Spaces:
Runtime error
Runtime error
dalexanderch
commited on
Commit
·
8b25912
1
Parent(s):
6fa8fad
Upload app.py
Browse files
app.py
CHANGED
@@ -8,52 +8,12 @@ import numpy as np
|
|
8 |
import torch
|
9 |
from glycowork.glycan_data.loader import lib
|
10 |
|
11 |
-
# Update lib
|
12 |
-
equivalence_classes = [
|
13 |
-
["Glc", "Man", "Gal", "Gul", "Alt", "All", "Tal", "Ido" ],
|
14 |
-
["GlcNAc", "ManNAc", "GalNAc", "GulNAc", "AltNAc", "AllNAc", "TalNAc", "IdoNAc"],
|
15 |
-
["GlcN", "ManN", "GalN", "GulN", "AltN", "AllN", "TalN", "IdoN"],
|
16 |
-
["GlcA", "ManA", "GalA", "GulA", "AltA", "AllA", "TalA", "IdoA"],
|
17 |
-
["Qui", "Rha", "6dGul", "6dAlt", "6dTal", "Fuc"],
|
18 |
-
["QuiNAc", "RhaNAc", "6dAltNAc", "6dTalNAc", "FucNAc"],
|
19 |
-
["Oli", "Tyv", "Abe", "Par", "Dig", "Col"],
|
20 |
-
["Ara", "Lyx", "Xyl", "Rib"],
|
21 |
-
["Kdn", "Neu5Ac", "Neu5Gc", "Neu", "Sia"],
|
22 |
-
["Pse", "Leg", "Aci", "4eLeg"],
|
23 |
-
["Bac", "LDmanHep", "Kdo", "Dha", "DDmanHep", "MurNAc", "MurNGc", "Mur", "Api", "Fru", "Tag", "Sor", "Psi"]
|
24 |
-
]
|
25 |
-
|
26 |
-
linkage_classes = [
|
27 |
-
["a1-2", "a1-z", "z1-2", "z1-z"],
|
28 |
-
["a1-3", "a1-z", "z1-3", "z1-z"],
|
29 |
-
["a1-4", "a1-z", "z1-4", "z1-z"],
|
30 |
-
["a1-6", "a1-z", "z1-6", "z1-z"],
|
31 |
-
["b1-2", "b1-z", "z1-2", "z1-z"],
|
32 |
-
["b1-3", "b1-z", "z1-3", "z1-z"],
|
33 |
-
["b1-4", "b1-z", "z1-4", "z1-z"],
|
34 |
-
["b1-6", "b1-z", "z1-6", "z1-z"],
|
35 |
-
["a2-3", "a2-z", "z2-3", "z2-z"],
|
36 |
-
["a2-6", "a2-z", "z2-6", "z2-z"],
|
37 |
-
["a2-8", "a2-z", "z2-8", "z2-z"]
|
38 |
-
]
|
39 |
-
|
40 |
-
# Update lib
|
41 |
-
print(len(lib))
|
42 |
-
for equivalence_class in equivalence_classes:
|
43 |
-
for target in equivalence_class:
|
44 |
-
if target not in lib:
|
45 |
-
lib.append(target)
|
46 |
-
for linkage_class in linkage_classes:
|
47 |
-
for target in linkage_class:
|
48 |
-
if target not in lib:
|
49 |
-
lib.append(target)
|
50 |
-
print(len(lib))
|
51 |
|
52 |
def fn(model, class_list):
|
53 |
def f(glycan):
|
54 |
glycan = [glycan]
|
55 |
label = [0]
|
56 |
-
data = next(iter(dataset_to_dataloader(glycan, label, batch_size=1
|
57 |
device = "cpu"
|
58 |
if torch.cuda.is_available():
|
59 |
device = "cuda:0"
|
@@ -63,9 +23,10 @@ def fn(model, class_list):
|
|
63 |
x = x.to(device)
|
64 |
edge_index = edge_index.to(device)
|
65 |
batch = batch.to(device)
|
66 |
-
pred = model(x,edge_index, batch).cpu().detach().numpy()
|
67 |
-
pred = np.
|
68 |
-
pred =
|
|
|
69 |
return pred
|
70 |
return f
|
71 |
|
@@ -79,7 +40,7 @@ f = fn(model, class_list)
|
|
79 |
demo = gr.Interface(
|
80 |
fn=f,
|
81 |
inputs=[gr.Textbox(label="Glycan sequence")],
|
82 |
-
outputs=[gr.
|
83 |
allow_flagging=False,
|
84 |
title="SweetNet demo",
|
85 |
examples=["GlcOSN(a1-4)GlcA(b1-4)GlcOSN(a1-4)GlcAOS(b1-4)GlcOSN(a1-4)GlcOSN",
|
|
|
8 |
import torch
|
9 |
from glycowork.glycan_data.loader import lib
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def fn(model, class_list):
|
13 |
def f(glycan):
|
14 |
glycan = [glycan]
|
15 |
label = [0]
|
16 |
+
data = next(iter(dataset_to_dataloader(glycan, label, batch_size=1)))
|
17 |
device = "cpu"
|
18 |
if torch.cuda.is_available():
|
19 |
device = "cuda:0"
|
|
|
23 |
x = x.to(device)
|
24 |
edge_index = edge_index.to(device)
|
25 |
batch = batch.to(device)
|
26 |
+
pred = model(x,edge_index, batch).cpu().detach().numpy()[0]
|
27 |
+
pred = np.exp(pred)/sum(np.exp(pred)) # Softmax
|
28 |
+
pred = [float(x) for x in pred]
|
29 |
+
pred = {class_list[i]:pred[i] for i in range(15)}
|
30 |
return pred
|
31 |
return f
|
32 |
|
|
|
40 |
demo = gr.Interface(
|
41 |
fn=f,
|
42 |
inputs=[gr.Textbox(label="Glycan sequence")],
|
43 |
+
outputs=[gr.Label(num_top_classes=15, label="Class prediction")],
|
44 |
allow_flagging=False,
|
45 |
title="SweetNet demo",
|
46 |
examples=["GlcOSN(a1-4)GlcA(b1-4)GlcOSN(a1-4)GlcAOS(b1-4)GlcOSN(a1-4)GlcOSN",
|