|
import logging |
|
|
|
from typing import Any, Dict |
|
|
|
import numpy as np |
|
import torch |
|
from diffusers.image_processor import VaeImageProcessor |
|
from PIL import Image |
|
from torch import nn |
|
|
|
logger: logging.Logger = logging.getLogger(__name__) |
|
|
|
|
|
class LeffaTransform(nn.Module): |
|
def __init__( |
|
self, |
|
height: int = 1024, |
|
width: int = 768, |
|
dataset: str = "virtual_tryon", |
|
): |
|
super().__init__() |
|
|
|
self.height = height |
|
self.width = width |
|
self.dataset = dataset |
|
|
|
self.vae_processor = VaeImageProcessor(vae_scale_factor=8) |
|
self.mask_processor = VaeImageProcessor( |
|
vae_scale_factor=8, |
|
do_normalize=False, |
|
do_binarize=True, |
|
do_convert_grayscale=True, |
|
) |
|
|
|
def forward(self, batch: Dict[str, Any]) -> Dict[str, Any]: |
|
batch_size = len(batch["src_image"]) |
|
|
|
src_image_list = [] |
|
ref_image_list = [] |
|
mask_list = [] |
|
densepose_list = [] |
|
for i in range(batch_size): |
|
|
|
src_image = batch["src_image"][i] |
|
ref_image = batch["ref_image"][i] |
|
mask = batch["mask"][i] |
|
densepose = batch["densepose"][i] |
|
|
|
|
|
src_image = self.vae_processor.preprocess( |
|
src_image, self.height, self.width)[0] |
|
ref_image = self.vae_processor.preprocess( |
|
ref_image, self.height, self.width)[0] |
|
mask = self.mask_processor.preprocess( |
|
mask, self.height, self.width)[0] |
|
if self.dataset in ["pose_transfer"]: |
|
densepose = densepose.resize( |
|
(self.width, self.height), Image.NEAREST) |
|
else: |
|
densepose = self.vae_processor.preprocess( |
|
densepose, self.height, self.width |
|
)[0] |
|
|
|
src_image = self.prepare_image(src_image) |
|
ref_image = self.prepare_image(ref_image) |
|
mask = self.prepare_mask(mask) |
|
if self.dataset in ["pose_transfer"]: |
|
densepose = self.prepare_densepose(densepose) |
|
else: |
|
densepose = self.prepare_image(densepose) |
|
|
|
src_image_list.append(src_image) |
|
ref_image_list.append(ref_image) |
|
mask_list.append(mask) |
|
densepose_list.append(densepose) |
|
|
|
src_image = torch.cat(src_image_list, dim=0) |
|
ref_image = torch.cat(ref_image_list, dim=0) |
|
mask = torch.cat(mask_list, dim=0) |
|
densepose = torch.cat(densepose_list, dim=0) |
|
|
|
batch["src_image"] = src_image |
|
batch["ref_image"] = ref_image |
|
batch["mask"] = mask |
|
batch["densepose"] = densepose |
|
|
|
return batch |
|
|
|
@staticmethod |
|
def prepare_image(image): |
|
if isinstance(image, torch.Tensor): |
|
|
|
if image.ndim == 3: |
|
image = image.unsqueeze(0) |
|
image = image.to(dtype=torch.float32) |
|
else: |
|
|
|
if isinstance(image, (Image.Image, np.ndarray)): |
|
image = [image] |
|
if isinstance(image, list) and isinstance(image[0], Image.Image): |
|
image = [np.array(i.convert("RGB"))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray): |
|
image = np.concatenate([i[None, :] for i in image], axis=0) |
|
image = image.transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).to( |
|
dtype=torch.float32) / 127.5 - 1.0 |
|
return image |
|
|
|
@staticmethod |
|
def prepare_mask(mask): |
|
if isinstance(mask, torch.Tensor): |
|
if mask.ndim == 2: |
|
|
|
mask = mask.unsqueeze(0).unsqueeze(0) |
|
elif mask.ndim == 3 and mask.shape[0] == 1: |
|
|
|
|
|
mask = mask.unsqueeze(0) |
|
elif mask.ndim == 3 and mask.shape[0] != 1: |
|
|
|
|
|
mask = mask.unsqueeze(1) |
|
|
|
|
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
else: |
|
|
|
if isinstance(mask, (Image.Image, np.ndarray)): |
|
mask = [mask] |
|
|
|
if isinstance(mask, list) and isinstance(mask[0], Image.Image): |
|
mask = np.concatenate( |
|
[np.array(m.convert("L"))[None, None, :] for m in mask], |
|
axis=0, |
|
) |
|
mask = mask.astype(np.float32) / 255.0 |
|
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): |
|
mask = np.concatenate([m[None, None, :] for m in mask], axis=0) |
|
|
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask = torch.from_numpy(mask) |
|
|
|
return mask |
|
|
|
@staticmethod |
|
def prepare_densepose(densepose): |
|
""" |
|
For internal (meta) densepose, the first and second channel should be normalized to 0~1 by 255.0, |
|
and the third channel should be normalized to 0~1 by 24.0 |
|
""" |
|
if isinstance(densepose, torch.Tensor): |
|
|
|
if densepose.ndim == 3: |
|
densepose = densepose.unsqueeze(0) |
|
densepose = densepose.to(dtype=torch.float32) |
|
else: |
|
|
|
if isinstance(densepose, (Image.Image, np.ndarray)): |
|
densepose = [densepose] |
|
if isinstance(densepose, list) and isinstance( |
|
densepose[0], Image.Image |
|
): |
|
densepose = [np.array(i.convert("RGB"))[None, :] |
|
for i in densepose] |
|
densepose = np.concatenate(densepose, axis=0) |
|
elif isinstance(densepose, list) and isinstance(densepose[0], np.ndarray): |
|
densepose = np.concatenate( |
|
[i[None, :] for i in densepose], axis=0) |
|
densepose = densepose.transpose(0, 3, 1, 2) |
|
densepose = densepose.astype(np.float32) |
|
densepose[:, 0:2, :, :] /= 255.0 |
|
densepose[:, 2:3, :, :] /= 24.0 |
|
densepose = torch.from_numpy(densepose).to( |
|
dtype=torch.float32) * 2.0 - 1.0 |
|
return densepose |
|
|