Leffa / 3rdparty /detectron2 /export /caffe2_inference.py
franciszzj's picture
init code
b213d84
raw
history blame
6.67 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
from itertools import count
import torch
from caffe2.proto import caffe2_pb2
from caffe2.python import core
from .caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP, convert_batched_inputs_to_c2_format
from .shared import ScopedWS, get_pb_arg_vali, get_pb_arg_vals, infer_device_type
logger = logging.getLogger(__name__)
# ===== ref: mobile-vision predictor's 'Caffe2Wrapper' class ======
class ProtobufModel(torch.nn.Module):
"""
Wrapper of a caffe2's protobuf model.
It works just like nn.Module, but running caffe2 under the hood.
Input/Output are tuple[tensor] that match the caffe2 net's external_input/output.
"""
_ids = count(0)
def __init__(self, predict_net, init_net):
logger.info(f"Initializing ProtobufModel for: {predict_net.name} ...")
super().__init__()
assert isinstance(predict_net, caffe2_pb2.NetDef)
assert isinstance(init_net, caffe2_pb2.NetDef)
# create unique temporary workspace for each instance
self.ws_name = "__tmp_ProtobufModel_{}__".format(next(self._ids))
self.net = core.Net(predict_net)
logger.info("Running init_net once to fill the parameters ...")
with ScopedWS(self.ws_name, is_reset=True, is_cleanup=False) as ws:
ws.RunNetOnce(init_net)
uninitialized_external_input = []
for blob in self.net.Proto().external_input:
if blob not in ws.Blobs():
uninitialized_external_input.append(blob)
ws.CreateBlob(blob)
ws.CreateNet(self.net)
self._error_msgs = set()
self._input_blobs = uninitialized_external_input
def _infer_output_devices(self, inputs):
"""
Returns:
list[str]: list of device for each external output
"""
def _get_device_type(torch_tensor):
assert torch_tensor.device.type in ["cpu", "cuda"]
assert torch_tensor.device.index == 0
return torch_tensor.device.type
predict_net = self.net.Proto()
input_device_types = {
(name, 0): _get_device_type(tensor) for name, tensor in zip(self._input_blobs, inputs)
}
device_type_map = infer_device_type(
predict_net, known_status=input_device_types, device_name_style="pytorch"
)
ssa, versions = core.get_ssa(predict_net)
versioned_outputs = [(name, versions[name]) for name in predict_net.external_output]
output_devices = [device_type_map[outp] for outp in versioned_outputs]
return output_devices
def forward(self, inputs):
"""
Args:
inputs (tuple[torch.Tensor])
Returns:
tuple[torch.Tensor]
"""
assert len(inputs) == len(self._input_blobs), (
f"Length of inputs ({len(inputs)}) "
f"doesn't match the required input blobs: {self._input_blobs}"
)
with ScopedWS(self.ws_name, is_reset=False, is_cleanup=False) as ws:
for b, tensor in zip(self._input_blobs, inputs):
ws.FeedBlob(b, tensor)
try:
ws.RunNet(self.net.Proto().name)
except RuntimeError as e:
if not str(e) in self._error_msgs:
self._error_msgs.add(str(e))
logger.warning("Encountered new RuntimeError: \n{}".format(str(e)))
logger.warning("Catch the error and use partial results.")
c2_outputs = [ws.FetchBlob(b) for b in self.net.Proto().external_output]
# Remove outputs of current run, this is necessary in order to
# prevent fetching the result from previous run if the model fails
# in the middle.
for b in self.net.Proto().external_output:
# Needs to create uninitialized blob to make the net runable.
# This is "equivalent" to: ws.RemoveBlob(b) then ws.CreateBlob(b),
# but there'no such API.
ws.FeedBlob(b, f"{b}, a C++ native class of type nullptr (uninitialized).")
# Cast output to torch.Tensor on the desired device
output_devices = (
self._infer_output_devices(inputs)
if any(t.device.type != "cpu" for t in inputs)
else ["cpu" for _ in self.net.Proto().external_output]
)
outputs = []
for name, c2_output, device in zip(
self.net.Proto().external_output, c2_outputs, output_devices
):
if not isinstance(c2_output, np.ndarray):
raise RuntimeError(
"Invalid output for blob {}, received: {}".format(name, c2_output)
)
outputs.append(torch.tensor(c2_output).to(device=device))
return tuple(outputs)
class ProtobufDetectionModel(torch.nn.Module):
"""
A class works just like a pytorch meta arch in terms of inference, but running
caffe2 model under the hood.
"""
def __init__(self, predict_net, init_net, *, convert_outputs=None):
"""
Args:
predict_net, init_net (core.Net): caffe2 nets
convert_outptus (callable): a function that converts caffe2
outputs to the same format of the original pytorch model.
By default, use the one defined in the caffe2 meta_arch.
"""
super().__init__()
self.protobuf_model = ProtobufModel(predict_net, init_net)
self.size_divisibility = get_pb_arg_vali(predict_net, "size_divisibility", 0)
self.device = get_pb_arg_vals(predict_net, "device", b"cpu").decode("ascii")
if convert_outputs is None:
meta_arch = get_pb_arg_vals(predict_net, "meta_architecture", b"GeneralizedRCNN")
meta_arch = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[meta_arch.decode("ascii")]
self._convert_outputs = meta_arch.get_outputs_converter(predict_net, init_net)
else:
self._convert_outputs = convert_outputs
def _convert_inputs(self, batched_inputs):
# currently all models convert inputs in the same way
return convert_batched_inputs_to_c2_format(
batched_inputs, self.size_divisibility, self.device
)
def forward(self, batched_inputs):
c2_inputs = self._convert_inputs(batched_inputs)
c2_results = self.protobuf_model(c2_inputs)
c2_results = dict(zip(self.protobuf_model.net.Proto().external_output, c2_results))
return self._convert_outputs(batched_inputs, c2_inputs, c2_results)