File size: 4,859 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// Copyright (c) Facebook, Inc. and its affiliates.
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#ifdef WITH_CUDA
#include "../box_iou_rotated/box_iou_rotated_utils.h"
#endif
// TODO avoid this when pytorch supports "same directory" hipification
#ifdef WITH_HIP
#include "box_iou_rotated/box_iou_rotated_utils.h"
#endif

using namespace detectron2;

namespace {
int const threadsPerBlock = sizeof(unsigned long long) * 8;
}

template <typename T>
__global__ void nms_rotated_cuda_kernel(
    const int n_boxes,
    const double iou_threshold,
    const T* dev_boxes,
    unsigned long long* dev_mask) {
  // nms_rotated_cuda_kernel is modified from torchvision's nms_cuda_kernel

  const int row_start = blockIdx.y;
  const int col_start = blockIdx.x;

  // if (row_start > col_start) return;

  const int row_size =
      min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
  const int col_size =
      min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);

  // Compared to nms_cuda_kernel, where each box is represented with 4 values
  // (x1, y1, x2, y2), each rotated box is represented with 5 values
  // (x_center, y_center, width, height, angle_degrees) here.
  __shared__ T block_boxes[threadsPerBlock * 5];
  if (threadIdx.x < col_size) {
    block_boxes[threadIdx.x * 5 + 0] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0];
    block_boxes[threadIdx.x * 5 + 1] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1];
    block_boxes[threadIdx.x * 5 + 2] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2];
    block_boxes[threadIdx.x * 5 + 3] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3];
    block_boxes[threadIdx.x * 5 + 4] =
        dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4];
  }
  __syncthreads();

  if (threadIdx.x < row_size) {
    const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
    const T* cur_box = dev_boxes + cur_box_idx * 5;
    int i = 0;
    unsigned long long t = 0;
    int start = 0;
    if (row_start == col_start) {
      start = threadIdx.x + 1;
    }
    for (i = start; i < col_size; i++) {
      // Instead of devIoU used by original horizontal nms, here
      // we use the single_box_iou_rotated function from box_iou_rotated_utils.h
      if (single_box_iou_rotated<T>(cur_box, block_boxes + i * 5) >
          iou_threshold) {
        t |= 1ULL << i;
      }
    }
    const int col_blocks = at::cuda::ATenCeilDiv(n_boxes, threadsPerBlock);
    dev_mask[cur_box_idx * col_blocks + col_start] = t;
  }
}

namespace detectron2 {

at::Tensor nms_rotated_cuda(
    // input must be contiguous
    const at::Tensor& dets,
    const at::Tensor& scores,
    double iou_threshold) {
  // using scalar_t = float;
  AT_ASSERTM(dets.is_cuda(), "dets must be a CUDA tensor");
  AT_ASSERTM(scores.is_cuda(), "scores must be a CUDA tensor");
  at::cuda::CUDAGuard device_guard(dets.device());

  auto order_t = std::get<1>(scores.sort(0, /* descending=*/true));
  auto dets_sorted = dets.index_select(0, order_t);

  auto dets_num = dets.size(0);

  const int col_blocks =
      at::cuda::ATenCeilDiv(static_cast<int>(dets_num), threadsPerBlock);

  at::Tensor mask =
      at::empty({dets_num * col_blocks}, dets.options().dtype(at::kLong));

  dim3 blocks(col_blocks, col_blocks);
  dim3 threads(threadsPerBlock);
  cudaStream_t stream = at::cuda::getCurrentCUDAStream();

  AT_DISPATCH_FLOATING_TYPES(
      dets_sorted.scalar_type(), "nms_rotated_kernel_cuda", [&] {
        nms_rotated_cuda_kernel<scalar_t><<<blocks, threads, 0, stream>>>(
            dets_num,
            iou_threshold,
            dets_sorted.data_ptr<scalar_t>(),
            (unsigned long long*)mask.data_ptr<int64_t>());
      });

  at::Tensor mask_cpu = mask.to(at::kCPU);
  unsigned long long* mask_host =
      (unsigned long long*)mask_cpu.data_ptr<int64_t>();

  std::vector<unsigned long long> remv(col_blocks);
  memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);

  at::Tensor keep =
      at::empty({dets_num}, dets.options().dtype(at::kLong).device(at::kCPU));
  int64_t* keep_out = keep.data_ptr<int64_t>();

  int num_to_keep = 0;
  for (int i = 0; i < dets_num; i++) {
    int nblock = i / threadsPerBlock;
    int inblock = i % threadsPerBlock;

    if (!(remv[nblock] & (1ULL << inblock))) {
      keep_out[num_to_keep++] = i;
      unsigned long long* p = mask_host + i * col_blocks;
      for (int j = nblock; j < col_blocks; j++) {
        remv[j] |= p[j];
      }
    }
  }

  AT_CUDA_CHECK(cudaGetLastError());
  return order_t.index(
      {keep.narrow(/*dim=*/0, /*start=*/0, /*length=*/num_to_keep)
           .to(order_t.device(), keep.scalar_type())});
}

} // namespace detectron2