Spaces:
Runtime error
Runtime error
dalexanderch
commited on
Commit
•
840fdaa
1
Parent(s):
47aa6b1
Upload app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,18 @@
|
|
1 |
import os
|
2 |
os.system("pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu")
|
3 |
os.system("pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.12.0+cpu.html")
|
|
|
|
|
|
|
4 |
import gradio as gr
|
5 |
from glycowork.ml.processing import dataset_to_dataloader
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
import torch.nn as nn
|
|
|
|
|
|
|
|
|
9 |
|
10 |
class EnsembleModel(nn.Module):
|
11 |
def __init__(self, models):
|
@@ -33,6 +40,17 @@ model2 = torch.load("model2.pt", map_location=torch.device('cpu'))
|
|
33 |
model3 = torch.load("model3.pt", map_location=torch.device('cpu'))
|
34 |
|
35 |
def fn(glycan, model):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
if model == "No data augmentation":
|
37 |
model_pred = model1
|
38 |
model_pred.eval()
|
@@ -62,13 +80,13 @@ def fn(glycan, model):
|
|
62 |
pred = np.exp(pred)/sum(np.exp(pred)) # Softmax
|
63 |
pred = [float(x) for x in pred]
|
64 |
pred = {class_list[i]:pred[i] for i in range(15)}
|
65 |
-
return pred
|
66 |
|
67 |
|
68 |
demo = gr.Interface(
|
69 |
fn=fn,
|
70 |
inputs=[gr.Textbox(label="Glycan sequence"), gr.Radio(label="Model",choices=["No data augmentation", "Random node deletion", "Ensemble"])],
|
71 |
-
outputs=[gr.Label(num_top_classes=15, label="Prediction")],
|
72 |
allow_flagging=False,
|
73 |
title="SweetNet demo",
|
74 |
examples=[["GlcOSN(a1-4)GlcA(b1-4)GlcOSN(a1-4)GlcAOS(b1-4)GlcOSN(a1-4)GlcOSN", "No data augmentation"],
|
|
|
1 |
import os
|
2 |
os.system("pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu")
|
3 |
os.system("pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.12.0+cpu.html")
|
4 |
+
os.system("apt-get install -y graphviz-dev")
|
5 |
+
os.system("pip install pygraphviz")
|
6 |
+
|
7 |
import gradio as gr
|
8 |
from glycowork.ml.processing import dataset_to_dataloader
|
9 |
import numpy as np
|
10 |
import torch
|
11 |
import torch.nn as nn
|
12 |
+
from networkx.drawing.nx_agraph import write_dot
|
13 |
+
import pygraphviz as pgv
|
14 |
+
from glycowork.motif.graph import glycan_to_nxGraph
|
15 |
+
import networkx as nx
|
16 |
|
17 |
class EnsembleModel(nn.Module):
|
18 |
def __init__(self, models):
|
|
|
40 |
model3 = torch.load("model3.pt", map_location=torch.device('cpu'))
|
41 |
|
42 |
def fn(glycan, model):
|
43 |
+
# Draw graph
|
44 |
+
graph = glycan_to_nxGraph(glycan)
|
45 |
+
node_labels = nx.get_node_attributes(graph, 'string_labels')
|
46 |
+
labels = {i:node_labels[i] for i in range(len(graph.nodes))}
|
47 |
+
graph = nx.relabel_nodes(graph, labels)
|
48 |
+
write_dot(graph, "graph.dot")
|
49 |
+
graph=pgv.AGraph("graph.dot")
|
50 |
+
graph.layout(prog='dot')
|
51 |
+
graph.draw("graph.png")
|
52 |
+
|
53 |
+
# Perform inference
|
54 |
if model == "No data augmentation":
|
55 |
model_pred = model1
|
56 |
model_pred.eval()
|
|
|
80 |
pred = np.exp(pred)/sum(np.exp(pred)) # Softmax
|
81 |
pred = [float(x) for x in pred]
|
82 |
pred = {class_list[i]:pred[i] for i in range(15)}
|
83 |
+
return pred, "graph.png"
|
84 |
|
85 |
|
86 |
demo = gr.Interface(
|
87 |
fn=fn,
|
88 |
inputs=[gr.Textbox(label="Glycan sequence"), gr.Radio(label="Model",choices=["No data augmentation", "Random node deletion", "Ensemble"])],
|
89 |
+
outputs=[gr.Label(num_top_classes=15, label="Prediction"), gr.Image(label="Graph visualization")],
|
90 |
allow_flagging=False,
|
91 |
title="SweetNet demo",
|
92 |
examples=[["GlcOSN(a1-4)GlcA(b1-4)GlcOSN(a1-4)GlcAOS(b1-4)GlcOSN(a1-4)GlcOSN", "No data augmentation"],
|