Erasing-Concepts-In-Diffusion / StableDiffuser.py
Damian Stewart
fix inference error
52c8f3c
import argparse
import torch
from baukit import TraceDict
from diffusers import StableDiffusionPipeline
from PIL import Image
from torch.cuda.amp import autocast
from tqdm.auto import tqdm
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from diffusers.schedulers.scheduling_lms_discrete import LMSDiscreteScheduler
import util
def default_parser():
parser = argparse.ArgumentParser()
parser.add_argument('prompts', type=str, nargs='+')
parser.add_argument('outpath', type=str)
parser.add_argument('--images', type=str, nargs='+', default=None)
parser.add_argument('--nsteps', type=int, default=1000)
parser.add_argument('--nimgs', type=int, default=1)
parser.add_argument('--start_itr', type=int, default=0)
parser.add_argument('--return_steps', action='store_true', default=False)
parser.add_argument('--pred_x0', action='store_true', default=False)
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--seed', type=int, default=42)
return parser
class StableDiffuser(torch.nn.Module):
def __init__(self,
scheduler='LMS',
keep_pipeline=False,
native_img_size=512,
repo_id_or_path="CompVis/stable-diffusion-v1-4"):
super().__init__()
self.pipeline = StableDiffusionPipeline.from_pretrained(repo_id_or_path)
self.native_image_size = native_img_size
self.vae = self.pipeline.vae
self.unet = self.pipeline.unet
self.tokenizer = self.pipeline.tokenizer
self.text_encoder = self.pipeline.text_encoder
self.safety_checker = self.pipeline.safety_checker
self.feature_extractor = self.pipeline.feature_extractor
if scheduler == 'LMS':
self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
elif scheduler == 'DDIM':
self.scheduler = DDIMScheduler.from_pretrained(repo_id_or_path, subfolder="scheduler")
elif scheduler == 'DDPM':
self.scheduler = DDPMScheduler.from_pretrained(repo_id_or_path, subfolder="scheduler")
self.eval()
if not keep_pipeline:
del self.pipeline
def get_noise(self, batch_size, width=None, height=None, generator=None):
param = list(self.parameters())[0]
width = width or self.native_image_size
height = height or self.native_image_size
return torch.randn(
(batch_size, self.unet.config.in_channels, width // 8, height // 8),
generator=generator).type(param.dtype).to(param.device)
def add_noise(self, latents, noise, step):
return self.scheduler.add_noise(latents, noise, torch.tensor([self.scheduler.timesteps[step]]))
def text_tokenize(self, prompts):
return self.tokenizer(prompts, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt")
def text_detokenize(self, tokens):
return [self.tokenizer.decode(token) for token in tokens if token != self.tokenizer.vocab_size - 1]
def text_encode(self, tokens):
return self.text_encoder(tokens.input_ids.to(self.unet.device))[0]
def decode(self, latents):
return self.vae.decode(1 / self.vae.config.scaling_factor * latents).sample
def encode(self, tensors):
return self.vae.encode(tensors).latent_dist.mode() * 0.18215
def to_image(self, image):
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def set_scheduler_timesteps(self, n_steps):
self.scheduler.set_timesteps(n_steps, device=self.unet.device)
def get_initial_latents(self, n_imgs, height=None, width=None, n_prompts=1, generator=None):
height = height or self.native_image_size
width = width or self.native_image_size
noise = self.get_noise(n_imgs, height, width, generator=generator).repeat(n_prompts, 1, 1, 1)
latents = noise * self.scheduler.init_noise_sigma
return latents
def get_cond_and_uncond_embeddings(self, prompts, negative_prompts=None, n_imgs=1):
assert n_imgs == 1
text_tokens = self.text_tokenize(prompts)
text_embeddings = self.text_encode(text_tokens)
if negative_prompts is None:
negative_prompts = []
while len(negative_prompts) < len(prompts):
negative_prompts.append("")
unconditional_tokens = self.text_tokenize(negative_prompts)
unconditional_embeddings = self.text_encode(unconditional_tokens)
combined_embeddings = [torch.cat([unconditional_embeddings[i:i+1], text_embeddings[i:i+1]]) for i in range(len(prompts))]
combined_embeddings = torch.cat(combined_embeddings)
return combined_embeddings
def predict_noise(self,
iteration,
latents,
text_embeddings,
guidance_scale=7.5
):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latents = torch.cat([latents] * 2)
latents = self.scheduler.scale_model_input(
latents, self.scheduler.timesteps[iteration])
# predict the noise residual
noise_prediction = self.unet(
latents, self.scheduler.timesteps[iteration], encoder_hidden_states=text_embeddings).sample
# perform guidance
noise_prediction_uncond, noise_prediction_text = noise_prediction.chunk(2)
noise_prediction = noise_prediction_uncond + guidance_scale * \
(noise_prediction_text - noise_prediction_uncond)
return noise_prediction
@torch.no_grad()
def diffusion(self,
latents,
uncond_and_cond_embeddings,
end_iteration=1000,
start_iteration=0,
return_steps=False,
pred_x0=False,
trace_args=None,
show_progress=True,
use_amp=False,
**kwargs):
latents_steps = []
trace_steps = []
trace = None
for iteration in tqdm(range(start_iteration, end_iteration), disable=not show_progress):
if trace_args:
trace = TraceDict(self, **trace_args)
with autocast(enabled=use_amp):
noise_pred = self.predict_noise(
iteration,
latents,
uncond_and_cond_embeddings,
**kwargs)
# compute the previous noisy sample x_t -> x_t-1
output = self.scheduler.step(noise_pred, self.scheduler.timesteps[iteration], latents)
if trace_args:
trace.close()
trace_steps.append(trace)
latents = output.prev_sample
if return_steps or iteration == end_iteration - 1:
output = output.pred_original_sample if pred_x0 else latents
if return_steps:
latents_steps.append(output.cpu())
else:
latents_steps.append(output)
return latents_steps, trace_steps
@torch.no_grad()
def __call__(self,
prompts=None,
negative_prompts=None,
combined_embeddings=None, # uncond first, then cond
width=None,
height=None,
n_steps=50,
n_imgs=1,
end_iteration=None,
generator=None,
use_amp=False,
**kwargs
):
assert 0 <= n_steps <= 1000
if combined_embeddings is None:
assert prompts is not None, "missing prompts or combined_embeddings"
combined_embeddings = self.get_cond_and_uncond_embeddings(prompts, negative_prompts, n_imgs=n_imgs)
width = width or self.native_image_size
height = height or self.native_image_size
num_prompts = combined_embeddings.shape[0] // 2
self.set_scheduler_timesteps(n_steps)
latents = self.get_initial_latents(n_imgs, height, width, num_prompts, generator=generator)
end_iteration = end_iteration or n_steps
latents_steps, trace_steps = self.diffusion(
latents,
combined_embeddings,
end_iteration=end_iteration,
use_amp=use_amp,
**kwargs
)
latents_steps = [self.decode(latents.to(self.unet.device)) for latents in latents_steps]
images_steps = [self.to_image(latents) for latents in latents_steps]
if self.safety_checker is not None:
for i in range(len(images_steps)):
self.safety_checker = self.safety_checker.float()
safety_checker_input = self.feature_extractor(images_steps[i], return_tensors="pt").to(latents_steps[0].device)
image, has_nsfw_concept = self.safety_checker(
images=latents_steps[i], clip_input=safety_checker_input.pixel_values.float()
)
images_steps[i][0] = self.to_image(image)[0]
images_steps = list(zip(*images_steps))
if trace_steps:
return images_steps, trace_steps
return images_steps
if __name__ == '__main__':
parser = default_parser()
args = parser.parse_args()
diffuser = StableDiffuser(scheduler='DDIM').to(torch.device(args.device)).half()
images = diffuser(args.prompts,
n_steps=args.nsteps,
n_imgs=args.nimgs,
start_iteration=args.start_itr,
return_steps=args.return_steps,
pred_x0=args.pred_x0
)
util.image_grid(images, args.outpath)