|
import numpy as np |
|
from PIL import Image |
|
from huggingface_hub import snapshot_download |
|
from leffa.transform import LeffaTransform |
|
from leffa.model import LeffaModel |
|
from leffa.inference import LeffaInference |
|
from utils.garment_agnostic_mask_predictor import AutoMasker |
|
from utils.densepose_predictor import DensePosePredictor |
|
from utils.utils import resize_and_center |
|
|
|
import gradio as gr |
|
|
|
|
|
snapshot_download(repo_id="franciszzj/Leffa", local_dir="./ckpts") |
|
|
|
|
|
def leffa_predict(src_image_path, ref_image_path, control_type): |
|
assert control_type in [ |
|
"virtual_tryon", "pose_transfer"], "Invalid control type: {}".format(control_type) |
|
src_image = Image.open(src_image_path) |
|
ref_image = Image.open(ref_image_path) |
|
src_image = resize_and_center(src_image, 768, 1024) |
|
ref_image = resize_and_center(ref_image, 768, 1024) |
|
|
|
src_image_array = np.array(src_image) |
|
ref_image_array = np.array(ref_image) |
|
|
|
|
|
if control_type == "virtual_tryon": |
|
automasker = AutoMasker( |
|
densepose_path="./ckpts/densepose", |
|
schp_path="./ckpts/schp", |
|
) |
|
src_image = src_image.convert("RGB") |
|
mask = automasker(src_image, "upper")["mask"] |
|
elif control_type == "pose_transfer": |
|
mask = Image.fromarray(np.ones_like(src_image_array) * 255) |
|
|
|
|
|
densepose_predictor = DensePosePredictor( |
|
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml", |
|
weights_path="./ckpts/densepose/model_final_162be9.pkl", |
|
) |
|
src_image_iuv_array = densepose_predictor.predict_iuv(src_image_array) |
|
src_image_seg_array = densepose_predictor.predict_seg(src_image_array) |
|
src_image_iuv = Image.fromarray(src_image_iuv_array) |
|
src_image_seg = Image.fromarray(src_image_seg_array) |
|
if control_type == "virtual_tryon": |
|
densepose = src_image_seg |
|
elif control_type == "pose_transfer": |
|
densepose = src_image_iuv |
|
|
|
|
|
transform = LeffaTransform() |
|
if control_type == "virtual_tryon": |
|
pretrained_model_name_or_path = "./ckpts/stable-diffusion-inpainting" |
|
pretrained_model = "./ckpts/virtual_tryon.pth" |
|
elif control_type == "pose_transfer": |
|
pretrained_model_name_or_path = "./ckpts/stable-diffusion-xl-1.0-inpainting-0.1" |
|
pretrained_model = "./ckpts/pose_transfer.pth" |
|
model = LeffaModel( |
|
pretrained_model_name_or_path=pretrained_model_name_or_path, |
|
pretrained_model=pretrained_model, |
|
) |
|
inference = LeffaInference(model=model) |
|
|
|
data = { |
|
"src_image": [src_image], |
|
"ref_image": [ref_image], |
|
"mask": [mask], |
|
"densepose": [densepose], |
|
} |
|
data = transform(data) |
|
output = inference(data) |
|
gen_image = output["generated_image"][0] |
|
|
|
return np.array(gen_image) |
|
|
|
|
|
def leffa_predict_vt(src_image_path, ref_image_path): |
|
return leffa_predict(src_image_path, ref_image_path, "virtual_tryon") |
|
|
|
|
|
def leffa_predict_pt(src_image_path, ref_image_path): |
|
return leffa_predict(src_image_path, ref_image_path, "pose_transfer") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
title = "## Leffa: Learning Flow Fields in Attention for Controllable Person Image Generation" |
|
description = "Leffa is a unified framework for controllable person image generation that enables precise manipulation of both appearance (i.e., virtual try-on) and pose (i.e., pose transfer)." |
|
|
|
with gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.pink, secondary_hue=gr.themes.colors.red)).queue() as demo: |
|
gr.Markdown(title) |
|
gr.Markdown(description) |
|
|
|
with gr.Tab("Control Appearance (Virtual Try-on)"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("#### Person Image") |
|
vt_src_image = gr.Image( |
|
sources=["upload"], |
|
type="filepath", |
|
label="Person Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
gr.Examples( |
|
inputs=vt_src_image, |
|
examples_per_page=5, |
|
examples=["./ckpts/examples/person1/01320_00.jpg", |
|
"./ckpts/examples/person1/01350_00.jpg", |
|
"./ckpts/examples/person1/01365_00.jpg", |
|
"./ckpts/examples/person1/01376_00.jpg", |
|
"./ckpts/examples/person1/01416_00.jpg",], |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown("#### Garment Image") |
|
vt_ref_image = gr.Image( |
|
sources=["upload"], |
|
type="filepath", |
|
label="Garment Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
gr.Examples( |
|
inputs=vt_ref_image, |
|
examples_per_page=5, |
|
examples=["./ckpts/examples/garment/01449_00.jpg", |
|
"./ckpts/examples/garment/01486_00.jpg", |
|
"./ckpts/examples/garment/01853_00.jpg", |
|
"./ckpts/examples/garment/02070_00.jpg", |
|
"./ckpts/examples/garment/03553_00.jpg",], |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown("#### Generated Image") |
|
vt_gen_image = gr.Image( |
|
label="Generated Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
with gr.Row(): |
|
vt_gen_button = gr.Button("Generate") |
|
|
|
vt_gen_button.click(fn=leffa_predict_vt, inputs=[ |
|
vt_src_image, vt_ref_image], outputs=[vt_gen_image]) |
|
|
|
with gr.Tab("Control Pose (Pose Transfer)"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Markdown("#### Person Image") |
|
pt_ref_image = gr.Image( |
|
sources=["upload"], |
|
type="filepath", |
|
label="Person Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
gr.Examples( |
|
inputs=vt_src_image, |
|
examples_per_page=5, |
|
examples=["./ckpts/examples/person1/01320_00.jpg", |
|
"./ckpts/examples/person1/01350_00.jpg", |
|
"./ckpts/examples/person1/01365_00.jpg", |
|
"./ckpts/examples/person1/01376_00.jpg", |
|
"./ckpts/examples/person1/01416_00.jpg",], |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown("#### Target Pose Person Image") |
|
pt_src_image = gr.Image( |
|
sources=["upload"], |
|
type="filepath", |
|
label="Target Pose Person Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
gr.Examples( |
|
inputs=pt_src_image, |
|
examples_per_page=5, |
|
examples=["./ckpts/examples/person2/01850_00.jpg", |
|
"./ckpts/examples/person2/01875_00.jpg", |
|
"./ckpts/examples/person2/02532_00.jpg", |
|
"./ckpts/examples/person2/02902_00.jpg", |
|
"./ckpts/examples/person2/05346_00.jpg",], |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown("#### Generated Image") |
|
pt_gen_image = gr.Image( |
|
label="Generated Image", |
|
width=512, |
|
height=512, |
|
) |
|
|
|
with gr.Row(): |
|
pose_transfer_gen_button = gr.Button("Generate") |
|
|
|
pose_transfer_gen_button.click(fn=leffa_predict_pt, inputs=[ |
|
pt_src_image, pt_ref_image], outputs=[pt_gen_image]) |
|
|
|
demo.launch(share=True, server_port=7860) |
|
|