franciszzj's picture
init code
b213d84
raw
history blame
16.1 kB
import logging
import numpy as np
import torch
import torch.nn as nn
from .backbone import Backbone
from .utils import (
PatchEmbed,
add_decomposed_rel_pos,
get_abs_pos,
window_partition,
window_unpartition,
)
logger = logging.getLogger(__name__)
__all__ = ["MViT"]
def attention_pool(x, pool, norm=None):
# (B, H, W, C) -> (B, C, H, W)
x = x.permute(0, 3, 1, 2)
x = pool(x)
# (B, C, H1, W1) -> (B, H1, W1, C)
x = x.permute(0, 2, 3, 1)
if norm:
x = norm(x)
return x
class MultiScaleAttention(nn.Module):
"""Multiscale Multi-head Attention block."""
def __init__(
self,
dim,
dim_out,
num_heads,
qkv_bias=True,
norm_layer=nn.LayerNorm,
pool_kernel=(3, 3),
stride_q=1,
stride_kv=1,
residual_pooling=True,
window_size=0,
use_rel_pos=False,
rel_pos_zero_init=True,
input_size=None,
):
"""
Args:
dim (int): Number of input channels.
dim_out (int): Number of output channels.
num_heads (int): Number of attention heads.
qkv_bias (bool: If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
pool_kernel (tuple): kernel size for qkv pooling layers.
stride_q (int): stride size for q pooling layer.
stride_kv (int): stride size for kv pooling layer.
residual_pooling (bool): If true, enable residual pooling.
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (int or None): Input resolution.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim_out // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias)
self.proj = nn.Linear(dim_out, dim_out)
# qkv pooling
pool_padding = [k // 2 for k in pool_kernel]
dim_conv = dim_out // num_heads
self.pool_q = nn.Conv2d(
dim_conv,
dim_conv,
pool_kernel,
stride=stride_q,
padding=pool_padding,
groups=dim_conv,
bias=False,
)
self.norm_q = norm_layer(dim_conv)
self.pool_k = nn.Conv2d(
dim_conv,
dim_conv,
pool_kernel,
stride=stride_kv,
padding=pool_padding,
groups=dim_conv,
bias=False,
)
self.norm_k = norm_layer(dim_conv)
self.pool_v = nn.Conv2d(
dim_conv,
dim_conv,
pool_kernel,
stride=stride_kv,
padding=pool_padding,
groups=dim_conv,
bias=False,
)
self.norm_v = norm_layer(dim_conv)
self.window_size = window_size
if window_size:
self.q_win_size = window_size // stride_q
self.kv_win_size = window_size // stride_kv
self.residual_pooling = residual_pooling
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
# initialize relative positional embeddings
assert input_size[0] == input_size[1]
size = input_size[0]
rel_dim = 2 * max(size // stride_q, size // stride_kv) - 1
self.rel_pos_h = nn.Parameter(torch.zeros(rel_dim, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(rel_dim, head_dim))
if not rel_pos_zero_init:
nn.init.trunc_normal_(self.rel_pos_h, std=0.02)
nn.init.trunc_normal_(self.rel_pos_w, std=0.02)
def forward(self, x):
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H, W, C)
qkv = self.qkv(x).reshape(B, H, W, 3, self.num_heads, -1).permute(3, 0, 4, 1, 2, 5)
# q, k, v with shape (B * nHead, H, W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H, W, -1).unbind(0)
q = attention_pool(q, self.pool_q, self.norm_q)
k = attention_pool(k, self.pool_k, self.norm_k)
v = attention_pool(v, self.pool_v, self.norm_v)
ori_q = q
if self.window_size:
q, q_hw_pad = window_partition(q, self.q_win_size)
k, kv_hw_pad = window_partition(k, self.kv_win_size)
v, _ = window_partition(v, self.kv_win_size)
q_hw = (self.q_win_size, self.q_win_size)
kv_hw = (self.kv_win_size, self.kv_win_size)
else:
q_hw = q.shape[1:3]
kv_hw = k.shape[1:3]
q = q.view(q.shape[0], np.prod(q_hw), -1)
k = k.view(k.shape[0], np.prod(kv_hw), -1)
v = v.view(v.shape[0], np.prod(kv_hw), -1)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.use_rel_pos:
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, q_hw, kv_hw)
attn = attn.softmax(dim=-1)
x = attn @ v
x = x.view(x.shape[0], q_hw[0], q_hw[1], -1)
if self.window_size:
x = window_unpartition(x, self.q_win_size, q_hw_pad, ori_q.shape[1:3])
if self.residual_pooling:
x += ori_q
H, W = x.shape[1], x.shape[2]
x = x.view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
x = self.proj(x)
return x
class MultiScaleBlock(nn.Module):
"""Multiscale Transformer blocks"""
def __init__(
self,
dim,
dim_out,
num_heads,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=0.0,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
qkv_pool_kernel=(3, 3),
stride_q=1,
stride_kv=1,
residual_pooling=True,
window_size=0,
use_rel_pos=False,
rel_pos_zero_init=True,
input_size=None,
):
"""
Args:
dim (int): Number of input channels.
dim_out (int): Number of output channels.
num_heads (int): Number of attention heads in the MViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
drop_path (float): Stochastic depth rate.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
qkv_pool_kernel (tuple): kernel size for qkv pooling layers.
stride_q (int): stride size for q pooling layer.
stride_kv (int): stride size for kv pooling layer.
residual_pooling (bool): If true, enable residual pooling.
window_size (int): Window size for window attention blocks. If it equals 0, then not
use window attention.
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (int or None): Input resolution.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = MultiScaleAttention(
dim,
dim_out,
num_heads=num_heads,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
pool_kernel=qkv_pool_kernel,
stride_q=stride_q,
stride_kv=stride_kv,
residual_pooling=residual_pooling,
window_size=window_size,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size,
)
from timm.models.layers import DropPath, Mlp
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim_out)
self.mlp = Mlp(
in_features=dim_out,
hidden_features=int(dim_out * mlp_ratio),
out_features=dim_out,
act_layer=act_layer,
)
if dim != dim_out:
self.proj = nn.Linear(dim, dim_out)
if stride_q > 1:
kernel_skip = stride_q + 1
padding_skip = int(kernel_skip // 2)
self.pool_skip = nn.MaxPool2d(kernel_skip, stride_q, padding_skip, ceil_mode=False)
def forward(self, x):
x_norm = self.norm1(x)
x_block = self.attn(x_norm)
if hasattr(self, "proj"):
x = self.proj(x_norm)
if hasattr(self, "pool_skip"):
x = attention_pool(x, self.pool_skip)
x = x + self.drop_path(x_block)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class MViT(Backbone):
"""
This module implements Multiscale Vision Transformer (MViT) backbone in :paper:'mvitv2'.
"""
def __init__(
self,
img_size=224,
patch_kernel=(7, 7),
patch_stride=(4, 4),
patch_padding=(3, 3),
in_chans=3,
embed_dim=96,
depth=16,
num_heads=1,
last_block_indexes=(0, 2, 11, 15),
qkv_pool_kernel=(3, 3),
adaptive_kv_stride=4,
adaptive_window_size=56,
residual_pooling=True,
mlp_ratio=4.0,
qkv_bias=True,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
use_abs_pos=False,
use_rel_pos=True,
rel_pos_zero_init=True,
use_act_checkpoint=False,
pretrain_img_size=224,
pretrain_use_cls_token=True,
out_features=("scale2", "scale3", "scale4", "scale5"),
):
"""
Args:
img_size (int): Input image size.
patch_kernel (tuple): kernel size for patch embedding.
patch_stride (tuple): stride size for patch embedding.
patch_padding (tuple): padding size for patch embedding.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of MViT.
num_heads (int): Number of base attention heads in each MViT block.
last_block_indexes (tuple): Block indexes for last blocks in each stage.
qkv_pool_kernel (tuple): kernel size for qkv pooling layers.
adaptive_kv_stride (int): adaptive stride size for kv pooling.
adaptive_window_size (int): adaptive window size for window attention blocks.
residual_pooling (bool): If true, enable residual pooling.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
drop_path_rate (float): Stochastic depth rate.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative postional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
use_act_checkpoint (bool): If True, use activation checkpointing.
pretrain_img_size (int): input image size for pretraining models.
pretrain_use_cls_token (bool): If True, pretrainig models use class token.
out_features (tuple): name of the feature maps from each stage.
"""
super().__init__()
self.pretrain_use_cls_token = pretrain_use_cls_token
self.patch_embed = PatchEmbed(
kernel_size=patch_kernel,
stride=patch_stride,
padding=patch_padding,
in_chans=in_chans,
embed_dim=embed_dim,
)
if use_abs_pos:
# Initialize absoluate positional embedding with pretrain image size.
num_patches = (pretrain_img_size // patch_stride[0]) * (
pretrain_img_size // patch_stride[1]
)
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim))
else:
self.pos_embed = None
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
dim_out = embed_dim
stride_kv = adaptive_kv_stride
window_size = adaptive_window_size
input_size = (img_size // patch_stride[0], img_size // patch_stride[1])
stage = 2
stride = patch_stride[0]
self._out_feature_strides = {}
self._out_feature_channels = {}
self.blocks = nn.ModuleList()
for i in range(depth):
# Multiply stride_kv by 2 if it's the last block of stage2 and stage3.
if i == last_block_indexes[1] or i == last_block_indexes[2]:
stride_kv_ = stride_kv * 2
else:
stride_kv_ = stride_kv
# hybrid window attention: global attention in last three stages.
window_size_ = 0 if i in last_block_indexes[1:] else window_size
block = MultiScaleBlock(
dim=embed_dim,
dim_out=dim_out,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop_path=dpr[i],
norm_layer=norm_layer,
qkv_pool_kernel=qkv_pool_kernel,
stride_q=2 if i - 1 in last_block_indexes else 1,
stride_kv=stride_kv_,
residual_pooling=residual_pooling,
window_size=window_size_,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size,
)
if use_act_checkpoint:
# TODO: use torch.utils.checkpoint
from fairscale.nn.checkpoint import checkpoint_wrapper
block = checkpoint_wrapper(block)
self.blocks.append(block)
embed_dim = dim_out
if i in last_block_indexes:
name = f"scale{stage}"
if name in out_features:
self._out_feature_channels[name] = dim_out
self._out_feature_strides[name] = stride
self.add_module(f"{name}_norm", norm_layer(dim_out))
dim_out *= 2
num_heads *= 2
stride_kv = max(stride_kv // 2, 1)
stride *= 2
stage += 1
if i - 1 in last_block_indexes:
window_size = window_size // 2
input_size = [s // 2 for s in input_size]
self._out_features = out_features
self._last_block_indexes = last_block_indexes
if self.pos_embed is not None:
nn.init.trunc_normal_(self.pos_embed, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + get_abs_pos(self.pos_embed, self.pretrain_use_cls_token, x.shape[1:3])
outputs = {}
stage = 2
for i, blk in enumerate(self.blocks):
x = blk(x)
if i in self._last_block_indexes:
name = f"scale{stage}"
if name in self._out_features:
x_out = getattr(self, f"{name}_norm")(x)
outputs[name] = x_out.permute(0, 3, 1, 2)
stage += 1
return outputs