Spaces:
Runtime error
Runtime error
import gradio as gr | |
from glycowork.ml.processing import dataset_to_dataloader | |
import numpy as np | |
import torch | |
def fn(model, class_list): | |
def f(glycan): | |
glycan = [glycan] | |
label = [0] | |
data = next(iter(dataset_to_dataloader(glycan, label, batch_size=1))) | |
device = "cpu" | |
if torch.cuda.is_available(): | |
device = "cuda:0" | |
x = data.labels | |
edge_index = data.edge_index | |
batch = data.batch | |
x = x.to(device) | |
edge_index = edge_index.to(device) | |
batch = batch.to(device) | |
pred = model(x,edge_index, batch).cpu().detach().numpy() | |
pred = np.argmax(pred) | |
pred = class_list[pred] | |
return pred | |
return f | |
model = torch.load("model.pt") | |
model.eval() | |
class_list=['Amoebozoa', 'Animalia', 'Bacteria', 'Bamfordvirae', 'Chromista', 'Euryarchaeota', 'Excavata', 'Fungi', 'Heunggongvirae', | |
'Orthornavirae', 'Pararnavirae', 'Plantae', 'Proteoarchaeota', 'Protista', 'Riboviria'] | |
f = fn(model, class_list) | |
demo = gr.Interface( | |
fn=f, | |
inputs=[gr.Textbox(label="Glycan sequence")], | |
outputs=[gr.Textbox(label="Predicted Class")], | |
allow_flagging=False, | |
title="SweetNet demo", | |
examples=["GlcOSN(a1-4)GlcA(b1-4)GlcOSN(a1-4)GlcAOS(b1-4)GlcOSN(a1-4)GlcOSN", | |
"Man(a1-2)Man(a1-3)[Man(a1-3)Man(a1-6)]Man(b1-4)GlcNAc(b1-4)GlcNAc", | |
"Neu5Ac(a2-3)Gal(b1-3)[Neu5Ac(a2-6)]GlcNAc(b1-3)Gal(b1-4)Glc-ol"] | |
) | |
demo.launch(debug=True) |