File size: 11,175 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
import torch

from detectron2.config import configurable
from detectron2.layers import ShapeSpec, batched_nms_rotated
from detectron2.structures import Instances, RotatedBoxes, pairwise_iou_rotated
from detectron2.utils.events import get_event_storage

from ..box_regression import Box2BoxTransformRotated
from ..poolers import ROIPooler
from ..proposal_generator.proposal_utils import add_ground_truth_to_proposals
from .box_head import build_box_head
from .fast_rcnn import FastRCNNOutputLayers
from .roi_heads import ROI_HEADS_REGISTRY, StandardROIHeads

logger = logging.getLogger(__name__)

"""
Shape shorthand in this module:

    N: number of images in the minibatch
    R: number of ROIs, combined over all images, in the minibatch
    Ri: number of ROIs in image i
    K: number of foreground classes. E.g.,there are 80 foreground classes in COCO.

Naming convention:

    deltas: refers to the 5-d (dx, dy, dw, dh, da) deltas that parameterize the box2box
    transform (see :class:`box_regression.Box2BoxTransformRotated`).

    pred_class_logits: predicted class scores in [-inf, +inf]; use
        softmax(pred_class_logits) to estimate P(class).

    gt_classes: ground-truth classification labels in [0, K], where [0, K) represent
        foreground object classes and K represents the background class.

    pred_proposal_deltas: predicted rotated box2box transform deltas for transforming proposals
        to detection box predictions.

    gt_proposal_deltas: ground-truth rotated box2box transform deltas
"""


def fast_rcnn_inference_rotated(
    boxes, scores, image_shapes, score_thresh, nms_thresh, topk_per_image
):
    """
    Call `fast_rcnn_inference_single_image_rotated` for all images.

    Args:
        boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic
            boxes for each image. Element i has shape (Ri, K * 5) if doing
            class-specific regression, or (Ri, 5) if doing class-agnostic
            regression, where Ri is the number of predicted objects for image i.
            This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`.
        scores (list[Tensor]): A list of Tensors of predicted class scores for each image.
            Element i has shape (Ri, K + 1), where Ri is the number of predicted objects
            for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`.
        image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch.
        score_thresh (float): Only return detections with a confidence score exceeding this
            threshold.
        nms_thresh (float):  The threshold to use for box non-maximum suppression. Value in [0, 1].
        topk_per_image (int): The number of top scoring detections to return. Set < 0 to return
            all detections.

    Returns:
        instances: (list[Instances]): A list of N instances, one for each image in the batch,
            that stores the topk most confidence detections.
        kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates
            the corresponding boxes/scores index in [0, Ri) from the input, for image i.
    """
    result_per_image = [
        fast_rcnn_inference_single_image_rotated(
            boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh, topk_per_image
        )
        for scores_per_image, boxes_per_image, image_shape in zip(scores, boxes, image_shapes)
    ]
    return [x[0] for x in result_per_image], [x[1] for x in result_per_image]


@torch.no_grad()
def fast_rcnn_inference_single_image_rotated(
    boxes, scores, image_shape, score_thresh, nms_thresh, topk_per_image
):
    """
    Single-image inference. Return rotated bounding-box detection results by thresholding
    on scores and applying rotated non-maximum suppression (Rotated NMS).

    Args:
        Same as `fast_rcnn_inference_rotated`, but with rotated boxes, scores, and image shapes
        per image.

    Returns:
        Same as `fast_rcnn_inference_rotated`, but for only one image.
    """
    valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1)
    if not valid_mask.all():
        boxes = boxes[valid_mask]
        scores = scores[valid_mask]

    B = 5  # box dimension
    scores = scores[:, :-1]
    num_bbox_reg_classes = boxes.shape[1] // B
    # Convert to Boxes to use the `clip` function ...
    boxes = RotatedBoxes(boxes.reshape(-1, B))
    boxes.clip(image_shape)
    boxes = boxes.tensor.view(-1, num_bbox_reg_classes, B)  # R x C x B
    # Filter results based on detection scores
    filter_mask = scores > score_thresh  # R x K
    # R' x 2. First column contains indices of the R predictions;
    # Second column contains indices of classes.
    filter_inds = filter_mask.nonzero()
    if num_bbox_reg_classes == 1:
        boxes = boxes[filter_inds[:, 0], 0]
    else:
        boxes = boxes[filter_mask]
    scores = scores[filter_mask]

    # Apply per-class Rotated NMS
    keep = batched_nms_rotated(boxes, scores, filter_inds[:, 1], nms_thresh)
    if topk_per_image >= 0:
        keep = keep[:topk_per_image]
    boxes, scores, filter_inds = boxes[keep], scores[keep], filter_inds[keep]

    result = Instances(image_shape)
    result.pred_boxes = RotatedBoxes(boxes)
    result.scores = scores
    result.pred_classes = filter_inds[:, 1]

    return result, filter_inds[:, 0]


class RotatedFastRCNNOutputLayers(FastRCNNOutputLayers):
    """
    Two linear layers for predicting Rotated Fast R-CNN outputs.
    """

    @classmethod
    def from_config(cls, cfg, input_shape):
        args = super().from_config(cfg, input_shape)
        args["box2box_transform"] = Box2BoxTransformRotated(
            weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS
        )
        return args

    def inference(self, predictions, proposals):
        """
        Returns:
            list[Instances]: same as `fast_rcnn_inference_rotated`.
            list[Tensor]: same as `fast_rcnn_inference_rotated`.
        """
        boxes = self.predict_boxes(predictions, proposals)
        scores = self.predict_probs(predictions, proposals)
        image_shapes = [x.image_size for x in proposals]

        return fast_rcnn_inference_rotated(
            boxes,
            scores,
            image_shapes,
            self.test_score_thresh,
            self.test_nms_thresh,
            self.test_topk_per_image,
        )


@ROI_HEADS_REGISTRY.register()
class RROIHeads(StandardROIHeads):
    """
    This class is used by Rotated Fast R-CNN to detect rotated boxes.
    For now, it only supports box predictions but not mask or keypoints.
    """

    @configurable
    def __init__(self, **kwargs):
        """
        NOTE: this interface is experimental.
        """
        super().__init__(**kwargs)
        assert (
            not self.mask_on and not self.keypoint_on
        ), "Mask/Keypoints not supported in Rotated ROIHeads."
        assert not self.train_on_pred_boxes, "train_on_pred_boxes not implemented for RROIHeads!"

    @classmethod
    def _init_box_head(cls, cfg, input_shape):
        # fmt: off
        in_features       = cfg.MODEL.ROI_HEADS.IN_FEATURES
        pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
        pooler_scales     = tuple(1.0 / input_shape[k].stride for k in in_features)
        sampling_ratio    = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
        pooler_type       = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
        # fmt: on
        assert pooler_type in ["ROIAlignRotated"], pooler_type
        # assume all channel counts are equal
        in_channels = [input_shape[f].channels for f in in_features][0]

        box_pooler = ROIPooler(
            output_size=pooler_resolution,
            scales=pooler_scales,
            sampling_ratio=sampling_ratio,
            pooler_type=pooler_type,
        )
        box_head = build_box_head(
            cfg, ShapeSpec(channels=in_channels, height=pooler_resolution, width=pooler_resolution)
        )
        # This line is the only difference v.s. StandardROIHeads
        box_predictor = RotatedFastRCNNOutputLayers(cfg, box_head.output_shape)
        return {
            "box_in_features": in_features,
            "box_pooler": box_pooler,
            "box_head": box_head,
            "box_predictor": box_predictor,
        }

    @torch.no_grad()
    def label_and_sample_proposals(self, proposals, targets):
        """
        Prepare some proposals to be used to train the RROI heads.
        It performs box matching between `proposals` and `targets`, and assigns
        training labels to the proposals.
        It returns `self.batch_size_per_image` random samples from proposals and groundtruth boxes,
        with a fraction of positives that is no larger than `self.positive_sample_fraction.

        Args:
            See :meth:`StandardROIHeads.forward`

        Returns:
            list[Instances]: length `N` list of `Instances`s containing the proposals
                sampled for training. Each `Instances` has the following fields:
                - proposal_boxes: the rotated proposal boxes
                - gt_boxes: the ground-truth rotated boxes that the proposal is assigned to
                  (this is only meaningful if the proposal has a label > 0; if label = 0
                   then the ground-truth box is random)
                - gt_classes: the ground-truth classification lable for each proposal
        """
        if self.proposal_append_gt:
            proposals = add_ground_truth_to_proposals(targets, proposals)

        proposals_with_gt = []

        num_fg_samples = []
        num_bg_samples = []
        for proposals_per_image, targets_per_image in zip(proposals, targets):
            has_gt = len(targets_per_image) > 0
            match_quality_matrix = pairwise_iou_rotated(
                targets_per_image.gt_boxes, proposals_per_image.proposal_boxes
            )
            matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix)
            sampled_idxs, gt_classes = self._sample_proposals(
                matched_idxs, matched_labels, targets_per_image.gt_classes
            )

            proposals_per_image = proposals_per_image[sampled_idxs]
            proposals_per_image.gt_classes = gt_classes

            if has_gt:
                sampled_targets = matched_idxs[sampled_idxs]
                proposals_per_image.gt_boxes = targets_per_image.gt_boxes[sampled_targets]

            num_bg_samples.append((gt_classes == self.num_classes).sum().item())
            num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1])
            proposals_with_gt.append(proposals_per_image)

        # Log the number of fg/bg samples that are selected for training ROI heads
        storage = get_event_storage()
        storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples))
        storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples))

        return proposals_with_gt