):
                        proposals_per_image.set(trg_name, trg_value[sampled_targets])
            # If no GT is given in the image, we don't know what a dummy gt value can be.
            # Therefore the returned proposals won't have any gt_* fields, except for a
            # gt_classes full of background label.

            num_bg_samples.append((gt_classes == self.num_classes).sum().item())
            num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1])
            proposals_with_gt.append(proposals_per_image)

        # Log the number of fg/bg samples that are selected for training ROI heads
        storage = get_event_storage()
        storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples))
        storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples))

        return proposals_with_gt

    def forward(
        self,
        images: ImageList,
        features: Dict[str, torch.Tensor],
        proposals: List[Instances],
        targets: Optional[List[Instances]] = None,
    ) -> Tuple[List[Instances], Dict[str, torch.Tensor]]:
        """
        Args:
            images (ImageList):
            features (dict[str,Tensor]): input data as a mapping from feature
                map name to tensor. Axis 0 represents the number of images `N` in
                the input data; axes 1-3 are channels, height, and width, which may
                vary between feature maps (e.g., if a feature pyramid is used).
            proposals (list[Instances]): length `N` list of `Instances`. The i-th
                `Instances` contains object proposals for the i-th input image,
                with fields "proposal_boxes" and "objectness_logits".
            targets (list[Instances], optional): length `N` list of `Instances`. The i-th
                `Instances` contains the ground-truth per-instance annotations
                for the i-th input image.  Specify `targets` during training only.
                It may have the following fields:

                - gt_boxes: the bounding box of each instance.
                - gt_classes: the label for each instance with a category ranging in [0, #class].
                - gt_masks: PolygonMasks or BitMasks, the ground-truth masks of each instance.
                - gt_keypoints: NxKx3, the groud-truth keypoints for each instance.

        Returns:
            list[Instances]: length `N` list of `Instances` containing the
            detected instances. Returned during inference only; may be [] during training.

            dict[str->Tensor]:
            mapping from a named loss to a tensor storing the loss. Used during training only.
        """
        raise NotImplementedError()


@ROI_HEADS_REGISTRY.register()
class Res5ROIHeads(ROIHeads):
    """
    The ROIHeads in a typical "C4" R-CNN model, where
    the box and mask head share the cropping and
    the per-region feature computation by a Res5 block.
    See :paper:`ResNet` Appendix A.
    """

    @configurable
    def __init__(
        self,
        *,
        in_features: List[str],
        pooler: ROIPooler,
        res5: nn.Module,
        box_predictor: nn.Module,
        mask_head: Optional[nn.Module] = None,
        **kwargs,
    ):
        """
        NOTE: this interface is experimental.

        Args:
            in_features (list[str]): list of backbone feature map names to use for
                feature extraction
            pooler (ROIPooler): pooler to extra region features from backbone
            res5 (nn.Sequential): a CNN to compute per-region features, to be used by
                ``box_predictor`` and ``mask_head``. Typically this is a "res5"
                block from a ResNet.
            box_predictor (nn.Module): make box predictions from the feature.
                Should have the same interface as :class:`FastRCNNOutputLayers`.
            mask_head (nn.Module): transform features to make mask predictions
        """
        super().__init__(**kwargs)
        self.in_features = in_features
        self.pooler = pooler
        if isinstance(res5, (list, tuple)):
            res5 = nn.Sequential(*res5)
        self.res5 = res5
        self.box_predictor = box_predictor
        self.mask_on = mask_head is not None
        if self.mask_on:
            self.mask_head = mask_head

    @classmethod
    def from_config(cls, cfg, input_shape):
        # fmt: off
        ret = super().from_config(cfg)
        in_features = ret["in_features"] = cfg.MODEL.ROI_HEADS.IN_FEATURES
        pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
        pooler_type       = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
        pooler_scales     = (1.0 / input_shape[in_features[0]].stride, )
        sampling_ratio    = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
        mask_on           = cfg.MODEL.MASK_ON
        # fmt: on
        assert not cfg.MODEL.KEYPOINT_ON
        assert len(in_features) == 1

        ret["pooler"] = ROIPooler(
            output_size=pooler_resolution,
            scales=pooler_scales,
            sampling_ratio=sampling_ratio,
            pooler_type=pooler_type,
        )

        # Compatbility with old moco code. Might be useful.
        # See notes in StandardROIHeads.from_config
        if not inspect.ismethod(cls._build_res5_block):
            logger.warning(
                "The behavior of _build_res5_block may change. "
                "Please do not depend on private methods."
            )
            cls._build_res5_block = classmethod(cls._build_res5_block)

        ret["res5"], out_channels = cls._build_res5_block(cfg)
        ret["box_predictor"] = FastRCNNOutputLayers(
            cfg, ShapeSpec(channels=out_channels, height=1, width=1)
        )

        if mask_on:
            ret["mask_head"] = build_mask_head(
                cfg,
                ShapeSpec(channels=out_channels, width=pooler_resolution, height=pooler_resolution),
            )
        return ret

    @classmethod
    def _build_res5_block(cls, cfg):
        # fmt: off
        stage_channel_factor = 2 ** 3  # res5 is 8x res2
        num_groups           = cfg.MODEL.RESNETS.NUM_GROUPS
        width_per_group      = cfg.MODEL.RESNETS.WIDTH_PER_GROUP
        bottleneck_channels  = num_groups * width_per_group * stage_channel_factor
        out_channels         = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS * stage_channel_factor
        stride_in_1x1        = cfg.MODEL.RESNETS.STRIDE_IN_1X1
        norm                 = cfg.MODEL.RESNETS.NORM
        assert not cfg.MODEL.RESNETS.DEFORM_ON_PER_STAGE[-1], \
            "Deformable conv is not yet supported in res5 head."
        # fmt: on

        blocks = ResNet.make_stage(
            BottleneckBlock,
            3,
            stride_per_block=[2, 1, 1],
            in_channels=out_channels // 2,
            bottleneck_channels=bottleneck_channels,
            out_channels=out_channels,
            num_groups=num_groups,
            norm=norm,
            stride_in_1x1=stride_in_1x1,
        )
        return nn.Sequential(*blocks), out_channels

    def _shared_roi_transform(self, features: List[torch.Tensor], boxes: List[Boxes]):
        x = self.pooler(features, boxes)
        return self.res5(x)

    def forward(
        self,
        images: ImageList,
        features: Dict[str, torch.Tensor],
        proposals: List[Instances],
        targets: Optional[List[Instances]] = None,
    ):
        """
        See :meth:`ROIHeads.forward`.
        """
        del images

        if self.training:
            assert targets
            proposals = self.label_and_sample_proposals(proposals, targets)
        del targets

        proposal_boxes = [x.proposal_boxes for x in proposals]
        box_features = self._shared_roi_transform(
            [features[f] for f in self.in_features], proposal_boxes
        )
        predictions = self.box_predictor(box_features.mean(dim=[2, 3]))

        if self.training:
            del features
            losses = self.box_predictor.losses(predictions, proposals)
            if self.mask_on:
                proposals, fg_selection_masks = select_foreground_proposals(
                    proposals, self.num_classes
                )
                # Since the ROI feature transform is shared between boxes and masks,
                # we don't need to recompute features. The mask loss is only defined
                # on foreground proposals, so we need to select out the foreground
                # features.
                mask_features = box_features[torch.cat(fg_selection_masks, dim=0)]
                del box_features
                losses.update(self.mask_head(mask_features, proposals))
            return [], losses
        else:
            pred_instances, _ = self.box_predictor.inference(predictions, proposals)
            pred_instances = self.forward_with_given_boxes(features, pred_instances)
            return pred_instances, {}

    def forward_with_given_boxes(
        self, features: Dict[str, torch.Tensor], instances: List[Instances]
    ) -> List[Instances]:
        """
        Use the given boxes in `instances` to produce other (non-box) per-ROI outputs.

        Args:
            features: same as in `forward()`
            instances (list[Instances]): instances to predict other outputs. Expect the keys
                "pred_boxes" and "pred_classes" to exist.

        Returns:
            instances (Instances):
                the same `Instances` object, with extra
                fields such as `pred_masks` or `pred_keypoints`.
        """
        assert not self.training
        assert instances[0].has("pred_boxes") and instances[0].has("pred_classes")

        if self.mask_on:
            feature_list = [features[f] for f in self.in_features]
            x = self._shared_roi_transform(feature_list, [x.pred_boxes for x in instances])
            return self.mask_head(x, instances)
        else:
            return instances


@ROI_HEADS_REGISTRY.register()
class StandardROIHeads(ROIHeads):
    """
    It's "standard" in a sense that there is no ROI transform sharing
    or feature sharing between tasks.
    Each head independently processes the input features by each head's
    own pooler and head.

    This class is used by most models, such as FPN and C5.
    To implement more models, you can subclass it and implement a different
    :meth:`forward()` or a head.
    """

    @configurable
    def __init__(
        self,
        *,
        box_in_features: List[str],
        box_pooler: ROIPooler,
        box_head: nn.Module,
        box_predictor: nn.Module,
        mask_in_features: Optional[List[str]] = None,
        mask_pooler: Optional[ROIPooler] = None,
        mask_head: Optional[nn.Module] = None,
        keypoint_in_features: Optional[List[str]] = None,
        keypoint_pooler: Optional[ROIPooler] = None,
        keypoint_head: Optional[nn.Module] = None,
        train_on_pred_boxes: bool = False,
        **kwargs,
    ):
        """
        NOTE: this interface is experimental.

        Args:
            box_in_features (list[str]): list of feature names to use for the box head.
            box_pooler (ROIPooler): pooler to extra region features for box head
            box_head (nn.Module): transform features to make box predictions
            box_predictor (nn.Module): make box predictions from the feature.
                Should have the same interface as :class:`FastRCNNOutputLayers`.
            mask_in_features (list[str]): list of feature names to use for the mask
                pooler or mask head. None if not using mask head.
            mask_pooler (ROIPooler): pooler to extract region features from image features.
                The mask head will then take region features to make predictions.
                If None, the mask head will directly take the dict of image features
                defined by `mask_in_features`
            mask_head (nn.Module): transform features to make mask predictions
            keypoint_in_features, keypoint_pooler, keypoint_head: similar to ``mask_*``.
            train_on_pred_boxes (bool): whether to use proposal boxes or
                predicted boxes from the box head to train other heads.
        """
        super().__init__(**kwargs)
        # keep self.in_features for backward compatibility
        self.in_features = self.box_in_features = box_in_features
        self.box_pooler = box_pooler
        self.box_head = box_head
        self.box_predictor = box_predictor

        self.mask_on = mask_in_features is not None
        if self.mask_on:
            self.mask_in_features = mask_in_features
            self.mask_pooler = mask_pooler
            self.mask_head = mask_head

        self.keypoint_on = keypoint_in_features is not None
        if self.keypoint_on:
            self.keypoint_in_features = keypoint_in_features
            self.keypoint_pooler = keypoint_pooler
            self.keypoint_head = keypoint_head

        self.train_on_pred_boxes = train_on_pred_boxes

    @classmethod
    def from_config(cls, cfg, input_shape):
        ret = super().from_config(cfg)
        ret["train_on_pred_boxes"] = cfg.MODEL.ROI_BOX_HEAD.TRAIN_ON_PRED_BOXES
        # Subclasses that have not been updated to use from_config style construction
        # may have overridden _init_*_head methods. In this case, those overridden methods
        # will not be classmethods and we need to avoid trying to call them here.
        # We test for this with ismethod which only returns True for bound methods of cls.
        # Such subclasses will need to handle calling their overridden _init_*_head methods.
        if inspect.ismethod(cls._init_box_head):
            ret.update(cls._init_box_head(cfg, input_shape))
        if inspect.ismethod(cls._init_mask_head):
            ret.update(cls._init_mask_head(cfg, input_shape))
        if inspect.ismethod(cls._init_keypoint_head):
            ret.update(cls._init_keypoint_head(cfg, input_shape))
        return ret

    @classmethod
    def _init_box_head(cls, cfg, input_shape):
        # fmt: off
        in_features       = cfg.MODEL.ROI_HEADS.IN_FEATURES
        pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
        pooler_scales     = tuple(1.0 / input_shape[k].stride for k in in_features)
        sampling_ratio    = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
        pooler_type       = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
        # fmt: on

        # If StandardROIHeads is applied on multiple feature maps (as in FPN),
        # then we share the same predictors and therefore the channel counts must be the same
        in_channels = [input_shape[f].channels for f in in_features]
        # Check all channel counts are equal
        assert len(set(in_channels)) == 1, in_channels
        in_channels = in_channels[0]

        box_pooler = ROIPooler(
            output_size=pooler_resolution,
            scales=pooler_scales,
            sampling_ratio=sampling_ratio,
            pooler_type=pooler_type,
        )
        # Here we split "box head" and "box predictor", which is mainly due to historical reasons.
        # They are used together so the "box predictor" layers should be part of the "box head".
        # New subclasses of ROIHeads do not need "box predictor"s.
        box_head = build_box_head(
            cfg, ShapeSpec(channels=in_channels, height=pooler_resolution, width=pooler_resolution)
        )
        box_predictor = FastRCNNOutputLayers(cfg, box_head.output_shape)
        return {
            "box_in_features": in_features,
            "box_pooler": box_pooler,
            "box_head": box_head,
            "box_predictor": box_predictor,
        }

    @classmethod
    def _init_mask_head(cls, cfg, input_shape):
        if not cfg.MODEL.MASK_ON:
            return {}
        # fmt: off
        in_features       = cfg.MODEL.ROI_HEADS.IN_FEATURES
        pooler_resolution = cfg.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION
        pooler_scales     = tuple(1.0 / input_shape[k].stride for k in in_features)
        sampling_ratio    = cfg.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO
        pooler_type       = cfg.MODEL.ROI_MASK_HEAD.POOLER_TYPE
        # fmt: on

        in_channels = [input_shape[f].channels for f in in_features][0]

        ret = {"mask_in_features": in_features}
        ret["mask_pooler"] = (
            ROIPooler(
                output_size=pooler_resolution,
                scales=pooler_scales,
                sampling_ratio=sampling_ratio,
                pooler_type=pooler_type,
            )
            if pooler_type
            else None
        )
        if pooler_type:
            shape = ShapeSpec(
                channels=in_channels, width=pooler_resolution, height=pooler_resolution
            )
        else:
            shape = {f: input_shape[f] for f in in_features}
        ret["mask_head"] = build_mask_head(cfg, shape)
        return ret

    @classmethod
    def _init_keypoint_head(cls, cfg, input_shape):
        if not cfg.MODEL.KEYPOINT_ON:
            return {}
        # fmt: off
        in_features       = cfg.MODEL.ROI_HEADS.IN_FEATURES
        pooler_resolution = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION
        pooler_scales     = tuple(1.0 / input_shape[k].stride for k in in_features)  # noqa
        sampling_ratio    = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO
        pooler_type       = cfg.MODEL.ROI_KEYPOINT_HEAD.POOLER_TYPE
        # fmt: on

        in_channels = [input_shape[f].channels for f in in_features][0]

        ret = {"keypoint_in_features": in_features}
        ret["keypoint_pooler"] = (
            ROIPooler(
                output_size=pooler_resolution,
                scales=pooler_scales,
                sampling_ratio=sampling_ratio,
                pooler_type=pooler_type,
            )
            if pooler_type
            else None
        )
        if pooler_type:
            shape = ShapeSpec(
                channels=in_channels, width=pooler_resolution, height=pooler_resolution
            )
        else:
            shape = {f: input_shape[f] for f in in_features}
        ret["keypoint_head"] = build_keypoint_head(cfg, shape)
        return ret

    def forward(
        self,
        images: ImageList,
        features: Dict[str, torch.Tensor],
        proposals: List[Instances],
        targets: Optional[List[Instances]] = None,
    ) -> Tuple[List[Instances], Dict[str, torch.Tensor]]:
        """
        See :class:`ROIHeads.forward`.
        """
        del images
        if self.training:
            assert targets, "'targets' argument is required during training"
            proposals = self.label_and_sample_proposals(proposals, targets)
        del targets

        if self.training:
            losses = self._forward_box(features, proposals)
            # Usually the original proposals used by the box head are used by the mask, keypoint
            # heads. But when `self.train_on_pred_boxes is True`, proposals will contain boxes
            # predicted by the box head.
            losses.update(self._forward_mask(features, proposals))
            losses.update(self._forward_keypoint(features, proposals))
            return proposals, losses
        else:
            pred_instances = self._forward_box(features, proposals)
            # During inference cascaded prediction is used: the mask and keypoints heads are only
            # applied to the top scoring box detections.
            pred_instances = self.forward_with_given_boxes(features, pred_instances)
            return pred_instances, {}

    def forward_with_given_boxes(
        self, features: Dict[str, torch.Tensor], instances: List[Instances]
    ) -> List[Instances]:
        """
        Use the given boxes in `instances` to produce other (non-box) per-ROI outputs.

        This is useful for downstream tasks where a box is known, but need to obtain
        other attributes (outputs of other heads).
        Test-time augmentation also uses this.

        Args:
            features: same as in `forward()`
            instances (list[Instances]): instances to predict other outputs. Expect the keys
                "pred_boxes" and "pred_classes" to exist.

        Returns:
            list[Instances]:
                the same `Instances` objects, with extra
                fields such as `pred_masks` or `pred_keypoints`.
        """
        assert not self.training
        assert instances[0].has("pred_boxes") and instances[0].has("pred_classes")

        instances = self._forward_mask(features, instances)
        instances = self._forward_keypoint(features, instances)
        return instances

    def _forward_box(self, features: Dict[str, torch.Tensor], proposals: List[Instances]):
        """
        Forward logic of the box prediction branch. If `self.train_on_pred_boxes is True`,
            the function puts predicted boxes in the `proposal_boxes` field of `proposals` argument.

        Args:
            features (dict[str, Tensor]): mapping from feature map names to tensor.
                Same as in :meth:`ROIHeads.forward`.
            proposals (list[Instances]): the per-image object proposals with
                their matching ground truth.
                Each has fields "proposal_boxes", and "objectness_logits",
                "gt_classes", "gt_boxes".

        Returns:
            In training, a dict of losses.
            In inference, a list of `Instances`, the predicted instances.
        """
        features = [features[f] for f in self.box_in_features]
        box_features = self.box_pooler(features, [x.proposal_boxes for x in proposals])
        box_features = self.box_head(box_features)
        predictions = self.box_predictor(box_features)
        del box_features

        if self.training:
            losses = self.box_predictor.losses(predictions, proposals)
            # proposals is modified in-place below, so losses must be computed first.
            if self.train_on_pred_boxes:
                with torch.no_grad():
                    pred_boxes = self.box_predictor.predict_boxes_for_gt_classes(
                        predictions, proposals
                    )
                    for proposals_per_image, pred_boxes_per_image in zip(proposals, pred_boxes):
                        proposals_per_image.proposal_boxes = Boxes(pred_boxes_per_image)
            return losses
        else:
            pred_instances, _ = self.box_predictor.inference(predictions, proposals)
            return pred_instances

    def _forward_mask(self, features: Dict[str, torch.Tensor], instances: List[Instances]):
        """
        Forward logic of the mask prediction branch.

        Args:
            features (dict[str, Tensor]): mapping from feature map names to tensor.
                Same as in :meth:`ROIHeads.forward`.
            instances (list[Instances]): the per-image instances to train/predict masks.
                In training, they can be the proposals.
                In inference, they can be the boxes predicted by R-CNN box head.

        Returns:
            In training, a dict of losses.
            In inference, update `instances` with new fields "pred_masks" and return it.
        """
        if not self.mask_on:
            return {} if self.training else instances

        if self.training:
            # head is only trained on positive proposals.
            instances, _ = select_foreground_proposals(instances, self.num_classes)

        if self.mask_pooler is not None:
            features = [features[f] for f in self.mask_in_features]
            boxes = [x.proposal_boxes if self.training else x.pred_boxes for x in instances]
            features = self.mask_pooler(features, boxes)
        else:
            features = {f: features[f] for f in self.mask_in_features}
        return self.mask_head(features, instances)

    def _forward_keypoint(self, features: Dict[str, torch.Tensor], instances: List[Instances]):
        """
        Forward logic of the keypoint prediction branch.

        Args:
            features (dict[str, Tensor]): mapping from feature map names to tensor.
                Same as in :meth:`ROIHeads.forward`.
            instances (list[Instances]): the per-image instances to train/predict keypoints.
                In training, they can be the proposals.
                In inference, they can be the boxes predicted by R-CNN box head.

        Returns:
            In training, a dict of losses.
            In inference, update `instances` with new fields "pred_keypoints" and return it.
        """
        if not self.keypoint_on:
            return {} if self.training else instances

        if self.training:
            # head is only trained on positive proposals with >=1 visible keypoints.
            instances, _ = select_foreground_proposals(instances, self.num_classes)
            instances = select_proposals_with_visible_keypoints(instances)

        if self.keypoint_pooler is not None:
            features = [features[f] for f in self.keypoint_in_features]
            boxes = [x.proposal_boxes if self.training else x.pred_boxes for x in instances]
            features = self.keypoint_pooler(features, boxes)
        else:
            features = {f: features[f] for f in self.keypoint_in_features}
        return self.keypoint_head(features, instances)