Spaces:
Runtime error
Runtime error
Update to using diffusers
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LMSDiscreteScheduler.py +0 -97
- StableDiffuser.py +14 -9
- app.py +100 -64
- convertModels.py +0 -907
- finetuning.py +83 -0
- requirements.txt +3 -8
- stable_diffusion/configs/stable-diffusion/v1-inference.yaml +0 -70
- stable_diffusion/ldm/data/__init__.py +0 -0
- stable_diffusion/ldm/data/base.py +0 -40
- stable_diffusion/ldm/data/coco.py +0 -253
- stable_diffusion/ldm/data/dummy.py +0 -34
- stable_diffusion/ldm/data/imagenet.py +0 -394
- stable_diffusion/ldm/data/inpainting/__init__.py +0 -0
- stable_diffusion/ldm/data/inpainting/synthetic_mask.py +0 -166
- stable_diffusion/ldm/data/laion.py +0 -537
- stable_diffusion/ldm/data/lsun.py +0 -92
- stable_diffusion/ldm/data/simple.py +0 -180
- stable_diffusion/ldm/extras.py +0 -77
- stable_diffusion/ldm/guidance.py +0 -96
- stable_diffusion/ldm/lr_scheduler.py +0 -98
- stable_diffusion/ldm/models/autoencoder.py +0 -443
- stable_diffusion/ldm/models/diffusion/__init__.py +0 -0
- stable_diffusion/ldm/models/diffusion/classifier.py +0 -267
- stable_diffusion/ldm/models/diffusion/ddim.py +0 -344
- stable_diffusion/ldm/models/diffusion/ddpm.py +0 -1934
- stable_diffusion/ldm/models/diffusion/dpm_solver/__init__.py +0 -1
- stable_diffusion/ldm/models/diffusion/dpm_solver/dpm_solver.py +0 -1184
- stable_diffusion/ldm/models/diffusion/dpm_solver/sampler.py +0 -82
- stable_diffusion/ldm/models/diffusion/plms.py +0 -259
- stable_diffusion/ldm/models/diffusion/sampling_util.py +0 -50
- stable_diffusion/ldm/modules/attention.py +0 -269
- stable_diffusion/ldm/modules/diffusionmodules/__init__.py +0 -0
- stable_diffusion/ldm/modules/diffusionmodules/model.py +0 -835
- stable_diffusion/ldm/modules/diffusionmodules/openaimodel.py +0 -1001
- stable_diffusion/ldm/modules/diffusionmodules/util.py +0 -267
- stable_diffusion/ldm/modules/distributions/__init__.py +0 -0
- stable_diffusion/ldm/modules/distributions/distributions.py +0 -92
- stable_diffusion/ldm/modules/ema.py +0 -76
- stable_diffusion/ldm/modules/encoders/__init__.py +0 -0
- stable_diffusion/ldm/modules/encoders/modules.py +0 -425
- stable_diffusion/ldm/modules/evaluate/adm_evaluator.py +0 -676
- stable_diffusion/ldm/modules/evaluate/evaluate_perceptualsim.py +0 -630
- stable_diffusion/ldm/modules/evaluate/frechet_video_distance.py +0 -147
- stable_diffusion/ldm/modules/evaluate/ssim.py +0 -124
- stable_diffusion/ldm/modules/evaluate/torch_frechet_video_distance.py +0 -294
- stable_diffusion/ldm/modules/image_degradation/__init__.py +0 -2
- stable_diffusion/ldm/modules/image_degradation/bsrgan.py +0 -730
- stable_diffusion/ldm/modules/image_degradation/bsrgan_light.py +0 -650
- stable_diffusion/ldm/modules/image_degradation/utils/test.png +0 -0
- stable_diffusion/ldm/modules/image_degradation/utils_image.py +0 -916
LMSDiscreteScheduler.py
DELETED
@@ -1,97 +0,0 @@
|
|
1 |
-
import warnings
|
2 |
-
from typing import Tuple, Union
|
3 |
-
|
4 |
-
import torch
|
5 |
-
from diffusers.schedulers.scheduling_lms_discrete import \
|
6 |
-
LMSDiscreteScheduler as _LMSDiscreteScheduler
|
7 |
-
from diffusers.schedulers.scheduling_lms_discrete import \
|
8 |
-
LMSDiscreteSchedulerOutput
|
9 |
-
|
10 |
-
|
11 |
-
class LMSDiscreteScheduler(_LMSDiscreteScheduler):
|
12 |
-
|
13 |
-
def step(
|
14 |
-
self,
|
15 |
-
model_output: torch.FloatTensor,
|
16 |
-
step_index: int,
|
17 |
-
sample: torch.FloatTensor,
|
18 |
-
order: int = 4,
|
19 |
-
return_dict: bool = True,
|
20 |
-
) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
|
21 |
-
"""
|
22 |
-
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
23 |
-
process from the learned model outputs (most often the predicted noise).
|
24 |
-
|
25 |
-
Args:
|
26 |
-
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
|
27 |
-
timestep (`float`): current timestep in the diffusion chain.
|
28 |
-
sample (`torch.FloatTensor`):
|
29 |
-
current instance of sample being created by diffusion process.
|
30 |
-
order: coefficient for multi-step inference.
|
31 |
-
return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
|
32 |
-
|
33 |
-
Returns:
|
34 |
-
[`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
|
35 |
-
[`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
|
36 |
-
When returning a tuple, the first element is the sample tensor.
|
37 |
-
|
38 |
-
"""
|
39 |
-
if not self.is_scale_input_called:
|
40 |
-
warnings.warn(
|
41 |
-
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
|
42 |
-
"See `StableDiffusionPipeline` for a usage example."
|
43 |
-
)
|
44 |
-
|
45 |
-
sigma = self.sigmas[step_index]
|
46 |
-
|
47 |
-
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
|
48 |
-
if self.config.prediction_type == "epsilon":
|
49 |
-
pred_original_sample = sample - sigma * model_output
|
50 |
-
elif self.config.prediction_type == "v_prediction":
|
51 |
-
# * c_out + input * c_skip
|
52 |
-
pred_original_sample = model_output * \
|
53 |
-
(-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
|
54 |
-
else:
|
55 |
-
raise ValueError(
|
56 |
-
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
|
57 |
-
)
|
58 |
-
|
59 |
-
# 2. Convert to an ODE derivative
|
60 |
-
derivative = (sample - pred_original_sample) / sigma
|
61 |
-
self.derivatives.append(derivative)
|
62 |
-
if len(self.derivatives) > order:
|
63 |
-
self.derivatives.pop(0)
|
64 |
-
|
65 |
-
# 3. Compute linear multistep coefficients
|
66 |
-
order = min(step_index + 1, order)
|
67 |
-
lms_coeffs = [self.get_lms_coefficient(
|
68 |
-
order, step_index, curr_order) for curr_order in range(order)]
|
69 |
-
|
70 |
-
# 4. Compute previous sample based on the derivatives path
|
71 |
-
prev_sample = sample + sum(
|
72 |
-
coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
|
73 |
-
)
|
74 |
-
|
75 |
-
if not return_dict:
|
76 |
-
return (prev_sample,)
|
77 |
-
|
78 |
-
return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
79 |
-
|
80 |
-
def scale_model_input(
|
81 |
-
self,
|
82 |
-
sample: torch.FloatTensor,
|
83 |
-
iteration: int
|
84 |
-
) -> torch.FloatTensor:
|
85 |
-
"""
|
86 |
-
Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.
|
87 |
-
|
88 |
-
Args:
|
89 |
-
sample (`torch.FloatTensor`): input sample
|
90 |
-
timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain
|
91 |
-
|
92 |
-
Returns:
|
93 |
-
`torch.FloatTensor`: scaled input sample
|
94 |
-
"""
|
95 |
-
sample = sample / ((self.sigmas[iteration]**2 + 1) ** 0.5)
|
96 |
-
self.is_scale_input_called = True
|
97 |
-
return sample
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
StableDiffuser.py
CHANGED
@@ -6,9 +6,10 @@ from diffusers import AutoencoderKL, UNet2DConditionModel
|
|
6 |
from PIL import Image
|
7 |
from tqdm.auto import tqdm
|
8 |
from transformers import CLIPTextModel, CLIPTokenizer
|
9 |
-
|
|
|
|
|
10 |
import util
|
11 |
-
from LMSDiscreteScheduler import LMSDiscreteScheduler
|
12 |
|
13 |
|
14 |
def default_parser():
|
@@ -33,6 +34,7 @@ def default_parser():
|
|
33 |
class StableDiffuser(torch.nn.Module):
|
34 |
|
35 |
def __init__(self,
|
|
|
36 |
seed=None
|
37 |
):
|
38 |
|
@@ -54,9 +56,12 @@ class StableDiffuser(torch.nn.Module):
|
|
54 |
self.unet = UNet2DConditionModel.from_pretrained(
|
55 |
"CompVis/stable-diffusion-v1-4", subfolder="unet")
|
56 |
|
57 |
-
|
58 |
-
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
59 |
-
|
|
|
|
|
|
|
60 |
self.generator = torch.Generator()
|
61 |
|
62 |
if self._seed is not None:
|
@@ -95,7 +100,7 @@ class StableDiffuser(torch.nn.Module):
|
|
95 |
|
96 |
def decode(self, latents):
|
97 |
|
98 |
-
return self.vae.decode(1 /
|
99 |
|
100 |
def encode(self, tensors):
|
101 |
|
@@ -145,7 +150,7 @@ class StableDiffuser(torch.nn.Module):
|
|
145 |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
146 |
latents = torch.cat([latents] * 2)
|
147 |
latents = self.scheduler.scale_model_input(
|
148 |
-
latents, iteration)
|
149 |
|
150 |
# predict the noise residual
|
151 |
noise_prediction = self.unet(
|
@@ -188,7 +193,7 @@ class StableDiffuser(torch.nn.Module):
|
|
188 |
**kwargs)
|
189 |
|
190 |
# compute the previous noisy sample x_t -> x_t-1
|
191 |
-
output = self.scheduler.step(noise_pred, iteration, latents)
|
192 |
|
193 |
if trace_args:
|
194 |
|
@@ -263,7 +268,7 @@ if __name__ == '__main__':
|
|
263 |
|
264 |
args = parser.parse_args()
|
265 |
|
266 |
-
diffuser = StableDiffuser(seed=args.seed).to(torch.device(args.device)).half()
|
267 |
|
268 |
images = diffuser(args.prompts,
|
269 |
n_steps=args.nsteps,
|
|
|
6 |
from PIL import Image
|
7 |
from tqdm.auto import tqdm
|
8 |
from transformers import CLIPTextModel, CLIPTokenizer
|
9 |
+
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
|
10 |
+
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
11 |
+
from diffusers.schedulers.scheduling_lms_discrete import LMSDiscreteScheduler
|
12 |
import util
|
|
|
13 |
|
14 |
|
15 |
def default_parser():
|
|
|
34 |
class StableDiffuser(torch.nn.Module):
|
35 |
|
36 |
def __init__(self,
|
37 |
+
scheduler='LMS',
|
38 |
seed=None
|
39 |
):
|
40 |
|
|
|
56 |
self.unet = UNet2DConditionModel.from_pretrained(
|
57 |
"CompVis/stable-diffusion-v1-4", subfolder="unet")
|
58 |
|
59 |
+
if scheduler == 'LMS':
|
60 |
+
self.scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
61 |
+
elif scheduler == 'DDIM':
|
62 |
+
self.scheduler = DDIMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
|
63 |
+
elif scheduler == 'DDPM':
|
64 |
+
self.scheduler = DDPMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler")
|
65 |
self.generator = torch.Generator()
|
66 |
|
67 |
if self._seed is not None:
|
|
|
100 |
|
101 |
def decode(self, latents):
|
102 |
|
103 |
+
return self.vae.decode(1 / self.vae.config.scaling_factor * latents).sample
|
104 |
|
105 |
def encode(self, tensors):
|
106 |
|
|
|
150 |
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
151 |
latents = torch.cat([latents] * 2)
|
152 |
latents = self.scheduler.scale_model_input(
|
153 |
+
latents, self.scheduler.timesteps[iteration])
|
154 |
|
155 |
# predict the noise residual
|
156 |
noise_prediction = self.unet(
|
|
|
193 |
**kwargs)
|
194 |
|
195 |
# compute the previous noisy sample x_t -> x_t-1
|
196 |
+
output = self.scheduler.step(noise_pred, self.scheduler.timesteps[iteration], latents)
|
197 |
|
198 |
if trace_args:
|
199 |
|
|
|
268 |
|
269 |
args = parser.parse_args()
|
270 |
|
271 |
+
diffuser = StableDiffuser(seed=args.seed, scheduler='DDIM').to(torch.device(args.device)).half()
|
272 |
|
273 |
images = diffuser(args.prompts,
|
274 |
n_steps=args.nsteps,
|
app.py
CHANGED
@@ -1,39 +1,43 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
import gradio as gr
|
4 |
-
from train_esd import train_esd
|
5 |
-
from convertModels import convert_ldm_unet_checkpoint, create_unet_diffusers_config
|
6 |
-
from omegaconf import OmegaConf
|
7 |
-
from StableDiffuser import StableDiffuser
|
8 |
-
from diffusers import UNet2DConditionModel
|
9 |
import torch
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
config_path = "stable_diffusion/configs/stable-diffusion/v1-inference.yaml"
|
13 |
-
diffusers_config_path = "stable_diffusion/config.json"
|
14 |
-
|
15 |
-
|
16 |
class Demo:
|
17 |
|
18 |
def __init__(self) -> None:
|
19 |
|
20 |
self.training = False
|
21 |
self.generating = False
|
22 |
-
self.
|
23 |
-
self.model_orig_sd = None
|
24 |
|
25 |
-
self.diffuser = StableDiffuser(42)
|
26 |
-
self.
|
27 |
-
|
28 |
|
29 |
with gr.Blocks() as demo:
|
30 |
self.layout()
|
31 |
-
demo.queue(concurrency_count=
|
32 |
|
33 |
def disable(self):
|
34 |
return [gr.update(interactive=False), gr.update(interactive=False)]
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def layout(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
with gr.Row():
|
38 |
with gr.Column(scale=1) as training_column:
|
39 |
self.prompt_input = gr.Text(
|
@@ -42,8 +46,8 @@ class Demo:
|
|
42 |
info="Prompt corresponding to concept to erase"
|
43 |
)
|
44 |
self.train_method_input = gr.Dropdown(
|
45 |
-
choices=['
|
46 |
-
value='
|
47 |
label='Train Method',
|
48 |
info='Method of training'
|
49 |
)
|
@@ -55,7 +59,7 @@ class Demo:
|
|
55 |
)
|
56 |
|
57 |
self.iterations_input = gr.Number(
|
58 |
-
value=
|
59 |
precision=0,
|
60 |
label="Iterations",
|
61 |
info='iterations used to train'
|
@@ -71,13 +75,16 @@ class Demo:
|
|
71 |
self.train_button = gr.Button(
|
72 |
value="Train",
|
73 |
)
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
with gr.Column(scale=2) as inference_column:
|
77 |
|
78 |
with gr.Row():
|
79 |
|
80 |
-
with gr.Column(scale=
|
81 |
|
82 |
self.prompt_input_infr = gr.Text(
|
83 |
placeholder="Enter prompt...",
|
@@ -138,51 +145,82 @@ class Demo:
|
|
138 |
else:
|
139 |
self.training = True
|
140 |
|
141 |
-
self.
|
142 |
-
|
143 |
-
model_orig, model_edited = train_esd(prompt,
|
144 |
-
train_method,
|
145 |
-
3,
|
146 |
-
neg_guidance,
|
147 |
-
iterations,
|
148 |
-
lr,
|
149 |
-
config_path,
|
150 |
-
ckpt_path,
|
151 |
-
diffusers_config_path,
|
152 |
-
['cuda', 'cuda']
|
153 |
-
)
|
154 |
-
|
155 |
-
original_config = OmegaConf.load(config_path)
|
156 |
-
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = 4
|
157 |
-
unet_config = create_unet_diffusers_config(original_config, image_size=512)
|
158 |
-
_model_edited_sd = convert_ldm_unet_checkpoint(model_edited.state_dict(), unet_config)
|
159 |
-
_model_orig_sd = convert_ldm_unet_checkpoint(model_orig.state_dict(), unet_config)
|
160 |
-
|
161 |
-
model_edited_sd = {key: value.cpu() for key, value in _model_edited_sd.items()}
|
162 |
-
model_orig_sd = {key: value.cpu() for key, value in _model_orig_sd.items()}
|
163 |
-
|
164 |
-
del model_orig, _model_orig_sd
|
165 |
-
del model_edited, _model_edited_sd
|
166 |
|
167 |
torch.cuda.empty_cache()
|
168 |
|
169 |
-
self.
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
self.model_orig_sd = model_orig_sd
|
181 |
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
self.training = False
|
185 |
-
|
|
|
|
|
186 |
|
187 |
def inference(self, prompt, seed, pbar = gr.Progress(track_tqdm=True)):
|
188 |
|
@@ -191,8 +229,6 @@ class Demo:
|
|
191 |
else:
|
192 |
self.generating = True
|
193 |
|
194 |
-
self.diffuser.unet.load_state_dict(self.model_orig_sd)
|
195 |
-
|
196 |
self.diffuser._seed = seed
|
197 |
|
198 |
images = self.diffuser(
|
@@ -205,13 +241,13 @@ class Demo:
|
|
205 |
|
206 |
torch.cuda.empty_cache()
|
207 |
|
208 |
-
self.
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
|
216 |
edited_image = images[0][0]
|
217 |
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
4 |
import torch
|
5 |
+
from finetuning import FineTunedModel
|
6 |
+
from StableDiffuser import StableDiffuser
|
7 |
+
from tqdm import tqdm
|
8 |
|
9 |
+
gr.
|
|
|
|
|
|
|
|
|
10 |
class Demo:
|
11 |
|
12 |
def __init__(self) -> None:
|
13 |
|
14 |
self.training = False
|
15 |
self.generating = False
|
16 |
+
self.nsteps = 50
|
|
|
17 |
|
18 |
+
self.diffuser = StableDiffuser(scheduler='DDIM', seed=42).to('cuda')
|
19 |
+
self.finetuner = None
|
20 |
+
|
21 |
|
22 |
with gr.Blocks() as demo:
|
23 |
self.layout()
|
24 |
+
demo.queue(concurrency_count=2).launch()
|
25 |
|
26 |
def disable(self):
|
27 |
return [gr.update(interactive=False), gr.update(interactive=False)]
|
28 |
+
def save(self):
|
29 |
+
|
30 |
+
if self.finetuner is not None:
|
31 |
+
|
32 |
+
torch.save()
|
33 |
|
34 |
def layout(self):
|
35 |
+
|
36 |
+
with gr.Row():
|
37 |
+
|
38 |
+
self.explain = gr.HTML(interactive=False,
|
39 |
+
value="<p>This page demonstrates Erasing Concepts in Stable Diffusion (Ganikota, Materzynska, Fiotto-Kaufman and Bau; paper and code linked from https://erasing.baulab.info/). <br> Use it in two steps <br> 1. First, on the left fine-tune your own custom model by naming the concept that you want to erase. For example, you can try erasing all cars from a model by entering the prompt corresponding to the concept to erase as 'car'. This can take awhile. For example, with the default settings, this can take about an hour. <br> 2. Second, on the right once you have your model fine-tuned, you can try running it in inference. <br>If you want to run it yourself, then you can create your own instance. Configuration, code, and details are at https://github.com/xxxx/xxxx/xxx</p>")
|
40 |
+
|
41 |
with gr.Row():
|
42 |
with gr.Column(scale=1) as training_column:
|
43 |
self.prompt_input = gr.Text(
|
|
|
46 |
info="Prompt corresponding to concept to erase"
|
47 |
)
|
48 |
self.train_method_input = gr.Dropdown(
|
49 |
+
choices=['ESD-x', 'ESD-self'],
|
50 |
+
value='ESD-x',
|
51 |
label='Train Method',
|
52 |
info='Method of training'
|
53 |
)
|
|
|
59 |
)
|
60 |
|
61 |
self.iterations_input = gr.Number(
|
62 |
+
value=150,
|
63 |
precision=0,
|
64 |
label="Iterations",
|
65 |
info='iterations used to train'
|
|
|
75 |
self.train_button = gr.Button(
|
76 |
value="Train",
|
77 |
)
|
78 |
+
|
79 |
+
self.download = gr.Button(value="Download Model Weights")
|
80 |
+
self.download.click(self.save)
|
81 |
|
82 |
|
83 |
with gr.Column(scale=2) as inference_column:
|
84 |
|
85 |
with gr.Row():
|
86 |
|
87 |
+
with gr.Column(scale=5):
|
88 |
|
89 |
self.prompt_input_infr = gr.Text(
|
90 |
placeholder="Enter prompt...",
|
|
|
145 |
else:
|
146 |
self.training = True
|
147 |
|
148 |
+
del self.finetuner
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
torch.cuda.empty_cache()
|
151 |
|
152 |
+
self.diffuser = self.diffuser.train().float()
|
153 |
|
154 |
+
if train_method == 'ESD-x':
|
155 |
|
156 |
+
modules = ".*attn2$"
|
157 |
|
158 |
+
elif train_method == 'ESD-self':
|
159 |
|
160 |
+
modules = ".*attn1$"
|
161 |
+
|
162 |
+
finetuner = FineTunedModel(self.diffuser, modules)
|
163 |
+
|
164 |
+
optimizer = torch.optim.Adam(finetuner.parameters(), lr=lr)
|
165 |
+
criteria = torch.nn.MSELoss()
|
166 |
+
|
167 |
+
pbar = tqdm(range(iterations))
|
168 |
+
|
169 |
+
with torch.no_grad():
|
170 |
+
|
171 |
+
neutral_text_embeddings = self.diffuser.get_text_embeddings([''],n_imgs=1)
|
172 |
+
positive_text_embeddings = self.diffuser.get_text_embeddings([prompt],n_imgs=1)
|
173 |
+
|
174 |
+
for i in pbar:
|
175 |
+
|
176 |
+
with torch.no_grad():
|
177 |
|
178 |
+
self.diffuser.set_scheduler_timesteps(self.nsteps)
|
|
|
179 |
|
180 |
+
optimizer.zero_grad()
|
181 |
+
|
182 |
+
iteration = torch.randint(1, self.nsteps - 1, (1,)).item()
|
183 |
+
|
184 |
+
latents = self.diffuser.get_initial_latents(1, 512, 1)
|
185 |
+
|
186 |
+
with finetuner:
|
187 |
+
|
188 |
+
latents_steps, _ = self.diffuser.diffusion(
|
189 |
+
latents,
|
190 |
+
positive_text_embeddings,
|
191 |
+
start_iteration=0,
|
192 |
+
end_iteration=iteration,
|
193 |
+
guidance_scale=3,
|
194 |
+
show_progress=False
|
195 |
+
)
|
196 |
+
|
197 |
+
self.diffuser.set_scheduler_timesteps(1000)
|
198 |
+
|
199 |
+
iteration = int(iteration / self.nsteps * 1000)
|
200 |
+
|
201 |
+
positive_latents = self.diffuser.predict_noise(iteration, latents_steps[0], positive_text_embeddings, guidance_scale=3)
|
202 |
+
neutral_latents = self.diffuser.predict_noise(iteration, latents_steps[0], neutral_text_embeddings, guidance_scale=3)
|
203 |
+
|
204 |
+
with finetuner:
|
205 |
+
negative_latents = self.diffuser.predict_noise(iteration, latents_steps[0], positive_text_embeddings, guidance_scale=3)
|
206 |
+
|
207 |
+
positive_latents.requires_grad = False
|
208 |
+
neutral_latents.requires_grad = False
|
209 |
+
|
210 |
+
loss = criteria(negative_latents, neutral_latents - (neg_guidance*(positive_latents - neutral_latents))) #loss = criteria(e_n, e_0) works the best try 5000 epochs
|
211 |
+
loss.backward()
|
212 |
+
optimizer.step()
|
213 |
+
|
214 |
+
self.finetuner = finetuner.eval().half()
|
215 |
+
|
216 |
+
self.diffuser = self.diffuser.eval().half()
|
217 |
+
|
218 |
+
torch.cuda.empty_cache()
|
219 |
|
220 |
self.training = False
|
221 |
+
|
222 |
+
return [gr.update(interactive=True), gr.update(interactive=True), None]
|
223 |
+
|
224 |
|
225 |
def inference(self, prompt, seed, pbar = gr.Progress(track_tqdm=True)):
|
226 |
|
|
|
229 |
else:
|
230 |
self.generating = True
|
231 |
|
|
|
|
|
232 |
self.diffuser._seed = seed
|
233 |
|
234 |
images = self.diffuser(
|
|
|
241 |
|
242 |
torch.cuda.empty_cache()
|
243 |
|
244 |
+
with self.finetuner:
|
245 |
|
246 |
+
images = self.diffuser(
|
247 |
+
prompt,
|
248 |
+
n_steps=50,
|
249 |
+
reseed=True
|
250 |
+
)
|
251 |
|
252 |
edited_image = images[0][0]
|
253 |
|
convertModels.py
DELETED
@@ -1,907 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
""" Conversion script for the LDM checkpoints. """
|
16 |
-
|
17 |
-
import argparse
|
18 |
-
import os
|
19 |
-
import re
|
20 |
-
|
21 |
-
import torch
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
try:
|
26 |
-
from omegaconf import OmegaConf
|
27 |
-
except ImportError:
|
28 |
-
raise ImportError(
|
29 |
-
"OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`."
|
30 |
-
)
|
31 |
-
|
32 |
-
from diffusers import (
|
33 |
-
AutoencoderKL,
|
34 |
-
DDIMScheduler,
|
35 |
-
DPMSolverMultistepScheduler,
|
36 |
-
EulerAncestralDiscreteScheduler,
|
37 |
-
EulerDiscreteScheduler,
|
38 |
-
HeunDiscreteScheduler,
|
39 |
-
LDMTextToImagePipeline,
|
40 |
-
LMSDiscreteScheduler,
|
41 |
-
PNDMScheduler,
|
42 |
-
StableDiffusionPipeline,
|
43 |
-
UNet2DConditionModel,
|
44 |
-
)
|
45 |
-
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel
|
46 |
-
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder, PaintByExamplePipeline
|
47 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
48 |
-
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig
|
49 |
-
|
50 |
-
|
51 |
-
def shave_segments(path, n_shave_prefix_segments=1):
|
52 |
-
"""
|
53 |
-
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
54 |
-
"""
|
55 |
-
if n_shave_prefix_segments >= 0:
|
56 |
-
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
57 |
-
else:
|
58 |
-
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
59 |
-
|
60 |
-
|
61 |
-
def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
|
62 |
-
"""
|
63 |
-
Updates paths inside resnets to the new naming scheme (local renaming)
|
64 |
-
"""
|
65 |
-
mapping = []
|
66 |
-
for old_item in old_list:
|
67 |
-
new_item = old_item.replace("in_layers.0", "norm1")
|
68 |
-
new_item = new_item.replace("in_layers.2", "conv1")
|
69 |
-
|
70 |
-
new_item = new_item.replace("out_layers.0", "norm2")
|
71 |
-
new_item = new_item.replace("out_layers.3", "conv2")
|
72 |
-
|
73 |
-
new_item = new_item.replace("emb_layers.1", "time_emb_proj")
|
74 |
-
new_item = new_item.replace("skip_connection", "conv_shortcut")
|
75 |
-
|
76 |
-
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
77 |
-
|
78 |
-
mapping.append({"old": old_item, "new": new_item})
|
79 |
-
|
80 |
-
return mapping
|
81 |
-
|
82 |
-
|
83 |
-
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
84 |
-
"""
|
85 |
-
Updates paths inside resnets to the new naming scheme (local renaming)
|
86 |
-
"""
|
87 |
-
mapping = []
|
88 |
-
for old_item in old_list:
|
89 |
-
new_item = old_item
|
90 |
-
|
91 |
-
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
92 |
-
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
93 |
-
|
94 |
-
mapping.append({"old": old_item, "new": new_item})
|
95 |
-
|
96 |
-
return mapping
|
97 |
-
|
98 |
-
|
99 |
-
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
100 |
-
"""
|
101 |
-
Updates paths inside attentions to the new naming scheme (local renaming)
|
102 |
-
"""
|
103 |
-
mapping = []
|
104 |
-
for old_item in old_list:
|
105 |
-
new_item = old_item
|
106 |
-
|
107 |
-
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
108 |
-
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
109 |
-
|
110 |
-
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
111 |
-
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
112 |
-
|
113 |
-
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
114 |
-
|
115 |
-
mapping.append({"old": old_item, "new": new_item})
|
116 |
-
|
117 |
-
return mapping
|
118 |
-
|
119 |
-
|
120 |
-
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
121 |
-
"""
|
122 |
-
Updates paths inside attentions to the new naming scheme (local renaming)
|
123 |
-
"""
|
124 |
-
mapping = []
|
125 |
-
for old_item in old_list:
|
126 |
-
new_item = old_item
|
127 |
-
|
128 |
-
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
129 |
-
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
130 |
-
|
131 |
-
new_item = new_item.replace("q.weight", "query.weight")
|
132 |
-
new_item = new_item.replace("q.bias", "query.bias")
|
133 |
-
|
134 |
-
new_item = new_item.replace("k.weight", "key.weight")
|
135 |
-
new_item = new_item.replace("k.bias", "key.bias")
|
136 |
-
|
137 |
-
new_item = new_item.replace("v.weight", "value.weight")
|
138 |
-
new_item = new_item.replace("v.bias", "value.bias")
|
139 |
-
|
140 |
-
new_item = new_item.replace("proj_out.weight", "proj_attn.weight")
|
141 |
-
new_item = new_item.replace("proj_out.bias", "proj_attn.bias")
|
142 |
-
|
143 |
-
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
144 |
-
|
145 |
-
mapping.append({"old": old_item, "new": new_item})
|
146 |
-
|
147 |
-
return mapping
|
148 |
-
|
149 |
-
|
150 |
-
def assign_to_checkpoint(
|
151 |
-
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None
|
152 |
-
):
|
153 |
-
"""
|
154 |
-
This does the final conversion step: take locally converted weights and apply a global renaming
|
155 |
-
to them. It splits attention layers, and takes into account additional replacements
|
156 |
-
that may arise.
|
157 |
-
|
158 |
-
Assigns the weights to the new checkpoint.
|
159 |
-
"""
|
160 |
-
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
161 |
-
|
162 |
-
# Splits the attention layers into three variables.
|
163 |
-
if attention_paths_to_split is not None:
|
164 |
-
for path, path_map in attention_paths_to_split.items():
|
165 |
-
old_tensor = old_checkpoint[path]
|
166 |
-
channels = old_tensor.shape[0] // 3
|
167 |
-
|
168 |
-
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
169 |
-
|
170 |
-
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
171 |
-
|
172 |
-
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
|
173 |
-
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
174 |
-
|
175 |
-
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
176 |
-
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
177 |
-
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
178 |
-
|
179 |
-
for path in paths:
|
180 |
-
new_path = path["new"]
|
181 |
-
|
182 |
-
# These have already been assigned
|
183 |
-
if attention_paths_to_split is not None and new_path in attention_paths_to_split:
|
184 |
-
continue
|
185 |
-
|
186 |
-
# Global renaming happens here
|
187 |
-
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
188 |
-
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
189 |
-
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
190 |
-
|
191 |
-
if additional_replacements is not None:
|
192 |
-
for replacement in additional_replacements:
|
193 |
-
new_path = new_path.replace(replacement["old"], replacement["new"])
|
194 |
-
|
195 |
-
# proj_attn.weight has to be converted from conv 1D to linear
|
196 |
-
if "proj_attn.weight" in new_path:
|
197 |
-
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
198 |
-
else:
|
199 |
-
checkpoint[new_path] = old_checkpoint[path["old"]]
|
200 |
-
|
201 |
-
|
202 |
-
def conv_attn_to_linear(checkpoint):
|
203 |
-
keys = list(checkpoint.keys())
|
204 |
-
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
205 |
-
for key in keys:
|
206 |
-
if ".".join(key.split(".")[-2:]) in attn_keys:
|
207 |
-
if checkpoint[key].ndim > 2:
|
208 |
-
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
209 |
-
elif "proj_attn.weight" in key:
|
210 |
-
if checkpoint[key].ndim > 2:
|
211 |
-
checkpoint[key] = checkpoint[key][:, :, 0]
|
212 |
-
|
213 |
-
|
214 |
-
def create_unet_diffusers_config(original_config, image_size: int):
|
215 |
-
"""
|
216 |
-
Creates a config for the diffusers based on the config of the LDM model.
|
217 |
-
"""
|
218 |
-
unet_params = original_config.model.params.unet_config.params
|
219 |
-
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
220 |
-
|
221 |
-
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]
|
222 |
-
|
223 |
-
down_block_types = []
|
224 |
-
resolution = 1
|
225 |
-
for i in range(len(block_out_channels)):
|
226 |
-
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D"
|
227 |
-
down_block_types.append(block_type)
|
228 |
-
if i != len(block_out_channels) - 1:
|
229 |
-
resolution *= 2
|
230 |
-
|
231 |
-
up_block_types = []
|
232 |
-
for i in range(len(block_out_channels)):
|
233 |
-
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D"
|
234 |
-
up_block_types.append(block_type)
|
235 |
-
resolution //= 2
|
236 |
-
|
237 |
-
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)
|
238 |
-
|
239 |
-
head_dim = unet_params.num_heads if "num_heads" in unet_params else None
|
240 |
-
use_linear_projection = (
|
241 |
-
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
|
242 |
-
)
|
243 |
-
if use_linear_projection:
|
244 |
-
# stable diffusion 2-base-512 and 2-768
|
245 |
-
if head_dim is None:
|
246 |
-
head_dim = [5, 10, 20, 20]
|
247 |
-
|
248 |
-
config = dict(
|
249 |
-
sample_size=image_size // vae_scale_factor,
|
250 |
-
in_channels=unet_params.in_channels,
|
251 |
-
out_channels=unet_params.out_channels,
|
252 |
-
down_block_types=tuple(down_block_types),
|
253 |
-
up_block_types=tuple(up_block_types),
|
254 |
-
block_out_channels=tuple(block_out_channels),
|
255 |
-
layers_per_block=unet_params.num_res_blocks,
|
256 |
-
cross_attention_dim=unet_params.context_dim,
|
257 |
-
attention_head_dim=head_dim,
|
258 |
-
use_linear_projection=use_linear_projection,
|
259 |
-
)
|
260 |
-
|
261 |
-
return config
|
262 |
-
|
263 |
-
|
264 |
-
def create_vae_diffusers_config(original_config, image_size: int):
|
265 |
-
"""
|
266 |
-
Creates a config for the diffusers based on the config of the LDM model.
|
267 |
-
"""
|
268 |
-
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
269 |
-
_ = original_config.model.params.first_stage_config.params.embed_dim
|
270 |
-
|
271 |
-
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
272 |
-
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
273 |
-
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
274 |
-
|
275 |
-
config = dict(
|
276 |
-
sample_size=image_size,
|
277 |
-
in_channels=vae_params.in_channels,
|
278 |
-
out_channels=vae_params.out_ch,
|
279 |
-
down_block_types=tuple(down_block_types),
|
280 |
-
up_block_types=tuple(up_block_types),
|
281 |
-
block_out_channels=tuple(block_out_channels),
|
282 |
-
latent_channels=vae_params.z_channels,
|
283 |
-
layers_per_block=vae_params.num_res_blocks,
|
284 |
-
)
|
285 |
-
return config
|
286 |
-
|
287 |
-
|
288 |
-
def create_diffusers_schedular(original_config):
|
289 |
-
schedular = DDIMScheduler(
|
290 |
-
num_train_timesteps=original_config.model.params.timesteps,
|
291 |
-
beta_start=original_config.model.params.linear_start,
|
292 |
-
beta_end=original_config.model.params.linear_end,
|
293 |
-
beta_schedule="scaled_linear",
|
294 |
-
)
|
295 |
-
return schedular
|
296 |
-
|
297 |
-
|
298 |
-
def create_ldm_bert_config(original_config):
|
299 |
-
bert_params = original_config.model.parms.cond_stage_config.params
|
300 |
-
config = LDMBertConfig(
|
301 |
-
d_model=bert_params.n_embed,
|
302 |
-
encoder_layers=bert_params.n_layer,
|
303 |
-
encoder_ffn_dim=bert_params.n_embed * 4,
|
304 |
-
)
|
305 |
-
return config
|
306 |
-
|
307 |
-
|
308 |
-
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False):
|
309 |
-
"""
|
310 |
-
Takes a state dict and a config, and returns a converted checkpoint.
|
311 |
-
"""
|
312 |
-
|
313 |
-
# extract state_dict for UNet
|
314 |
-
unet_state_dict = {}
|
315 |
-
keys = list(checkpoint.keys())
|
316 |
-
|
317 |
-
unet_key = "model.diffusion_model."
|
318 |
-
# at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
|
319 |
-
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
|
320 |
-
print(f"Checkpoint {path} has both EMA and non-EMA weights.")
|
321 |
-
print(
|
322 |
-
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
|
323 |
-
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
|
324 |
-
)
|
325 |
-
for key in keys:
|
326 |
-
if key.startswith("model.diffusion_model"):
|
327 |
-
flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
|
328 |
-
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
|
329 |
-
else:
|
330 |
-
if sum(k.startswith("model_ema") for k in keys) > 100:
|
331 |
-
print(
|
332 |
-
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
|
333 |
-
" weights (usually better for inference), please make sure to add the `--extract_ema` flag."
|
334 |
-
)
|
335 |
-
|
336 |
-
for key in keys:
|
337 |
-
if key.startswith(unet_key):
|
338 |
-
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)
|
339 |
-
|
340 |
-
new_checkpoint = {}
|
341 |
-
|
342 |
-
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
|
343 |
-
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
|
344 |
-
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
|
345 |
-
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]
|
346 |
-
|
347 |
-
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
|
348 |
-
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]
|
349 |
-
|
350 |
-
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
|
351 |
-
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
|
352 |
-
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
|
353 |
-
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]
|
354 |
-
|
355 |
-
# Retrieves the keys for the input blocks only
|
356 |
-
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
|
357 |
-
input_blocks = {
|
358 |
-
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
|
359 |
-
for layer_id in range(num_input_blocks)
|
360 |
-
}
|
361 |
-
|
362 |
-
# Retrieves the keys for the middle blocks only
|
363 |
-
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
|
364 |
-
middle_blocks = {
|
365 |
-
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
|
366 |
-
for layer_id in range(num_middle_blocks)
|
367 |
-
}
|
368 |
-
|
369 |
-
# Retrieves the keys for the output blocks only
|
370 |
-
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
|
371 |
-
output_blocks = {
|
372 |
-
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
|
373 |
-
for layer_id in range(num_output_blocks)
|
374 |
-
}
|
375 |
-
|
376 |
-
for i in range(1, num_input_blocks):
|
377 |
-
block_id = (i - 1) // (config["layers_per_block"] + 1)
|
378 |
-
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)
|
379 |
-
|
380 |
-
resnets = [
|
381 |
-
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key
|
382 |
-
]
|
383 |
-
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]
|
384 |
-
|
385 |
-
if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
|
386 |
-
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
|
387 |
-
f"input_blocks.{i}.0.op.weight"
|
388 |
-
)
|
389 |
-
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
|
390 |
-
f"input_blocks.{i}.0.op.bias"
|
391 |
-
)
|
392 |
-
|
393 |
-
paths = renew_resnet_paths(resnets)
|
394 |
-
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
395 |
-
assign_to_checkpoint(
|
396 |
-
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
397 |
-
)
|
398 |
-
|
399 |
-
if len(attentions):
|
400 |
-
paths = renew_attention_paths(attentions)
|
401 |
-
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
|
402 |
-
assign_to_checkpoint(
|
403 |
-
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
404 |
-
)
|
405 |
-
|
406 |
-
resnet_0 = middle_blocks[0]
|
407 |
-
attentions = middle_blocks[1]
|
408 |
-
resnet_1 = middle_blocks[2]
|
409 |
-
|
410 |
-
resnet_0_paths = renew_resnet_paths(resnet_0)
|
411 |
-
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config)
|
412 |
-
|
413 |
-
resnet_1_paths = renew_resnet_paths(resnet_1)
|
414 |
-
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config)
|
415 |
-
|
416 |
-
attentions_paths = renew_attention_paths(attentions)
|
417 |
-
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
|
418 |
-
assign_to_checkpoint(
|
419 |
-
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
420 |
-
)
|
421 |
-
|
422 |
-
for i in range(num_output_blocks):
|
423 |
-
block_id = i // (config["layers_per_block"] + 1)
|
424 |
-
layer_in_block_id = i % (config["layers_per_block"] + 1)
|
425 |
-
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
|
426 |
-
output_block_list = {}
|
427 |
-
|
428 |
-
for layer in output_block_layers:
|
429 |
-
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
|
430 |
-
if layer_id in output_block_list:
|
431 |
-
output_block_list[layer_id].append(layer_name)
|
432 |
-
else:
|
433 |
-
output_block_list[layer_id] = [layer_name]
|
434 |
-
|
435 |
-
if len(output_block_list) > 1:
|
436 |
-
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key]
|
437 |
-
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key]
|
438 |
-
|
439 |
-
resnet_0_paths = renew_resnet_paths(resnets)
|
440 |
-
paths = renew_resnet_paths(resnets)
|
441 |
-
|
442 |
-
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"}
|
443 |
-
assign_to_checkpoint(
|
444 |
-
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
445 |
-
)
|
446 |
-
|
447 |
-
output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
|
448 |
-
if ["conv.bias", "conv.weight"] in output_block_list.values():
|
449 |
-
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
|
450 |
-
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
|
451 |
-
f"output_blocks.{i}.{index}.conv.weight"
|
452 |
-
]
|
453 |
-
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
|
454 |
-
f"output_blocks.{i}.{index}.conv.bias"
|
455 |
-
]
|
456 |
-
|
457 |
-
# Clear attentions as they have been attributed above.
|
458 |
-
if len(attentions) == 2:
|
459 |
-
attentions = []
|
460 |
-
|
461 |
-
if len(attentions):
|
462 |
-
paths = renew_attention_paths(attentions)
|
463 |
-
meta_path = {
|
464 |
-
"old": f"output_blocks.{i}.1",
|
465 |
-
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
|
466 |
-
}
|
467 |
-
assign_to_checkpoint(
|
468 |
-
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
|
469 |
-
)
|
470 |
-
else:
|
471 |
-
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1)
|
472 |
-
for path in resnet_0_paths:
|
473 |
-
old_path = ".".join(["output_blocks", str(i), path["old"]])
|
474 |
-
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]])
|
475 |
-
|
476 |
-
new_checkpoint[new_path] = unet_state_dict[old_path]
|
477 |
-
|
478 |
-
return new_checkpoint
|
479 |
-
|
480 |
-
|
481 |
-
def convert_ldm_vae_checkpoint(checkpoint, config):
|
482 |
-
# extract state dict for VAE
|
483 |
-
vae_state_dict = {}
|
484 |
-
vae_key = "first_stage_model."
|
485 |
-
keys = list(checkpoint.keys())
|
486 |
-
for key in keys:
|
487 |
-
if key.startswith(vae_key):
|
488 |
-
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
489 |
-
|
490 |
-
new_checkpoint = {}
|
491 |
-
|
492 |
-
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
493 |
-
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
494 |
-
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
|
495 |
-
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
496 |
-
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
|
497 |
-
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]
|
498 |
-
|
499 |
-
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
500 |
-
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
501 |
-
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
|
502 |
-
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
503 |
-
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
|
504 |
-
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
|
505 |
-
|
506 |
-
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
507 |
-
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
508 |
-
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
509 |
-
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
510 |
-
|
511 |
-
# Retrieves the keys for the encoder down blocks only
|
512 |
-
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
|
513 |
-
down_blocks = {
|
514 |
-
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
|
515 |
-
}
|
516 |
-
|
517 |
-
# Retrieves the keys for the decoder up blocks only
|
518 |
-
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
|
519 |
-
up_blocks = {
|
520 |
-
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
|
521 |
-
}
|
522 |
-
|
523 |
-
for i in range(num_down_blocks):
|
524 |
-
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]
|
525 |
-
|
526 |
-
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
527 |
-
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
|
528 |
-
f"encoder.down.{i}.downsample.conv.weight"
|
529 |
-
)
|
530 |
-
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
|
531 |
-
f"encoder.down.{i}.downsample.conv.bias"
|
532 |
-
)
|
533 |
-
|
534 |
-
paths = renew_vae_resnet_paths(resnets)
|
535 |
-
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
536 |
-
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
537 |
-
|
538 |
-
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
539 |
-
num_mid_res_blocks = 2
|
540 |
-
for i in range(1, num_mid_res_blocks + 1):
|
541 |
-
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
542 |
-
|
543 |
-
paths = renew_vae_resnet_paths(resnets)
|
544 |
-
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
545 |
-
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
546 |
-
|
547 |
-
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
548 |
-
paths = renew_vae_attention_paths(mid_attentions)
|
549 |
-
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
550 |
-
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
551 |
-
conv_attn_to_linear(new_checkpoint)
|
552 |
-
|
553 |
-
for i in range(num_up_blocks):
|
554 |
-
block_id = num_up_blocks - 1 - i
|
555 |
-
resnets = [
|
556 |
-
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
557 |
-
]
|
558 |
-
|
559 |
-
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
560 |
-
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
|
561 |
-
f"decoder.up.{block_id}.upsample.conv.weight"
|
562 |
-
]
|
563 |
-
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
|
564 |
-
f"decoder.up.{block_id}.upsample.conv.bias"
|
565 |
-
]
|
566 |
-
|
567 |
-
paths = renew_vae_resnet_paths(resnets)
|
568 |
-
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
569 |
-
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
570 |
-
|
571 |
-
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
572 |
-
num_mid_res_blocks = 2
|
573 |
-
for i in range(1, num_mid_res_blocks + 1):
|
574 |
-
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
575 |
-
|
576 |
-
paths = renew_vae_resnet_paths(resnets)
|
577 |
-
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
578 |
-
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
579 |
-
|
580 |
-
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
581 |
-
paths = renew_vae_attention_paths(mid_attentions)
|
582 |
-
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
583 |
-
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
|
584 |
-
conv_attn_to_linear(new_checkpoint)
|
585 |
-
return new_checkpoint
|
586 |
-
|
587 |
-
|
588 |
-
def convert_ldm_bert_checkpoint(checkpoint, config):
|
589 |
-
def _copy_attn_layer(hf_attn_layer, pt_attn_layer):
|
590 |
-
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight
|
591 |
-
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight
|
592 |
-
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight
|
593 |
-
|
594 |
-
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight
|
595 |
-
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias
|
596 |
-
|
597 |
-
def _copy_linear(hf_linear, pt_linear):
|
598 |
-
hf_linear.weight = pt_linear.weight
|
599 |
-
hf_linear.bias = pt_linear.bias
|
600 |
-
|
601 |
-
def _copy_layer(hf_layer, pt_layer):
|
602 |
-
# copy layer norms
|
603 |
-
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0])
|
604 |
-
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0])
|
605 |
-
|
606 |
-
# copy attn
|
607 |
-
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1])
|
608 |
-
|
609 |
-
# copy MLP
|
610 |
-
pt_mlp = pt_layer[1][1]
|
611 |
-
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0])
|
612 |
-
_copy_linear(hf_layer.fc2, pt_mlp.net[2])
|
613 |
-
|
614 |
-
def _copy_layers(hf_layers, pt_layers):
|
615 |
-
for i, hf_layer in enumerate(hf_layers):
|
616 |
-
if i != 0:
|
617 |
-
i += i
|
618 |
-
pt_layer = pt_layers[i : i + 2]
|
619 |
-
_copy_layer(hf_layer, pt_layer)
|
620 |
-
|
621 |
-
hf_model = LDMBertModel(config).eval()
|
622 |
-
|
623 |
-
# copy embeds
|
624 |
-
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight
|
625 |
-
hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight
|
626 |
-
|
627 |
-
# copy layer norm
|
628 |
-
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm)
|
629 |
-
|
630 |
-
# copy hidden layers
|
631 |
-
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers)
|
632 |
-
|
633 |
-
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits)
|
634 |
-
|
635 |
-
return hf_model
|
636 |
-
|
637 |
-
|
638 |
-
def convert_ldm_clip_checkpoint(checkpoint):
|
639 |
-
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
640 |
-
|
641 |
-
keys = list(checkpoint.keys())
|
642 |
-
|
643 |
-
text_model_dict = {}
|
644 |
-
|
645 |
-
for key in keys:
|
646 |
-
if key.startswith("cond_stage_model.transformer"):
|
647 |
-
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
|
648 |
-
|
649 |
-
text_model.load_state_dict(text_model_dict)
|
650 |
-
|
651 |
-
return text_model
|
652 |
-
|
653 |
-
|
654 |
-
textenc_conversion_lst = [
|
655 |
-
("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"),
|
656 |
-
("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"),
|
657 |
-
("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"),
|
658 |
-
("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"),
|
659 |
-
]
|
660 |
-
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst}
|
661 |
-
|
662 |
-
textenc_transformer_conversion_lst = [
|
663 |
-
# (stable-diffusion, HF Diffusers)
|
664 |
-
("resblocks.", "text_model.encoder.layers."),
|
665 |
-
("ln_1", "layer_norm1"),
|
666 |
-
("ln_2", "layer_norm2"),
|
667 |
-
(".c_fc.", ".fc1."),
|
668 |
-
(".c_proj.", ".fc2."),
|
669 |
-
(".attn", ".self_attn"),
|
670 |
-
("ln_final.", "transformer.text_model.final_layer_norm."),
|
671 |
-
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
672 |
-
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
673 |
-
]
|
674 |
-
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst}
|
675 |
-
textenc_pattern = re.compile("|".join(protected.keys()))
|
676 |
-
|
677 |
-
|
678 |
-
def convert_paint_by_example_checkpoint(checkpoint):
|
679 |
-
config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14")
|
680 |
-
model = PaintByExampleImageEncoder(config)
|
681 |
-
|
682 |
-
keys = list(checkpoint.keys())
|
683 |
-
|
684 |
-
text_model_dict = {}
|
685 |
-
|
686 |
-
for key in keys:
|
687 |
-
if key.startswith("cond_stage_model.transformer"):
|
688 |
-
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key]
|
689 |
-
|
690 |
-
# load clip vision
|
691 |
-
model.model.load_state_dict(text_model_dict)
|
692 |
-
|
693 |
-
# load mapper
|
694 |
-
keys_mapper = {
|
695 |
-
k[len("cond_stage_model.mapper.res") :]: v
|
696 |
-
for k, v in checkpoint.items()
|
697 |
-
if k.startswith("cond_stage_model.mapper")
|
698 |
-
}
|
699 |
-
|
700 |
-
MAPPING = {
|
701 |
-
"attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"],
|
702 |
-
"attn.c_proj": ["attn1.to_out.0"],
|
703 |
-
"ln_1": ["norm1"],
|
704 |
-
"ln_2": ["norm3"],
|
705 |
-
"mlp.c_fc": ["ff.net.0.proj"],
|
706 |
-
"mlp.c_proj": ["ff.net.2"],
|
707 |
-
}
|
708 |
-
|
709 |
-
mapped_weights = {}
|
710 |
-
for key, value in keys_mapper.items():
|
711 |
-
prefix = key[: len("blocks.i")]
|
712 |
-
suffix = key.split(prefix)[-1].split(".")[-1]
|
713 |
-
name = key.split(prefix)[-1].split(suffix)[0][1:-1]
|
714 |
-
mapped_names = MAPPING[name]
|
715 |
-
|
716 |
-
num_splits = len(mapped_names)
|
717 |
-
for i, mapped_name in enumerate(mapped_names):
|
718 |
-
new_name = ".".join([prefix, mapped_name, suffix])
|
719 |
-
shape = value.shape[0] // num_splits
|
720 |
-
mapped_weights[new_name] = value[i * shape : (i + 1) * shape]
|
721 |
-
|
722 |
-
model.mapper.load_state_dict(mapped_weights)
|
723 |
-
|
724 |
-
# load final layer norm
|
725 |
-
model.final_layer_norm.load_state_dict(
|
726 |
-
{
|
727 |
-
"bias": checkpoint["cond_stage_model.final_ln.bias"],
|
728 |
-
"weight": checkpoint["cond_stage_model.final_ln.weight"],
|
729 |
-
}
|
730 |
-
)
|
731 |
-
|
732 |
-
# load final proj
|
733 |
-
model.proj_out.load_state_dict(
|
734 |
-
{
|
735 |
-
"bias": checkpoint["proj_out.bias"],
|
736 |
-
"weight": checkpoint["proj_out.weight"],
|
737 |
-
}
|
738 |
-
)
|
739 |
-
|
740 |
-
# load uncond vector
|
741 |
-
model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"])
|
742 |
-
return model
|
743 |
-
|
744 |
-
|
745 |
-
def convert_open_clip_checkpoint(checkpoint):
|
746 |
-
text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder")
|
747 |
-
|
748 |
-
keys = list(checkpoint.keys())
|
749 |
-
|
750 |
-
text_model_dict = {}
|
751 |
-
|
752 |
-
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0])
|
753 |
-
|
754 |
-
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids")
|
755 |
-
|
756 |
-
for key in keys:
|
757 |
-
if "resblocks.23" in key: # Diffusers drops the final layer and only uses the penultimate layer
|
758 |
-
continue
|
759 |
-
if key in textenc_conversion_map:
|
760 |
-
text_model_dict[textenc_conversion_map[key]] = checkpoint[key]
|
761 |
-
if key.startswith("cond_stage_model.model.transformer."):
|
762 |
-
new_key = key[len("cond_stage_model.model.transformer.") :]
|
763 |
-
if new_key.endswith(".in_proj_weight"):
|
764 |
-
new_key = new_key[: -len(".in_proj_weight")]
|
765 |
-
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
766 |
-
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
|
767 |
-
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :]
|
768 |
-
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :]
|
769 |
-
elif new_key.endswith(".in_proj_bias"):
|
770 |
-
new_key = new_key[: -len(".in_proj_bias")]
|
771 |
-
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
772 |
-
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model]
|
773 |
-
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2]
|
774 |
-
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :]
|
775 |
-
else:
|
776 |
-
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key)
|
777 |
-
|
778 |
-
text_model_dict[new_key] = checkpoint[key]
|
779 |
-
|
780 |
-
text_model.load_state_dict(text_model_dict)
|
781 |
-
|
782 |
-
return text_model
|
783 |
-
|
784 |
-
|
785 |
-
def savemodelDiffusers(name, compvis_config_file, diffusers_config_file, device='cpu'):
|
786 |
-
checkpoint_path = f'models/{name}/{name}.pt'
|
787 |
-
|
788 |
-
original_config_file = compvis_config_file
|
789 |
-
config_file = diffusers_config_file
|
790 |
-
num_in_channels = 4
|
791 |
-
scheduler_type = 'ddim'
|
792 |
-
pipeline_type = None
|
793 |
-
image_size = 512
|
794 |
-
prediction_type = 'epsilon'
|
795 |
-
extract_ema = False
|
796 |
-
dump_path = f"models/{name}/{name.replace('compvis','diffusers')}.pt"
|
797 |
-
upcast_attention = False
|
798 |
-
|
799 |
-
|
800 |
-
if device is None:
|
801 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
802 |
-
checkpoint = torch.load(checkpoint_path, map_location=device)
|
803 |
-
else:
|
804 |
-
checkpoint = torch.load(checkpoint_path, map_location=device)
|
805 |
-
|
806 |
-
# Sometimes models don't have the global_step item
|
807 |
-
if "global_step" in checkpoint:
|
808 |
-
global_step = checkpoint["global_step"]
|
809 |
-
else:
|
810 |
-
print("global_step key not found in model")
|
811 |
-
global_step = None
|
812 |
-
|
813 |
-
if "state_dict" in checkpoint:
|
814 |
-
checkpoint = checkpoint["state_dict"]
|
815 |
-
upcast_attention = upcast_attention
|
816 |
-
if original_config_file is None:
|
817 |
-
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
818 |
-
|
819 |
-
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024:
|
820 |
-
if not os.path.isfile("v2-inference-v.yaml"):
|
821 |
-
# model_type = "v2"
|
822 |
-
os.system(
|
823 |
-
"wget https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml"
|
824 |
-
" -O v2-inference-v.yaml"
|
825 |
-
)
|
826 |
-
original_config_file = "./v2-inference-v.yaml"
|
827 |
-
|
828 |
-
if global_step == 110000:
|
829 |
-
# v2.1 needs to upcast attention
|
830 |
-
upcast_attention = True
|
831 |
-
else:
|
832 |
-
if not os.path.isfile("v1-inference.yaml"):
|
833 |
-
# model_type = "v1"
|
834 |
-
os.system(
|
835 |
-
"wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
|
836 |
-
" -O v1-inference.yaml"
|
837 |
-
)
|
838 |
-
original_config_file = "./v1-inference.yaml"
|
839 |
-
|
840 |
-
original_config = OmegaConf.load(original_config_file)
|
841 |
-
|
842 |
-
if num_in_channels is not None:
|
843 |
-
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels
|
844 |
-
|
845 |
-
if (
|
846 |
-
"parameterization" in original_config["model"]["params"]
|
847 |
-
and original_config["model"]["params"]["parameterization"] == "v"
|
848 |
-
):
|
849 |
-
if prediction_type is None:
|
850 |
-
# NOTE: For stable diffusion 2 base it is recommended to pass `prediction_type=="epsilon"`
|
851 |
-
# as it relies on a brittle global step parameter here
|
852 |
-
prediction_type = "epsilon" if global_step == 875000 else "v_prediction"
|
853 |
-
if image_size is None:
|
854 |
-
# NOTE: For stable diffusion 2 base one has to pass `image_size==512`
|
855 |
-
# as it relies on a brittle global step parameter here
|
856 |
-
image_size = 512 if global_step == 875000 else 768
|
857 |
-
else:
|
858 |
-
if prediction_type is None:
|
859 |
-
prediction_type = "epsilon"
|
860 |
-
if image_size is None:
|
861 |
-
image_size = 512
|
862 |
-
|
863 |
-
num_train_timesteps = original_config.model.params.timesteps
|
864 |
-
beta_start = original_config.model.params.linear_start
|
865 |
-
beta_end = original_config.model.params.linear_end
|
866 |
-
scheduler = DDIMScheduler(
|
867 |
-
beta_end=beta_end,
|
868 |
-
beta_schedule="scaled_linear",
|
869 |
-
beta_start=beta_start,
|
870 |
-
num_train_timesteps=num_train_timesteps,
|
871 |
-
steps_offset=1,
|
872 |
-
clip_sample=False,
|
873 |
-
set_alpha_to_one=False,
|
874 |
-
prediction_type=prediction_type,
|
875 |
-
)
|
876 |
-
# make sure scheduler works correctly with DDIM
|
877 |
-
scheduler.register_to_config(clip_sample=False)
|
878 |
-
|
879 |
-
if scheduler_type == "pndm":
|
880 |
-
config = dict(scheduler.config)
|
881 |
-
config["skip_prk_steps"] = True
|
882 |
-
scheduler = PNDMScheduler.from_config(config)
|
883 |
-
elif scheduler_type == "lms":
|
884 |
-
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
885 |
-
elif scheduler_type == "heun":
|
886 |
-
scheduler = HeunDiscreteScheduler.from_config(scheduler.config)
|
887 |
-
elif scheduler_type == "euler":
|
888 |
-
scheduler = EulerDiscreteScheduler.from_config(scheduler.config)
|
889 |
-
elif scheduler_type == "euler-ancestral":
|
890 |
-
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config)
|
891 |
-
elif scheduler_type == "dpm":
|
892 |
-
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
|
893 |
-
elif scheduler_type == "ddim":
|
894 |
-
scheduler = scheduler
|
895 |
-
else:
|
896 |
-
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!")
|
897 |
-
|
898 |
-
# Convert the UNet2DConditionModel model.
|
899 |
-
unet_config = create_unet_diffusers_config(original_config, image_size=image_size)
|
900 |
-
unet_config["upcast_attention"] = False
|
901 |
-
unet = UNet2DConditionModel(**unet_config)
|
902 |
-
|
903 |
-
converted_unet_checkpoint = convert_ldm_unet_checkpoint(
|
904 |
-
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema
|
905 |
-
)
|
906 |
-
torch.save(converted_unet_checkpoint, dump_path)
|
907 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
finetuning.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
import util
|
5 |
+
|
6 |
+
class FineTunedModel(torch.nn.Module):
|
7 |
+
|
8 |
+
def __init__(self,
|
9 |
+
model,
|
10 |
+
modules,
|
11 |
+
frozen_modules=[]
|
12 |
+
):
|
13 |
+
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
if isinstance(modules, str):
|
17 |
+
modules = [modules]
|
18 |
+
|
19 |
+
self.model = model
|
20 |
+
self.ft_modules = {}
|
21 |
+
self.orig_modules = {}
|
22 |
+
|
23 |
+
util.freeze(self.model)
|
24 |
+
|
25 |
+
for module_name, module in model.named_modules():
|
26 |
+
for ft_module_regex in modules:
|
27 |
+
|
28 |
+
match = re.search(ft_module_regex, module_name)
|
29 |
+
|
30 |
+
if match is not None:
|
31 |
+
|
32 |
+
ft_module = copy.deepcopy(module)
|
33 |
+
|
34 |
+
self.orig_modules[module_name] = module
|
35 |
+
self.ft_modules[module_name] = ft_module
|
36 |
+
|
37 |
+
util.unfreeze(ft_module)
|
38 |
+
|
39 |
+
print(f"=> Finetuning {module_name}")
|
40 |
+
|
41 |
+
for module_name, module in ft_module.named_modules():
|
42 |
+
for freeze_module_name in frozen_modules:
|
43 |
+
|
44 |
+
match = re.search(freeze_module_name, module_name)
|
45 |
+
|
46 |
+
if match:
|
47 |
+
print(f"=> Freezing {module_name}")
|
48 |
+
util.freeze(module)
|
49 |
+
|
50 |
+
self.ft_modules_list = torch.nn.ModuleList(self.ft_modules.values())
|
51 |
+
self.orig_modules_list = torch.nn.ModuleList(self.orig_modules.values())
|
52 |
+
|
53 |
+
def __enter__(self):
|
54 |
+
|
55 |
+
for key, ft_module in self.ft_modules.items():
|
56 |
+
util.set_module(self.model, key, ft_module)
|
57 |
+
|
58 |
+
def __exit__(self, exc_type, exc_value, tb):
|
59 |
+
|
60 |
+
for key, module in self.orig_modules.items():
|
61 |
+
util.set_module(self.model, key, module)
|
62 |
+
|
63 |
+
def parameters(self):
|
64 |
+
|
65 |
+
parameters = []
|
66 |
+
|
67 |
+
for ft_module in self.ft_modules.values():
|
68 |
+
|
69 |
+
parameters.extend(list(ft_module.parameters()))
|
70 |
+
|
71 |
+
return parameters
|
72 |
+
|
73 |
+
def state_dict(self):
|
74 |
+
|
75 |
+
state_dict = {key: module.state_dict() for key, module in self.ft_modules.items()}
|
76 |
+
|
77 |
+
return state_dict
|
78 |
+
|
79 |
+
def load_state_dict(self, state_dict):
|
80 |
+
|
81 |
+
for key, sd in state_dict.items():
|
82 |
+
|
83 |
+
self.ft_modules[key].load_state_dict(sd)
|
requirements.txt
CHANGED
@@ -1,13 +1,8 @@
|
|
1 |
-
|
2 |
torch
|
3 |
torchvision
|
4 |
-
einops
|
5 |
diffusers
|
6 |
transformers
|
7 |
-
pytorch_lightning==1.6.5
|
8 |
-
taming-transformers
|
9 |
-
kornia
|
10 |
-
scipy
|
11 |
accelerate
|
12 |
-
|
13 |
-
git+https://github.com/davidbau/baukit.git
|
|
|
1 |
+
gradio
|
2 |
torch
|
3 |
torchvision
|
|
|
4 |
diffusers
|
5 |
transformers
|
|
|
|
|
|
|
|
|
6 |
accelerate
|
7 |
+
scipy
|
8 |
+
git+https://github.com/davidbau/baukit.git
|
stable_diffusion/configs/stable-diffusion/v1-inference.yaml
DELETED
@@ -1,70 +0,0 @@
|
|
1 |
-
model:
|
2 |
-
base_learning_rate: 1.0e-04
|
3 |
-
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
-
params:
|
5 |
-
linear_start: 0.00085
|
6 |
-
linear_end: 0.0120
|
7 |
-
num_timesteps_cond: 1
|
8 |
-
log_every_t: 200
|
9 |
-
timesteps: 1000
|
10 |
-
first_stage_key: "jpg"
|
11 |
-
cond_stage_key: "txt"
|
12 |
-
image_size: 64
|
13 |
-
channels: 4
|
14 |
-
cond_stage_trainable: false # Note: different from the one we trained before
|
15 |
-
conditioning_key: crossattn
|
16 |
-
monitor: val/loss_simple_ema
|
17 |
-
scale_factor: 0.18215
|
18 |
-
use_ema: False
|
19 |
-
|
20 |
-
scheduler_config: # 10000 warmup steps
|
21 |
-
target: ldm.lr_scheduler.LambdaLinearScheduler
|
22 |
-
params:
|
23 |
-
warm_up_steps: [ 10000 ]
|
24 |
-
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
25 |
-
f_start: [ 1.e-6 ]
|
26 |
-
f_max: [ 1. ]
|
27 |
-
f_min: [ 1. ]
|
28 |
-
|
29 |
-
unet_config:
|
30 |
-
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
31 |
-
params:
|
32 |
-
image_size: 32 # unused
|
33 |
-
in_channels: 4
|
34 |
-
out_channels: 4
|
35 |
-
model_channels: 320
|
36 |
-
attention_resolutions: [ 4, 2, 1 ]
|
37 |
-
num_res_blocks: 2
|
38 |
-
channel_mult: [ 1, 2, 4, 4 ]
|
39 |
-
num_heads: 8
|
40 |
-
use_spatial_transformer: True
|
41 |
-
transformer_depth: 1
|
42 |
-
context_dim: 768
|
43 |
-
use_checkpoint: True
|
44 |
-
legacy: False
|
45 |
-
|
46 |
-
first_stage_config:
|
47 |
-
target: ldm.models.autoencoder.AutoencoderKL
|
48 |
-
params:
|
49 |
-
embed_dim: 4
|
50 |
-
monitor: val/rec_loss
|
51 |
-
ddconfig:
|
52 |
-
double_z: true
|
53 |
-
z_channels: 4
|
54 |
-
resolution: 256
|
55 |
-
in_channels: 3
|
56 |
-
out_ch: 3
|
57 |
-
ch: 128
|
58 |
-
ch_mult:
|
59 |
-
- 1
|
60 |
-
- 2
|
61 |
-
- 4
|
62 |
-
- 4
|
63 |
-
num_res_blocks: 2
|
64 |
-
attn_resolutions: []
|
65 |
-
dropout: 0.0
|
66 |
-
lossconfig:
|
67 |
-
target: torch.nn.Identity
|
68 |
-
|
69 |
-
cond_stage_config:
|
70 |
-
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/data/__init__.py
DELETED
File without changes
|
stable_diffusion/ldm/data/base.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
from abc import abstractmethod
|
4 |
-
from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
|
5 |
-
|
6 |
-
|
7 |
-
class Txt2ImgIterableBaseDataset(IterableDataset):
|
8 |
-
'''
|
9 |
-
Define an interface to make the IterableDatasets for text2img data chainable
|
10 |
-
'''
|
11 |
-
def __init__(self, num_records=0, valid_ids=None, size=256):
|
12 |
-
super().__init__()
|
13 |
-
self.num_records = num_records
|
14 |
-
self.valid_ids = valid_ids
|
15 |
-
self.sample_ids = valid_ids
|
16 |
-
self.size = size
|
17 |
-
|
18 |
-
print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
|
19 |
-
|
20 |
-
def __len__(self):
|
21 |
-
return self.num_records
|
22 |
-
|
23 |
-
@abstractmethod
|
24 |
-
def __iter__(self):
|
25 |
-
pass
|
26 |
-
|
27 |
-
|
28 |
-
class PRNGMixin(object):
|
29 |
-
"""
|
30 |
-
Adds a prng property which is a numpy RandomState which gets
|
31 |
-
reinitialized whenever the pid changes to avoid synchronized sampling
|
32 |
-
behavior when used in conjunction with multiprocessing.
|
33 |
-
"""
|
34 |
-
@property
|
35 |
-
def prng(self):
|
36 |
-
currentpid = os.getpid()
|
37 |
-
if getattr(self, "_initpid", None) != currentpid:
|
38 |
-
self._initpid = currentpid
|
39 |
-
self._prng = np.random.RandomState()
|
40 |
-
return self._prng
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/data/coco.py
DELETED
@@ -1,253 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import albumentations
|
4 |
-
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
-
from tqdm import tqdm
|
7 |
-
from torch.utils.data import Dataset
|
8 |
-
from abc import abstractmethod
|
9 |
-
|
10 |
-
|
11 |
-
class CocoBase(Dataset):
|
12 |
-
"""needed for (image, caption, segmentation) pairs"""
|
13 |
-
def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False,
|
14 |
-
crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None):
|
15 |
-
self.split = self.get_split()
|
16 |
-
self.size = size
|
17 |
-
if crop_size is None:
|
18 |
-
self.crop_size = size
|
19 |
-
else:
|
20 |
-
self.crop_size = crop_size
|
21 |
-
|
22 |
-
assert crop_type in [None, 'random', 'center']
|
23 |
-
self.crop_type = crop_type
|
24 |
-
self.use_segmenation = use_segmentation
|
25 |
-
self.onehot = onehot_segmentation # return segmentation as rgb or one hot
|
26 |
-
self.stuffthing = use_stuffthing # include thing in segmentation
|
27 |
-
if self.onehot and not self.stuffthing:
|
28 |
-
raise NotImplemented("One hot mode is only supported for the "
|
29 |
-
"stuffthings version because labels are stored "
|
30 |
-
"a bit different.")
|
31 |
-
|
32 |
-
data_json = datajson
|
33 |
-
with open(data_json) as json_file:
|
34 |
-
self.json_data = json.load(json_file)
|
35 |
-
self.img_id_to_captions = dict()
|
36 |
-
self.img_id_to_filepath = dict()
|
37 |
-
self.img_id_to_segmentation_filepath = dict()
|
38 |
-
|
39 |
-
assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json",
|
40 |
-
f"captions_val{self.year()}.json"]
|
41 |
-
# TODO currently hardcoded paths, would be better to follow logic in
|
42 |
-
# cocstuff pixelmaps
|
43 |
-
if self.use_segmenation:
|
44 |
-
if self.stuffthing:
|
45 |
-
self.segmentation_prefix = (
|
46 |
-
f"data/cocostuffthings/val{self.year()}" if
|
47 |
-
data_json.endswith(f"captions_val{self.year()}.json") else
|
48 |
-
f"data/cocostuffthings/train{self.year()}")
|
49 |
-
else:
|
50 |
-
self.segmentation_prefix = (
|
51 |
-
f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if
|
52 |
-
data_json.endswith(f"captions_val{self.year()}.json") else
|
53 |
-
f"data/coco/annotations/stuff_train{self.year()}_pixelmaps")
|
54 |
-
|
55 |
-
imagedirs = self.json_data["images"]
|
56 |
-
self.labels = {"image_ids": list()}
|
57 |
-
for imgdir in tqdm(imagedirs, desc="ImgToPath"):
|
58 |
-
self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"])
|
59 |
-
self.img_id_to_captions[imgdir["id"]] = list()
|
60 |
-
pngfilename = imgdir["file_name"].replace("jpg", "png")
|
61 |
-
if self.use_segmenation:
|
62 |
-
self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join(
|
63 |
-
self.segmentation_prefix, pngfilename)
|
64 |
-
if given_files is not None:
|
65 |
-
if pngfilename in given_files:
|
66 |
-
self.labels["image_ids"].append(imgdir["id"])
|
67 |
-
else:
|
68 |
-
self.labels["image_ids"].append(imgdir["id"])
|
69 |
-
|
70 |
-
capdirs = self.json_data["annotations"]
|
71 |
-
for capdir in tqdm(capdirs, desc="ImgToCaptions"):
|
72 |
-
# there are in average 5 captions per image
|
73 |
-
#self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]]))
|
74 |
-
self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"])
|
75 |
-
|
76 |
-
self.rescaler = albumentations.SmallestMaxSize(max_size=self.size)
|
77 |
-
if self.split=="validation":
|
78 |
-
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
|
79 |
-
else:
|
80 |
-
# default option for train is random crop
|
81 |
-
if self.crop_type in [None, 'random']:
|
82 |
-
self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
|
83 |
-
else:
|
84 |
-
self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
|
85 |
-
self.preprocessor = albumentations.Compose(
|
86 |
-
[self.rescaler, self.cropper],
|
87 |
-
additional_targets={"segmentation": "image"})
|
88 |
-
if force_no_crop:
|
89 |
-
self.rescaler = albumentations.Resize(height=self.size, width=self.size)
|
90 |
-
self.preprocessor = albumentations.Compose(
|
91 |
-
[self.rescaler],
|
92 |
-
additional_targets={"segmentation": "image"})
|
93 |
-
|
94 |
-
@abstractmethod
|
95 |
-
def year(self):
|
96 |
-
raise NotImplementedError()
|
97 |
-
|
98 |
-
def __len__(self):
|
99 |
-
return len(self.labels["image_ids"])
|
100 |
-
|
101 |
-
def preprocess_image(self, image_path, segmentation_path=None):
|
102 |
-
image = Image.open(image_path)
|
103 |
-
if not image.mode == "RGB":
|
104 |
-
image = image.convert("RGB")
|
105 |
-
image = np.array(image).astype(np.uint8)
|
106 |
-
if segmentation_path:
|
107 |
-
segmentation = Image.open(segmentation_path)
|
108 |
-
if not self.onehot and not segmentation.mode == "RGB":
|
109 |
-
segmentation = segmentation.convert("RGB")
|
110 |
-
segmentation = np.array(segmentation).astype(np.uint8)
|
111 |
-
if self.onehot:
|
112 |
-
assert self.stuffthing
|
113 |
-
# stored in caffe format: unlabeled==255. stuff and thing from
|
114 |
-
# 0-181. to be compatible with the labels in
|
115 |
-
# https://github.com/nightrome/cocostuff/blob/master/labels.txt
|
116 |
-
# we shift stuffthing one to the right and put unlabeled in zero
|
117 |
-
# as long as segmentation is uint8 shifting to right handles the
|
118 |
-
# latter too
|
119 |
-
assert segmentation.dtype == np.uint8
|
120 |
-
segmentation = segmentation + 1
|
121 |
-
|
122 |
-
processed = self.preprocessor(image=image, segmentation=segmentation)
|
123 |
-
|
124 |
-
image, segmentation = processed["image"], processed["segmentation"]
|
125 |
-
else:
|
126 |
-
image = self.preprocessor(image=image,)['image']
|
127 |
-
|
128 |
-
image = (image / 127.5 - 1.0).astype(np.float32)
|
129 |
-
if segmentation_path:
|
130 |
-
if self.onehot:
|
131 |
-
assert segmentation.dtype == np.uint8
|
132 |
-
# make it one hot
|
133 |
-
n_labels = 183
|
134 |
-
flatseg = np.ravel(segmentation)
|
135 |
-
onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool)
|
136 |
-
onehot[np.arange(flatseg.size), flatseg] = True
|
137 |
-
onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int)
|
138 |
-
segmentation = onehot
|
139 |
-
else:
|
140 |
-
segmentation = (segmentation / 127.5 - 1.0).astype(np.float32)
|
141 |
-
return image, segmentation
|
142 |
-
else:
|
143 |
-
return image
|
144 |
-
|
145 |
-
def __getitem__(self, i):
|
146 |
-
img_path = self.img_id_to_filepath[self.labels["image_ids"][i]]
|
147 |
-
if self.use_segmenation:
|
148 |
-
seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]]
|
149 |
-
image, segmentation = self.preprocess_image(img_path, seg_path)
|
150 |
-
else:
|
151 |
-
image = self.preprocess_image(img_path)
|
152 |
-
captions = self.img_id_to_captions[self.labels["image_ids"][i]]
|
153 |
-
# randomly draw one of all available captions per image
|
154 |
-
caption = captions[np.random.randint(0, len(captions))]
|
155 |
-
example = {"image": image,
|
156 |
-
#"caption": [str(caption[0])],
|
157 |
-
"caption": caption,
|
158 |
-
"img_path": img_path,
|
159 |
-
"filename_": img_path.split(os.sep)[-1]
|
160 |
-
}
|
161 |
-
if self.use_segmenation:
|
162 |
-
example.update({"seg_path": seg_path, 'segmentation': segmentation})
|
163 |
-
return example
|
164 |
-
|
165 |
-
|
166 |
-
class CocoImagesAndCaptionsTrain2017(CocoBase):
|
167 |
-
"""returns a pair of (image, caption)"""
|
168 |
-
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,):
|
169 |
-
super().__init__(size=size,
|
170 |
-
dataroot="data/coco/train2017",
|
171 |
-
datajson="data/coco/annotations/captions_train2017.json",
|
172 |
-
onehot_segmentation=onehot_segmentation,
|
173 |
-
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop)
|
174 |
-
|
175 |
-
def get_split(self):
|
176 |
-
return "train"
|
177 |
-
|
178 |
-
def year(self):
|
179 |
-
return '2017'
|
180 |
-
|
181 |
-
|
182 |
-
class CocoImagesAndCaptionsValidation2017(CocoBase):
|
183 |
-
"""returns a pair of (image, caption)"""
|
184 |
-
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
|
185 |
-
given_files=None):
|
186 |
-
super().__init__(size=size,
|
187 |
-
dataroot="data/coco/val2017",
|
188 |
-
datajson="data/coco/annotations/captions_val2017.json",
|
189 |
-
onehot_segmentation=onehot_segmentation,
|
190 |
-
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
191 |
-
given_files=given_files)
|
192 |
-
|
193 |
-
def get_split(self):
|
194 |
-
return "validation"
|
195 |
-
|
196 |
-
def year(self):
|
197 |
-
return '2017'
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
class CocoImagesAndCaptionsTrain2014(CocoBase):
|
202 |
-
"""returns a pair of (image, caption)"""
|
203 |
-
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'):
|
204 |
-
super().__init__(size=size,
|
205 |
-
dataroot="data/coco/train2014",
|
206 |
-
datajson="data/coco/annotations2014/annotations/captions_train2014.json",
|
207 |
-
onehot_segmentation=onehot_segmentation,
|
208 |
-
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
209 |
-
use_segmentation=False,
|
210 |
-
crop_type=crop_type)
|
211 |
-
|
212 |
-
def get_split(self):
|
213 |
-
return "train"
|
214 |
-
|
215 |
-
def year(self):
|
216 |
-
return '2014'
|
217 |
-
|
218 |
-
class CocoImagesAndCaptionsValidation2014(CocoBase):
|
219 |
-
"""returns a pair of (image, caption)"""
|
220 |
-
def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
|
221 |
-
given_files=None,crop_type='center',**kwargs):
|
222 |
-
super().__init__(size=size,
|
223 |
-
dataroot="data/coco/val2014",
|
224 |
-
datajson="data/coco/annotations2014/annotations/captions_val2014.json",
|
225 |
-
onehot_segmentation=onehot_segmentation,
|
226 |
-
use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
|
227 |
-
given_files=given_files,
|
228 |
-
use_segmentation=False,
|
229 |
-
crop_type=crop_type)
|
230 |
-
|
231 |
-
def get_split(self):
|
232 |
-
return "validation"
|
233 |
-
|
234 |
-
def year(self):
|
235 |
-
return '2014'
|
236 |
-
|
237 |
-
if __name__ == '__main__':
|
238 |
-
with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file:
|
239 |
-
json_data = json.load(json_file)
|
240 |
-
capdirs = json_data["annotations"]
|
241 |
-
import pudb; pudb.set_trace()
|
242 |
-
#d2 = CocoImagesAndCaptionsTrain2014(size=256)
|
243 |
-
d2 = CocoImagesAndCaptionsValidation2014(size=256)
|
244 |
-
print("constructed dataset.")
|
245 |
-
print(f"length of {d2.__class__.__name__}: {len(d2)}")
|
246 |
-
|
247 |
-
ex2 = d2[0]
|
248 |
-
# ex3 = d3[0]
|
249 |
-
# print(ex1["image"].shape)
|
250 |
-
print(ex2["image"].shape)
|
251 |
-
# print(ex3["image"].shape)
|
252 |
-
# print(ex1["segmentation"].shape)
|
253 |
-
print(ex2["caption"].__class__.__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/data/dummy.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import random
|
3 |
-
import string
|
4 |
-
from torch.utils.data import Dataset, Subset
|
5 |
-
|
6 |
-
class DummyData(Dataset):
|
7 |
-
def __init__(self, length, size):
|
8 |
-
self.length = length
|
9 |
-
self.size = size
|
10 |
-
|
11 |
-
def __len__(self):
|
12 |
-
return self.length
|
13 |
-
|
14 |
-
def __getitem__(self, i):
|
15 |
-
x = np.random.randn(*self.size)
|
16 |
-
letters = string.ascii_lowercase
|
17 |
-
y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
|
18 |
-
return {"jpg": x, "txt": y}
|
19 |
-
|
20 |
-
|
21 |
-
class DummyDataWithEmbeddings(Dataset):
|
22 |
-
def __init__(self, length, size, emb_size):
|
23 |
-
self.length = length
|
24 |
-
self.size = size
|
25 |
-
self.emb_size = emb_size
|
26 |
-
|
27 |
-
def __len__(self):
|
28 |
-
return self.length
|
29 |
-
|
30 |
-
def __getitem__(self, i):
|
31 |
-
x = np.random.randn(*self.size)
|
32 |
-
y = np.random.randn(*self.emb_size).astype(np.float32)
|
33 |
-
return {"jpg": x, "txt": y}
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/data/imagenet.py
DELETED
@@ -1,394 +0,0 @@
|
|
1 |
-
import os, yaml, pickle, shutil, tarfile, glob
|
2 |
-
import cv2
|
3 |
-
import albumentations
|
4 |
-
import PIL
|
5 |
-
import numpy as np
|
6 |
-
import torchvision.transforms.functional as TF
|
7 |
-
from omegaconf import OmegaConf
|
8 |
-
from functools import partial
|
9 |
-
from PIL import Image
|
10 |
-
from tqdm import tqdm
|
11 |
-
from torch.utils.data import Dataset, Subset
|
12 |
-
|
13 |
-
import taming.data.utils as tdu
|
14 |
-
from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
|
15 |
-
from taming.data.imagenet import ImagePaths
|
16 |
-
|
17 |
-
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
|
18 |
-
|
19 |
-
|
20 |
-
def synset2idx(path_to_yaml="data/index_synset.yaml"):
|
21 |
-
with open(path_to_yaml) as f:
|
22 |
-
di2s = yaml.load(f)
|
23 |
-
return dict((v,k) for k,v in di2s.items())
|
24 |
-
|
25 |
-
|
26 |
-
class ImageNetBase(Dataset):
|
27 |
-
def __init__(self, config=None):
|
28 |
-
self.config = config or OmegaConf.create()
|
29 |
-
if not type(self.config)==dict:
|
30 |
-
self.config = OmegaConf.to_container(self.config)
|
31 |
-
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
|
32 |
-
self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
|
33 |
-
self._prepare()
|
34 |
-
self._prepare_synset_to_human()
|
35 |
-
self._prepare_idx_to_synset()
|
36 |
-
self._prepare_human_to_integer_label()
|
37 |
-
self._load()
|
38 |
-
|
39 |
-
def __len__(self):
|
40 |
-
return len(self.data)
|
41 |
-
|
42 |
-
def __getitem__(self, i):
|
43 |
-
return self.data[i]
|
44 |
-
|
45 |
-
def _prepare(self):
|
46 |
-
raise NotImplementedError()
|
47 |
-
|
48 |
-
def _filter_relpaths(self, relpaths):
|
49 |
-
ignore = set([
|
50 |
-
"n06596364_9591.JPEG",
|
51 |
-
])
|
52 |
-
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
|
53 |
-
if "sub_indices" in self.config:
|
54 |
-
indices = str_to_indices(self.config["sub_indices"])
|
55 |
-
synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
|
56 |
-
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
|
57 |
-
files = []
|
58 |
-
for rpath in relpaths:
|
59 |
-
syn = rpath.split("/")[0]
|
60 |
-
if syn in synsets:
|
61 |
-
files.append(rpath)
|
62 |
-
return files
|
63 |
-
else:
|
64 |
-
return relpaths
|
65 |
-
|
66 |
-
def _prepare_synset_to_human(self):
|
67 |
-
SIZE = 2655750
|
68 |
-
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
|
69 |
-
self.human_dict = os.path.join(self.root, "synset_human.txt")
|
70 |
-
if (not os.path.exists(self.human_dict) or
|
71 |
-
not os.path.getsize(self.human_dict)==SIZE):
|
72 |
-
download(URL, self.human_dict)
|
73 |
-
|
74 |
-
def _prepare_idx_to_synset(self):
|
75 |
-
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
|
76 |
-
self.idx2syn = os.path.join(self.root, "index_synset.yaml")
|
77 |
-
if (not os.path.exists(self.idx2syn)):
|
78 |
-
download(URL, self.idx2syn)
|
79 |
-
|
80 |
-
def _prepare_human_to_integer_label(self):
|
81 |
-
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
|
82 |
-
self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
|
83 |
-
if (not os.path.exists(self.human2integer)):
|
84 |
-
download(URL, self.human2integer)
|
85 |
-
with open(self.human2integer, "r") as f:
|
86 |
-
lines = f.read().splitlines()
|
87 |
-
assert len(lines) == 1000
|
88 |
-
self.human2integer_dict = dict()
|
89 |
-
for line in lines:
|
90 |
-
value, key = line.split(":")
|
91 |
-
self.human2integer_dict[key] = int(value)
|
92 |
-
|
93 |
-
def _load(self):
|
94 |
-
with open(self.txt_filelist, "r") as f:
|
95 |
-
self.relpaths = f.read().splitlines()
|
96 |
-
l1 = len(self.relpaths)
|
97 |
-
self.relpaths = self._filter_relpaths(self.relpaths)
|
98 |
-
print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
|
99 |
-
|
100 |
-
self.synsets = [p.split("/")[0] for p in self.relpaths]
|
101 |
-
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
|
102 |
-
|
103 |
-
unique_synsets = np.unique(self.synsets)
|
104 |
-
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
|
105 |
-
if not self.keep_orig_class_label:
|
106 |
-
self.class_labels = [class_dict[s] for s in self.synsets]
|
107 |
-
else:
|
108 |
-
self.class_labels = [self.synset2idx[s] for s in self.synsets]
|
109 |
-
|
110 |
-
with open(self.human_dict, "r") as f:
|
111 |
-
human_dict = f.read().splitlines()
|
112 |
-
human_dict = dict(line.split(maxsplit=1) for line in human_dict)
|
113 |
-
|
114 |
-
self.human_labels = [human_dict[s] for s in self.synsets]
|
115 |
-
|
116 |
-
labels = {
|
117 |
-
"relpath": np.array(self.relpaths),
|
118 |
-
"synsets": np.array(self.synsets),
|
119 |
-
"class_label": np.array(self.class_labels),
|
120 |
-
"human_label": np.array(self.human_labels),
|
121 |
-
}
|
122 |
-
|
123 |
-
if self.process_images:
|
124 |
-
self.size = retrieve(self.config, "size", default=256)
|
125 |
-
self.data = ImagePaths(self.abspaths,
|
126 |
-
labels=labels,
|
127 |
-
size=self.size,
|
128 |
-
random_crop=self.random_crop,
|
129 |
-
)
|
130 |
-
else:
|
131 |
-
self.data = self.abspaths
|
132 |
-
|
133 |
-
|
134 |
-
class ImageNetTrain(ImageNetBase):
|
135 |
-
NAME = "ILSVRC2012_train"
|
136 |
-
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
137 |
-
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
|
138 |
-
FILES = [
|
139 |
-
"ILSVRC2012_img_train.tar",
|
140 |
-
]
|
141 |
-
SIZES = [
|
142 |
-
147897477120,
|
143 |
-
]
|
144 |
-
|
145 |
-
def __init__(self, process_images=True, data_root=None, **kwargs):
|
146 |
-
self.process_images = process_images
|
147 |
-
self.data_root = data_root
|
148 |
-
super().__init__(**kwargs)
|
149 |
-
|
150 |
-
def _prepare(self):
|
151 |
-
if self.data_root:
|
152 |
-
self.root = os.path.join(self.data_root, self.NAME)
|
153 |
-
else:
|
154 |
-
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
155 |
-
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
156 |
-
|
157 |
-
self.datadir = os.path.join(self.root, "data")
|
158 |
-
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
159 |
-
self.expected_length = 1281167
|
160 |
-
self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
|
161 |
-
default=True)
|
162 |
-
if not tdu.is_prepared(self.root):
|
163 |
-
# prep
|
164 |
-
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
165 |
-
|
166 |
-
datadir = self.datadir
|
167 |
-
if not os.path.exists(datadir):
|
168 |
-
path = os.path.join(self.root, self.FILES[0])
|
169 |
-
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
170 |
-
import academictorrents as at
|
171 |
-
atpath = at.get(self.AT_HASH, datastore=self.root)
|
172 |
-
assert atpath == path
|
173 |
-
|
174 |
-
print("Extracting {} to {}".format(path, datadir))
|
175 |
-
os.makedirs(datadir, exist_ok=True)
|
176 |
-
with tarfile.open(path, "r:") as tar:
|
177 |
-
tar.extractall(path=datadir)
|
178 |
-
|
179 |
-
print("Extracting sub-tars.")
|
180 |
-
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
|
181 |
-
for subpath in tqdm(subpaths):
|
182 |
-
subdir = subpath[:-len(".tar")]
|
183 |
-
os.makedirs(subdir, exist_ok=True)
|
184 |
-
with tarfile.open(subpath, "r:") as tar:
|
185 |
-
tar.extractall(path=subdir)
|
186 |
-
|
187 |
-
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
188 |
-
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
189 |
-
filelist = sorted(filelist)
|
190 |
-
filelist = "\n".join(filelist)+"\n"
|
191 |
-
with open(self.txt_filelist, "w") as f:
|
192 |
-
f.write(filelist)
|
193 |
-
|
194 |
-
tdu.mark_prepared(self.root)
|
195 |
-
|
196 |
-
|
197 |
-
class ImageNetValidation(ImageNetBase):
|
198 |
-
NAME = "ILSVRC2012_validation"
|
199 |
-
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
|
200 |
-
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
|
201 |
-
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
|
202 |
-
FILES = [
|
203 |
-
"ILSVRC2012_img_val.tar",
|
204 |
-
"validation_synset.txt",
|
205 |
-
]
|
206 |
-
SIZES = [
|
207 |
-
6744924160,
|
208 |
-
1950000,
|
209 |
-
]
|
210 |
-
|
211 |
-
def __init__(self, process_images=True, data_root=None, **kwargs):
|
212 |
-
self.data_root = data_root
|
213 |
-
self.process_images = process_images
|
214 |
-
super().__init__(**kwargs)
|
215 |
-
|
216 |
-
def _prepare(self):
|
217 |
-
if self.data_root:
|
218 |
-
self.root = os.path.join(self.data_root, self.NAME)
|
219 |
-
else:
|
220 |
-
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
|
221 |
-
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
|
222 |
-
self.datadir = os.path.join(self.root, "data")
|
223 |
-
self.txt_filelist = os.path.join(self.root, "filelist.txt")
|
224 |
-
self.expected_length = 50000
|
225 |
-
self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
|
226 |
-
default=False)
|
227 |
-
if not tdu.is_prepared(self.root):
|
228 |
-
# prep
|
229 |
-
print("Preparing dataset {} in {}".format(self.NAME, self.root))
|
230 |
-
|
231 |
-
datadir = self.datadir
|
232 |
-
if not os.path.exists(datadir):
|
233 |
-
path = os.path.join(self.root, self.FILES[0])
|
234 |
-
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
|
235 |
-
import academictorrents as at
|
236 |
-
atpath = at.get(self.AT_HASH, datastore=self.root)
|
237 |
-
assert atpath == path
|
238 |
-
|
239 |
-
print("Extracting {} to {}".format(path, datadir))
|
240 |
-
os.makedirs(datadir, exist_ok=True)
|
241 |
-
with tarfile.open(path, "r:") as tar:
|
242 |
-
tar.extractall(path=datadir)
|
243 |
-
|
244 |
-
vspath = os.path.join(self.root, self.FILES[1])
|
245 |
-
if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
|
246 |
-
download(self.VS_URL, vspath)
|
247 |
-
|
248 |
-
with open(vspath, "r") as f:
|
249 |
-
synset_dict = f.read().splitlines()
|
250 |
-
synset_dict = dict(line.split() for line in synset_dict)
|
251 |
-
|
252 |
-
print("Reorganizing into synset folders")
|
253 |
-
synsets = np.unique(list(synset_dict.values()))
|
254 |
-
for s in synsets:
|
255 |
-
os.makedirs(os.path.join(datadir, s), exist_ok=True)
|
256 |
-
for k, v in synset_dict.items():
|
257 |
-
src = os.path.join(datadir, k)
|
258 |
-
dst = os.path.join(datadir, v)
|
259 |
-
shutil.move(src, dst)
|
260 |
-
|
261 |
-
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
|
262 |
-
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
|
263 |
-
filelist = sorted(filelist)
|
264 |
-
filelist = "\n".join(filelist)+"\n"
|
265 |
-
with open(self.txt_filelist, "w") as f:
|
266 |
-
f.write(filelist)
|
267 |
-
|
268 |
-
tdu.mark_prepared(self.root)
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
class ImageNetSR(Dataset):
|
273 |
-
def __init__(self, size=None,
|
274 |
-
degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
|
275 |
-
random_crop=True):
|
276 |
-
"""
|
277 |
-
Imagenet Superresolution Dataloader
|
278 |
-
Performs following ops in order:
|
279 |
-
1. crops a crop of size s from image either as random or center crop
|
280 |
-
2. resizes crop to size with cv2.area_interpolation
|
281 |
-
3. degrades resized crop with degradation_fn
|
282 |
-
|
283 |
-
:param size: resizing to size after cropping
|
284 |
-
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
|
285 |
-
:param downscale_f: Low Resolution Downsample factor
|
286 |
-
:param min_crop_f: determines crop size s,
|
287 |
-
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
|
288 |
-
:param max_crop_f: ""
|
289 |
-
:param data_root:
|
290 |
-
:param random_crop:
|
291 |
-
"""
|
292 |
-
self.base = self.get_base()
|
293 |
-
assert size
|
294 |
-
assert (size / downscale_f).is_integer()
|
295 |
-
self.size = size
|
296 |
-
self.LR_size = int(size / downscale_f)
|
297 |
-
self.min_crop_f = min_crop_f
|
298 |
-
self.max_crop_f = max_crop_f
|
299 |
-
assert(max_crop_f <= 1.)
|
300 |
-
self.center_crop = not random_crop
|
301 |
-
|
302 |
-
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
|
303 |
-
|
304 |
-
self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
|
305 |
-
|
306 |
-
if degradation == "bsrgan":
|
307 |
-
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
|
308 |
-
|
309 |
-
elif degradation == "bsrgan_light":
|
310 |
-
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
|
311 |
-
|
312 |
-
else:
|
313 |
-
interpolation_fn = {
|
314 |
-
"cv_nearest": cv2.INTER_NEAREST,
|
315 |
-
"cv_bilinear": cv2.INTER_LINEAR,
|
316 |
-
"cv_bicubic": cv2.INTER_CUBIC,
|
317 |
-
"cv_area": cv2.INTER_AREA,
|
318 |
-
"cv_lanczos": cv2.INTER_LANCZOS4,
|
319 |
-
"pil_nearest": PIL.Image.NEAREST,
|
320 |
-
"pil_bilinear": PIL.Image.BILINEAR,
|
321 |
-
"pil_bicubic": PIL.Image.BICUBIC,
|
322 |
-
"pil_box": PIL.Image.BOX,
|
323 |
-
"pil_hamming": PIL.Image.HAMMING,
|
324 |
-
"pil_lanczos": PIL.Image.LANCZOS,
|
325 |
-
}[degradation]
|
326 |
-
|
327 |
-
self.pil_interpolation = degradation.startswith("pil_")
|
328 |
-
|
329 |
-
if self.pil_interpolation:
|
330 |
-
self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
|
331 |
-
|
332 |
-
else:
|
333 |
-
self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
|
334 |
-
interpolation=interpolation_fn)
|
335 |
-
|
336 |
-
def __len__(self):
|
337 |
-
return len(self.base)
|
338 |
-
|
339 |
-
def __getitem__(self, i):
|
340 |
-
example = self.base[i]
|
341 |
-
image = Image.open(example["file_path_"])
|
342 |
-
|
343 |
-
if not image.mode == "RGB":
|
344 |
-
image = image.convert("RGB")
|
345 |
-
|
346 |
-
image = np.array(image).astype(np.uint8)
|
347 |
-
|
348 |
-
min_side_len = min(image.shape[:2])
|
349 |
-
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
|
350 |
-
crop_side_len = int(crop_side_len)
|
351 |
-
|
352 |
-
if self.center_crop:
|
353 |
-
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
|
354 |
-
|
355 |
-
else:
|
356 |
-
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
|
357 |
-
|
358 |
-
image = self.cropper(image=image)["image"]
|
359 |
-
image = self.image_rescaler(image=image)["image"]
|
360 |
-
|
361 |
-
if self.pil_interpolation:
|
362 |
-
image_pil = PIL.Image.fromarray(image)
|
363 |
-
LR_image = self.degradation_process(image_pil)
|
364 |
-
LR_image = np.array(LR_image).astype(np.uint8)
|
365 |
-
|
366 |
-
else:
|
367 |
-
LR_image = self.degradation_process(image=image)["image"]
|
368 |
-
|
369 |
-
example["image"] = (image/127.5 - 1.0).astype(np.float32)
|
370 |
-
example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
|
371 |
-
example["caption"] = example["human_label"] # dummy caption
|
372 |
-
return example
|
373 |
-
|
374 |
-
|
375 |
-
class ImageNetSRTrain(ImageNetSR):
|
376 |
-
def __init__(self, **kwargs):
|
377 |
-
super().__init__(**kwargs)
|
378 |
-
|
379 |
-
def get_base(self):
|
380 |
-
with open("data/imagenet_train_hr_indices.p", "rb") as f:
|
381 |
-
indices = pickle.load(f)
|
382 |
-
dset = ImageNetTrain(process_images=False,)
|
383 |
-
return Subset(dset, indices)
|
384 |
-
|
385 |
-
|
386 |
-
class ImageNetSRValidation(ImageNetSR):
|
387 |
-
def __init__(self, **kwargs):
|
388 |
-
super().__init__(**kwargs)
|
389 |
-
|
390 |
-
def get_base(self):
|
391 |
-
with open("data/imagenet_val_hr_indices.p", "rb") as f:
|
392 |
-
indices = pickle.load(f)
|
393 |
-
dset = ImageNetValidation(process_images=False,)
|
394 |
-
return Subset(dset, indices)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/data/inpainting/__init__.py
DELETED
File without changes
|
stable_diffusion/ldm/data/inpainting/synthetic_mask.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
from PIL import Image, ImageDraw
|
2 |
-
import numpy as np
|
3 |
-
|
4 |
-
settings = {
|
5 |
-
"256narrow": {
|
6 |
-
"p_irr": 1,
|
7 |
-
"min_n_irr": 4,
|
8 |
-
"max_n_irr": 50,
|
9 |
-
"max_l_irr": 40,
|
10 |
-
"max_w_irr": 10,
|
11 |
-
"min_n_box": None,
|
12 |
-
"max_n_box": None,
|
13 |
-
"min_s_box": None,
|
14 |
-
"max_s_box": None,
|
15 |
-
"marg": None,
|
16 |
-
},
|
17 |
-
"256train": {
|
18 |
-
"p_irr": 0.5,
|
19 |
-
"min_n_irr": 1,
|
20 |
-
"max_n_irr": 5,
|
21 |
-
"max_l_irr": 200,
|
22 |
-
"max_w_irr": 100,
|
23 |
-
"min_n_box": 1,
|
24 |
-
"max_n_box": 4,
|
25 |
-
"min_s_box": 30,
|
26 |
-
"max_s_box": 150,
|
27 |
-
"marg": 10,
|
28 |
-
},
|
29 |
-
"512train": { # TODO: experimental
|
30 |
-
"p_irr": 0.5,
|
31 |
-
"min_n_irr": 1,
|
32 |
-
"max_n_irr": 5,
|
33 |
-
"max_l_irr": 450,
|
34 |
-
"max_w_irr": 250,
|
35 |
-
"min_n_box": 1,
|
36 |
-
"max_n_box": 4,
|
37 |
-
"min_s_box": 30,
|
38 |
-
"max_s_box": 300,
|
39 |
-
"marg": 10,
|
40 |
-
},
|
41 |
-
"512train-large": { # TODO: experimental
|
42 |
-
"p_irr": 0.5,
|
43 |
-
"min_n_irr": 1,
|
44 |
-
"max_n_irr": 5,
|
45 |
-
"max_l_irr": 450,
|
46 |
-
"max_w_irr": 400,
|
47 |
-
"min_n_box": 1,
|
48 |
-
"max_n_box": 4,
|
49 |
-
"min_s_box": 75,
|
50 |
-
"max_s_box": 450,
|
51 |
-
"marg": 10,
|
52 |
-
},
|
53 |
-
}
|
54 |
-
|
55 |
-
|
56 |
-
def gen_segment_mask(mask, start, end, brush_width):
|
57 |
-
mask = mask > 0
|
58 |
-
mask = (255 * mask).astype(np.uint8)
|
59 |
-
mask = Image.fromarray(mask)
|
60 |
-
draw = ImageDraw.Draw(mask)
|
61 |
-
draw.line([start, end], fill=255, width=brush_width, joint="curve")
|
62 |
-
mask = np.array(mask) / 255
|
63 |
-
return mask
|
64 |
-
|
65 |
-
|
66 |
-
def gen_box_mask(mask, masked):
|
67 |
-
x_0, y_0, w, h = masked
|
68 |
-
mask[y_0:y_0 + h, x_0:x_0 + w] = 1
|
69 |
-
return mask
|
70 |
-
|
71 |
-
|
72 |
-
def gen_round_mask(mask, masked, radius):
|
73 |
-
x_0, y_0, w, h = masked
|
74 |
-
xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
|
75 |
-
|
76 |
-
mask = mask > 0
|
77 |
-
mask = (255 * mask).astype(np.uint8)
|
78 |
-
mask = Image.fromarray(mask)
|
79 |
-
draw = ImageDraw.Draw(mask)
|
80 |
-
draw.rounded_rectangle(xy, radius=radius, fill=255)
|
81 |
-
mask = np.array(mask) / 255
|
82 |
-
return mask
|
83 |
-
|
84 |
-
|
85 |
-
def gen_large_mask(prng, img_h, img_w,
|
86 |
-
marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
|
87 |
-
min_n_box, max_n_box, min_s_box, max_s_box):
|
88 |
-
"""
|
89 |
-
img_h: int, an image height
|
90 |
-
img_w: int, an image width
|
91 |
-
marg: int, a margin for a box starting coordinate
|
92 |
-
p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
|
93 |
-
|
94 |
-
min_n_irr: int, min number of segments
|
95 |
-
max_n_irr: int, max number of segments
|
96 |
-
max_l_irr: max length of a segment in polygonal chain
|
97 |
-
max_w_irr: max width of a segment in polygonal chain
|
98 |
-
|
99 |
-
min_n_box: int, min bound for the number of box primitives
|
100 |
-
max_n_box: int, max bound for the number of box primitives
|
101 |
-
min_s_box: int, min length of a box side
|
102 |
-
max_s_box: int, max length of a box side
|
103 |
-
"""
|
104 |
-
|
105 |
-
mask = np.zeros((img_h, img_w))
|
106 |
-
uniform = prng.randint
|
107 |
-
|
108 |
-
if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
|
109 |
-
n = uniform(min_n_irr, max_n_irr) # sample number of segments
|
110 |
-
|
111 |
-
for _ in range(n):
|
112 |
-
y = uniform(0, img_h) # sample a starting point
|
113 |
-
x = uniform(0, img_w)
|
114 |
-
|
115 |
-
a = uniform(0, 360) # sample angle
|
116 |
-
l = uniform(10, max_l_irr) # sample segment length
|
117 |
-
w = uniform(5, max_w_irr) # sample a segment width
|
118 |
-
|
119 |
-
# draw segment starting from (x,y) to (x_,y_) using brush of width w
|
120 |
-
x_ = x + l * np.sin(a)
|
121 |
-
y_ = y + l * np.cos(a)
|
122 |
-
|
123 |
-
mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
|
124 |
-
x, y = x_, y_
|
125 |
-
else: # generate Box masks
|
126 |
-
n = uniform(min_n_box, max_n_box) # sample number of rectangles
|
127 |
-
|
128 |
-
for _ in range(n):
|
129 |
-
h = uniform(min_s_box, max_s_box) # sample box shape
|
130 |
-
w = uniform(min_s_box, max_s_box)
|
131 |
-
|
132 |
-
x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
|
133 |
-
y_0 = uniform(marg, img_h - marg - h)
|
134 |
-
|
135 |
-
if np.random.uniform(0, 1) < 0.5:
|
136 |
-
mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
|
137 |
-
else:
|
138 |
-
r = uniform(0, 60) # sample radius
|
139 |
-
mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
|
140 |
-
return mask
|
141 |
-
|
142 |
-
|
143 |
-
make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"])
|
144 |
-
make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"])
|
145 |
-
make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"])
|
146 |
-
make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"])
|
147 |
-
|
148 |
-
|
149 |
-
MASK_MODES = {
|
150 |
-
"256train": make_lama_mask,
|
151 |
-
"256narrow": make_narrow_lama_mask,
|
152 |
-
"512train": make_512_lama_mask,
|
153 |
-
"512train-large": make_512_lama_mask_large
|
154 |
-
}
|
155 |
-
|
156 |
-
if __name__ == "__main__":
|
157 |
-
import sys
|
158 |
-
|
159 |
-
out = sys.argv[1]
|
160 |
-
|
161 |
-
prng = np.random.RandomState(1)
|
162 |
-
kwargs = settings["256train"]
|
163 |
-
mask = gen_large_mask(prng, 256, 256, **kwargs)
|
164 |
-
mask = (255 * mask).astype(np.uint8)
|
165 |
-
mask = Image.fromarray(mask)
|
166 |
-
mask.save(out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/data/laion.py
DELETED
@@ -1,537 +0,0 @@
|
|
1 |
-
import webdataset as wds
|
2 |
-
import kornia
|
3 |
-
from PIL import Image
|
4 |
-
import io
|
5 |
-
import os
|
6 |
-
import torchvision
|
7 |
-
from PIL import Image
|
8 |
-
import glob
|
9 |
-
import random
|
10 |
-
import numpy as np
|
11 |
-
import pytorch_lightning as pl
|
12 |
-
from tqdm import tqdm
|
13 |
-
from omegaconf import OmegaConf
|
14 |
-
from einops import rearrange
|
15 |
-
import torch
|
16 |
-
from webdataset.handlers import warn_and_continue
|
17 |
-
|
18 |
-
|
19 |
-
from ldm.util import instantiate_from_config
|
20 |
-
from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
|
21 |
-
from ldm.data.base import PRNGMixin
|
22 |
-
|
23 |
-
|
24 |
-
class DataWithWings(torch.utils.data.IterableDataset):
|
25 |
-
def __init__(self, min_size, transform=None, target_transform=None):
|
26 |
-
self.min_size = min_size
|
27 |
-
self.transform = transform if transform is not None else nn.Identity()
|
28 |
-
self.target_transform = target_transform if target_transform is not None else nn.Identity()
|
29 |
-
self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
|
30 |
-
self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
|
31 |
-
self.pwatermark_threshold = 0.8
|
32 |
-
self.punsafe_threshold = 0.5
|
33 |
-
self.aesthetic_threshold = 5.
|
34 |
-
self.total_samples = 0
|
35 |
-
self.samples = 0
|
36 |
-
location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
|
37 |
-
|
38 |
-
self.inner_dataset = wds.DataPipeline(
|
39 |
-
wds.ResampledShards(location),
|
40 |
-
wds.tarfile_to_samples(handler=wds.warn_and_continue),
|
41 |
-
wds.shuffle(1000, handler=wds.warn_and_continue),
|
42 |
-
wds.decode('pilrgb', handler=wds.warn_and_continue),
|
43 |
-
wds.map(self._add_tags, handler=wds.ignore_and_continue),
|
44 |
-
wds.select(self._filter_predicate),
|
45 |
-
wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
|
46 |
-
wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
|
47 |
-
)
|
48 |
-
|
49 |
-
@staticmethod
|
50 |
-
def _compute_hash(url, text):
|
51 |
-
if url is None:
|
52 |
-
url = ''
|
53 |
-
if text is None:
|
54 |
-
text = ''
|
55 |
-
total = (url + text).encode('utf-8')
|
56 |
-
return mmh3.hash64(total)[0]
|
57 |
-
|
58 |
-
def _add_tags(self, x):
|
59 |
-
hsh = self._compute_hash(x['json']['url'], x['txt'])
|
60 |
-
pwatermark, punsafe = self.kv[hsh]
|
61 |
-
aesthetic = self.kv_aesthetic[hsh][0]
|
62 |
-
return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
|
63 |
-
|
64 |
-
def _punsafe_to_class(self, punsafe):
|
65 |
-
return torch.tensor(punsafe >= self.punsafe_threshold).long()
|
66 |
-
|
67 |
-
def _filter_predicate(self, x):
|
68 |
-
try:
|
69 |
-
return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
|
70 |
-
except:
|
71 |
-
return False
|
72 |
-
|
73 |
-
def __iter__(self):
|
74 |
-
return iter(self.inner_dataset)
|
75 |
-
|
76 |
-
|
77 |
-
def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
78 |
-
"""Take a list of samples (as dictionary) and create a batch, preserving the keys.
|
79 |
-
If `tensors` is True, `ndarray` objects are combined into
|
80 |
-
tensor batches.
|
81 |
-
:param dict samples: list of samples
|
82 |
-
:param bool tensors: whether to turn lists of ndarrays into a single ndarray
|
83 |
-
:returns: single sample consisting of a batch
|
84 |
-
:rtype: dict
|
85 |
-
"""
|
86 |
-
keys = set.intersection(*[set(sample.keys()) for sample in samples])
|
87 |
-
batched = {key: [] for key in keys}
|
88 |
-
|
89 |
-
for s in samples:
|
90 |
-
[batched[key].append(s[key]) for key in batched]
|
91 |
-
|
92 |
-
result = {}
|
93 |
-
for key in batched:
|
94 |
-
if isinstance(batched[key][0], (int, float)):
|
95 |
-
if combine_scalars:
|
96 |
-
result[key] = np.array(list(batched[key]))
|
97 |
-
elif isinstance(batched[key][0], torch.Tensor):
|
98 |
-
if combine_tensors:
|
99 |
-
result[key] = torch.stack(list(batched[key]))
|
100 |
-
elif isinstance(batched[key][0], np.ndarray):
|
101 |
-
if combine_tensors:
|
102 |
-
result[key] = np.array(list(batched[key]))
|
103 |
-
else:
|
104 |
-
result[key] = list(batched[key])
|
105 |
-
return result
|
106 |
-
|
107 |
-
|
108 |
-
class WebDataModuleFromConfig(pl.LightningDataModule):
|
109 |
-
def __init__(self, tar_base, batch_size, train=None, validation=None,
|
110 |
-
test=None, num_workers=4, multinode=True, min_size=None,
|
111 |
-
max_pwatermark=1.0,
|
112 |
-
**kwargs):
|
113 |
-
super().__init__(self)
|
114 |
-
print(f'Setting tar base to {tar_base}')
|
115 |
-
self.tar_base = tar_base
|
116 |
-
self.batch_size = batch_size
|
117 |
-
self.num_workers = num_workers
|
118 |
-
self.train = train
|
119 |
-
self.validation = validation
|
120 |
-
self.test = test
|
121 |
-
self.multinode = multinode
|
122 |
-
self.min_size = min_size # filter out very small images
|
123 |
-
self.max_pwatermark = max_pwatermark # filter out watermarked images
|
124 |
-
|
125 |
-
def make_loader(self, dataset_config, train=True):
|
126 |
-
if 'image_transforms' in dataset_config:
|
127 |
-
image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
|
128 |
-
else:
|
129 |
-
image_transforms = []
|
130 |
-
|
131 |
-
image_transforms.extend([torchvision.transforms.ToTensor(),
|
132 |
-
torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
133 |
-
image_transforms = torchvision.transforms.Compose(image_transforms)
|
134 |
-
|
135 |
-
if 'transforms' in dataset_config:
|
136 |
-
transforms_config = OmegaConf.to_container(dataset_config.transforms)
|
137 |
-
else:
|
138 |
-
transforms_config = dict()
|
139 |
-
|
140 |
-
transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
|
141 |
-
if transforms_config[dkey] != 'identity' else identity
|
142 |
-
for dkey in transforms_config}
|
143 |
-
img_key = dataset_config.get('image_key', 'jpeg')
|
144 |
-
transform_dict.update({img_key: image_transforms})
|
145 |
-
|
146 |
-
if 'postprocess' in dataset_config:
|
147 |
-
postprocess = instantiate_from_config(dataset_config['postprocess'])
|
148 |
-
else:
|
149 |
-
postprocess = None
|
150 |
-
|
151 |
-
shuffle = dataset_config.get('shuffle', 0)
|
152 |
-
shardshuffle = shuffle > 0
|
153 |
-
|
154 |
-
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
|
155 |
-
|
156 |
-
if self.tar_base == "__improvedaesthetic__":
|
157 |
-
print("## Warning, loading the same improved aesthetic dataset "
|
158 |
-
"for all splits and ignoring shards parameter.")
|
159 |
-
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
|
160 |
-
else:
|
161 |
-
tars = os.path.join(self.tar_base, dataset_config.shards)
|
162 |
-
|
163 |
-
dset = wds.WebDataset(
|
164 |
-
tars,
|
165 |
-
nodesplitter=nodesplitter,
|
166 |
-
shardshuffle=shardshuffle,
|
167 |
-
handler=wds.warn_and_continue).repeat().shuffle(shuffle)
|
168 |
-
print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
|
169 |
-
|
170 |
-
dset = (dset
|
171 |
-
.select(self.filter_keys)
|
172 |
-
.decode('pil', handler=wds.warn_and_continue)
|
173 |
-
.select(self.filter_size)
|
174 |
-
.map_dict(**transform_dict, handler=wds.warn_and_continue)
|
175 |
-
)
|
176 |
-
if postprocess is not None:
|
177 |
-
dset = dset.map(postprocess)
|
178 |
-
dset = (dset
|
179 |
-
.batched(self.batch_size, partial=False,
|
180 |
-
collation_fn=dict_collation_fn)
|
181 |
-
)
|
182 |
-
|
183 |
-
loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
|
184 |
-
num_workers=self.num_workers)
|
185 |
-
|
186 |
-
return loader
|
187 |
-
|
188 |
-
def filter_size(self, x):
|
189 |
-
try:
|
190 |
-
valid = True
|
191 |
-
if self.min_size is not None and self.min_size > 1:
|
192 |
-
try:
|
193 |
-
valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
|
194 |
-
except Exception:
|
195 |
-
valid = False
|
196 |
-
if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
|
197 |
-
try:
|
198 |
-
valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
|
199 |
-
except Exception:
|
200 |
-
valid = False
|
201 |
-
return valid
|
202 |
-
except Exception:
|
203 |
-
return False
|
204 |
-
|
205 |
-
def filter_keys(self, x):
|
206 |
-
try:
|
207 |
-
return ("jpg" in x) and ("txt" in x)
|
208 |
-
except Exception:
|
209 |
-
return False
|
210 |
-
|
211 |
-
def train_dataloader(self):
|
212 |
-
return self.make_loader(self.train)
|
213 |
-
|
214 |
-
def val_dataloader(self):
|
215 |
-
return self.make_loader(self.validation, train=False)
|
216 |
-
|
217 |
-
def test_dataloader(self):
|
218 |
-
return self.make_loader(self.test, train=False)
|
219 |
-
|
220 |
-
|
221 |
-
from ldm.modules.image_degradation import degradation_fn_bsr_light
|
222 |
-
import cv2
|
223 |
-
|
224 |
-
class AddLR(object):
|
225 |
-
def __init__(self, factor, output_size, initial_size=None, image_key="jpg"):
|
226 |
-
self.factor = factor
|
227 |
-
self.output_size = output_size
|
228 |
-
self.image_key = image_key
|
229 |
-
self.initial_size = initial_size
|
230 |
-
|
231 |
-
def pt2np(self, x):
|
232 |
-
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
|
233 |
-
return x
|
234 |
-
|
235 |
-
def np2pt(self, x):
|
236 |
-
x = torch.from_numpy(x)/127.5-1.0
|
237 |
-
return x
|
238 |
-
|
239 |
-
def __call__(self, sample):
|
240 |
-
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
241 |
-
x = self.pt2np(sample[self.image_key])
|
242 |
-
if self.initial_size is not None:
|
243 |
-
x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2)
|
244 |
-
x = degradation_fn_bsr_light(x, sf=self.factor)['image']
|
245 |
-
x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2)
|
246 |
-
x = self.np2pt(x)
|
247 |
-
sample['lr'] = x
|
248 |
-
return sample
|
249 |
-
|
250 |
-
class AddBW(object):
|
251 |
-
def __init__(self, image_key="jpg"):
|
252 |
-
self.image_key = image_key
|
253 |
-
|
254 |
-
def pt2np(self, x):
|
255 |
-
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
|
256 |
-
return x
|
257 |
-
|
258 |
-
def np2pt(self, x):
|
259 |
-
x = torch.from_numpy(x)/127.5-1.0
|
260 |
-
return x
|
261 |
-
|
262 |
-
def __call__(self, sample):
|
263 |
-
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
264 |
-
x = sample[self.image_key]
|
265 |
-
w = torch.rand(3, device=x.device)
|
266 |
-
w /= w.sum()
|
267 |
-
out = torch.einsum('hwc,c->hw', x, w)
|
268 |
-
|
269 |
-
# Keep as 3ch so we can pass to encoder, also we might want to add hints
|
270 |
-
sample['lr'] = out.unsqueeze(-1).tile(1,1,3)
|
271 |
-
return sample
|
272 |
-
|
273 |
-
class AddMask(PRNGMixin):
|
274 |
-
def __init__(self, mode="512train", p_drop=0.):
|
275 |
-
super().__init__()
|
276 |
-
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
|
277 |
-
self.make_mask = MASK_MODES[mode]
|
278 |
-
self.p_drop = p_drop
|
279 |
-
|
280 |
-
def __call__(self, sample):
|
281 |
-
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
282 |
-
x = sample['jpg']
|
283 |
-
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
284 |
-
if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
|
285 |
-
mask = np.ones_like(mask)
|
286 |
-
mask[mask < 0.5] = 0
|
287 |
-
mask[mask > 0.5] = 1
|
288 |
-
mask = torch.from_numpy(mask[..., None])
|
289 |
-
sample['mask'] = mask
|
290 |
-
sample['masked_image'] = x * (mask < 0.5)
|
291 |
-
return sample
|
292 |
-
|
293 |
-
|
294 |
-
class AddEdge(PRNGMixin):
|
295 |
-
def __init__(self, mode="512train", mask_edges=True):
|
296 |
-
super().__init__()
|
297 |
-
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
|
298 |
-
self.make_mask = MASK_MODES[mode]
|
299 |
-
self.n_down_choices = [0]
|
300 |
-
self.sigma_choices = [1, 2]
|
301 |
-
self.mask_edges = mask_edges
|
302 |
-
|
303 |
-
@torch.no_grad()
|
304 |
-
def __call__(self, sample):
|
305 |
-
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
306 |
-
x = sample['jpg']
|
307 |
-
|
308 |
-
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
309 |
-
mask[mask < 0.5] = 0
|
310 |
-
mask[mask > 0.5] = 1
|
311 |
-
mask = torch.from_numpy(mask[..., None])
|
312 |
-
sample['mask'] = mask
|
313 |
-
|
314 |
-
n_down_idx = self.prng.choice(len(self.n_down_choices))
|
315 |
-
sigma_idx = self.prng.choice(len(self.sigma_choices))
|
316 |
-
|
317 |
-
n_choices = len(self.n_down_choices)*len(self.sigma_choices)
|
318 |
-
raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
|
319 |
-
(len(self.n_down_choices), len(self.sigma_choices)))
|
320 |
-
normalized_idx = raveled_idx/max(1, n_choices-1)
|
321 |
-
|
322 |
-
n_down = self.n_down_choices[n_down_idx]
|
323 |
-
sigma = self.sigma_choices[sigma_idx]
|
324 |
-
|
325 |
-
kernel_size = 4*sigma+1
|
326 |
-
kernel_size = (kernel_size, kernel_size)
|
327 |
-
sigma = (sigma, sigma)
|
328 |
-
canny = kornia.filters.Canny(
|
329 |
-
low_threshold=0.1,
|
330 |
-
high_threshold=0.2,
|
331 |
-
kernel_size=kernel_size,
|
332 |
-
sigma=sigma,
|
333 |
-
hysteresis=True,
|
334 |
-
)
|
335 |
-
y = (x+1.0)/2.0 # in 01
|
336 |
-
y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
|
337 |
-
|
338 |
-
# down
|
339 |
-
for i_down in range(n_down):
|
340 |
-
size = min(y.shape[-2], y.shape[-1])//2
|
341 |
-
y = kornia.geometry.transform.resize(y, size, antialias=True)
|
342 |
-
|
343 |
-
# edge
|
344 |
-
_, y = canny(y)
|
345 |
-
|
346 |
-
if n_down > 0:
|
347 |
-
size = x.shape[0], x.shape[1]
|
348 |
-
y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
|
349 |
-
|
350 |
-
y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
|
351 |
-
y = y*2.0-1.0
|
352 |
-
|
353 |
-
if self.mask_edges:
|
354 |
-
sample['masked_image'] = y * (mask < 0.5)
|
355 |
-
else:
|
356 |
-
sample['masked_image'] = y
|
357 |
-
sample['mask'] = torch.zeros_like(sample['mask'])
|
358 |
-
|
359 |
-
# concat normalized idx
|
360 |
-
sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
|
361 |
-
|
362 |
-
return sample
|
363 |
-
|
364 |
-
|
365 |
-
def example00():
|
366 |
-
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
367 |
-
dataset = wds.WebDataset(url)
|
368 |
-
example = next(iter(dataset))
|
369 |
-
for k in example:
|
370 |
-
print(k, type(example[k]))
|
371 |
-
|
372 |
-
print(example["__key__"])
|
373 |
-
for k in ["json", "txt"]:
|
374 |
-
print(example[k].decode())
|
375 |
-
|
376 |
-
image = Image.open(io.BytesIO(example["jpg"]))
|
377 |
-
outdir = "tmp"
|
378 |
-
os.makedirs(outdir, exist_ok=True)
|
379 |
-
image.save(os.path.join(outdir, example["__key__"] + ".png"))
|
380 |
-
|
381 |
-
|
382 |
-
def load_example(example):
|
383 |
-
return {
|
384 |
-
"key": example["__key__"],
|
385 |
-
"image": Image.open(io.BytesIO(example["jpg"])),
|
386 |
-
"text": example["txt"].decode(),
|
387 |
-
}
|
388 |
-
|
389 |
-
|
390 |
-
for i, example in tqdm(enumerate(dataset)):
|
391 |
-
ex = load_example(example)
|
392 |
-
print(ex["image"].size, ex["text"])
|
393 |
-
if i >= 100:
|
394 |
-
break
|
395 |
-
|
396 |
-
|
397 |
-
def example01():
|
398 |
-
# the first laion shards contain ~10k examples each
|
399 |
-
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
|
400 |
-
|
401 |
-
batch_size = 3
|
402 |
-
shuffle_buffer = 10000
|
403 |
-
dset = wds.WebDataset(
|
404 |
-
url,
|
405 |
-
nodesplitter=wds.shardlists.split_by_node,
|
406 |
-
shardshuffle=True,
|
407 |
-
)
|
408 |
-
dset = (dset
|
409 |
-
.shuffle(shuffle_buffer, initial=shuffle_buffer)
|
410 |
-
.decode('pil', handler=warn_and_continue)
|
411 |
-
.batched(batch_size, partial=False,
|
412 |
-
collation_fn=dict_collation_fn)
|
413 |
-
)
|
414 |
-
|
415 |
-
num_workers = 2
|
416 |
-
loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
|
417 |
-
|
418 |
-
batch_sizes = list()
|
419 |
-
keys_per_epoch = list()
|
420 |
-
for epoch in range(5):
|
421 |
-
keys = list()
|
422 |
-
for batch in tqdm(loader):
|
423 |
-
batch_sizes.append(len(batch["__key__"]))
|
424 |
-
keys.append(batch["__key__"])
|
425 |
-
|
426 |
-
for bs in batch_sizes:
|
427 |
-
assert bs==batch_size
|
428 |
-
print(f"{len(batch_sizes)} batches of size {batch_size}.")
|
429 |
-
batch_sizes = list()
|
430 |
-
|
431 |
-
keys_per_epoch.append(keys)
|
432 |
-
for i_batch in [0, 1, -1]:
|
433 |
-
print(f"Batch {i_batch} of epoch {epoch}:")
|
434 |
-
print(keys[i_batch])
|
435 |
-
print("next epoch.")
|
436 |
-
|
437 |
-
|
438 |
-
def example02():
|
439 |
-
from omegaconf import OmegaConf
|
440 |
-
from torch.utils.data.distributed import DistributedSampler
|
441 |
-
from torch.utils.data import IterableDataset
|
442 |
-
from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
|
443 |
-
from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
|
444 |
-
|
445 |
-
#config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
|
446 |
-
#config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
|
447 |
-
config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
|
448 |
-
datamod = WebDataModuleFromConfig(**config["data"]["params"])
|
449 |
-
dataloader = datamod.train_dataloader()
|
450 |
-
|
451 |
-
for batch in dataloader:
|
452 |
-
print(batch.keys())
|
453 |
-
print(batch["jpg"].shape)
|
454 |
-
break
|
455 |
-
|
456 |
-
|
457 |
-
def example03():
|
458 |
-
# improved aesthetics
|
459 |
-
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
|
460 |
-
dataset = wds.WebDataset(tars)
|
461 |
-
|
462 |
-
def filter_keys(x):
|
463 |
-
try:
|
464 |
-
return ("jpg" in x) and ("txt" in x)
|
465 |
-
except Exception:
|
466 |
-
return False
|
467 |
-
|
468 |
-
def filter_size(x):
|
469 |
-
try:
|
470 |
-
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
|
471 |
-
except Exception:
|
472 |
-
return False
|
473 |
-
|
474 |
-
def filter_watermark(x):
|
475 |
-
try:
|
476 |
-
return x['json']['pwatermark'] < 0.5
|
477 |
-
except Exception:
|
478 |
-
return False
|
479 |
-
|
480 |
-
dataset = (dataset
|
481 |
-
.select(filter_keys)
|
482 |
-
.decode('pil', handler=wds.warn_and_continue))
|
483 |
-
n_save = 20
|
484 |
-
n_total = 0
|
485 |
-
n_large = 0
|
486 |
-
n_large_nowm = 0
|
487 |
-
for i, example in enumerate(dataset):
|
488 |
-
n_total += 1
|
489 |
-
if filter_size(example):
|
490 |
-
n_large += 1
|
491 |
-
if filter_watermark(example):
|
492 |
-
n_large_nowm += 1
|
493 |
-
if n_large_nowm < n_save+1:
|
494 |
-
image = example["jpg"]
|
495 |
-
image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
|
496 |
-
|
497 |
-
if i%500 == 0:
|
498 |
-
print(i)
|
499 |
-
print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
|
500 |
-
if n_large > 0:
|
501 |
-
print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
def example04():
|
506 |
-
# improved aesthetics
|
507 |
-
for i_shard in range(60208)[::-1]:
|
508 |
-
print(i_shard)
|
509 |
-
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
|
510 |
-
dataset = wds.WebDataset(tars)
|
511 |
-
|
512 |
-
def filter_keys(x):
|
513 |
-
try:
|
514 |
-
return ("jpg" in x) and ("txt" in x)
|
515 |
-
except Exception:
|
516 |
-
return False
|
517 |
-
|
518 |
-
def filter_size(x):
|
519 |
-
try:
|
520 |
-
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
|
521 |
-
except Exception:
|
522 |
-
return False
|
523 |
-
|
524 |
-
dataset = (dataset
|
525 |
-
.select(filter_keys)
|
526 |
-
.decode('pil', handler=wds.warn_and_continue))
|
527 |
-
try:
|
528 |
-
example = next(iter(dataset))
|
529 |
-
except Exception:
|
530 |
-
print(f"Error @ {i_shard}")
|
531 |
-
|
532 |
-
|
533 |
-
if __name__ == "__main__":
|
534 |
-
#example01()
|
535 |
-
#example02()
|
536 |
-
example03()
|
537 |
-
#example04()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/data/lsun.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import PIL
|
4 |
-
from PIL import Image
|
5 |
-
from torch.utils.data import Dataset
|
6 |
-
from torchvision import transforms
|
7 |
-
|
8 |
-
|
9 |
-
class LSUNBase(Dataset):
|
10 |
-
def __init__(self,
|
11 |
-
txt_file,
|
12 |
-
data_root,
|
13 |
-
size=None,
|
14 |
-
interpolation="bicubic",
|
15 |
-
flip_p=0.5
|
16 |
-
):
|
17 |
-
self.data_paths = txt_file
|
18 |
-
self.data_root = data_root
|
19 |
-
with open(self.data_paths, "r") as f:
|
20 |
-
self.image_paths = f.read().splitlines()
|
21 |
-
self._length = len(self.image_paths)
|
22 |
-
self.labels = {
|
23 |
-
"relative_file_path_": [l for l in self.image_paths],
|
24 |
-
"file_path_": [os.path.join(self.data_root, l)
|
25 |
-
for l in self.image_paths],
|
26 |
-
}
|
27 |
-
|
28 |
-
self.size = size
|
29 |
-
self.interpolation = {"linear": PIL.Image.LINEAR,
|
30 |
-
"bilinear": PIL.Image.BILINEAR,
|
31 |
-
"bicubic": PIL.Image.BICUBIC,
|
32 |
-
"lanczos": PIL.Image.LANCZOS,
|
33 |
-
}[interpolation]
|
34 |
-
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
35 |
-
|
36 |
-
def __len__(self):
|
37 |
-
return self._length
|
38 |
-
|
39 |
-
def __getitem__(self, i):
|
40 |
-
example = dict((k, self.labels[k][i]) for k in self.labels)
|
41 |
-
image = Image.open(example["file_path_"])
|
42 |
-
if not image.mode == "RGB":
|
43 |
-
image = image.convert("RGB")
|
44 |
-
|
45 |
-
# default to score-sde preprocessing
|
46 |
-
img = np.array(image).astype(np.uint8)
|
47 |
-
crop = min(img.shape[0], img.shape[1])
|
48 |
-
h, w, = img.shape[0], img.shape[1]
|
49 |
-
img = img[(h - crop) // 2:(h + crop) // 2,
|
50 |
-
(w - crop) // 2:(w + crop) // 2]
|
51 |
-
|
52 |
-
image = Image.fromarray(img)
|
53 |
-
if self.size is not None:
|
54 |
-
image = image.resize((self.size, self.size), resample=self.interpolation)
|
55 |
-
|
56 |
-
image = self.flip(image)
|
57 |
-
image = np.array(image).astype(np.uint8)
|
58 |
-
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
59 |
-
return example
|
60 |
-
|
61 |
-
|
62 |
-
class LSUNChurchesTrain(LSUNBase):
|
63 |
-
def __init__(self, **kwargs):
|
64 |
-
super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
|
65 |
-
|
66 |
-
|
67 |
-
class LSUNChurchesValidation(LSUNBase):
|
68 |
-
def __init__(self, flip_p=0., **kwargs):
|
69 |
-
super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
|
70 |
-
flip_p=flip_p, **kwargs)
|
71 |
-
|
72 |
-
|
73 |
-
class LSUNBedroomsTrain(LSUNBase):
|
74 |
-
def __init__(self, **kwargs):
|
75 |
-
super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
|
76 |
-
|
77 |
-
|
78 |
-
class LSUNBedroomsValidation(LSUNBase):
|
79 |
-
def __init__(self, flip_p=0.0, **kwargs):
|
80 |
-
super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
|
81 |
-
flip_p=flip_p, **kwargs)
|
82 |
-
|
83 |
-
|
84 |
-
class LSUNCatsTrain(LSUNBase):
|
85 |
-
def __init__(self, **kwargs):
|
86 |
-
super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
|
87 |
-
|
88 |
-
|
89 |
-
class LSUNCatsValidation(LSUNBase):
|
90 |
-
def __init__(self, flip_p=0., **kwargs):
|
91 |
-
super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
|
92 |
-
flip_p=flip_p, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/data/simple.py
DELETED
@@ -1,180 +0,0 @@
|
|
1 |
-
from typing import Dict
|
2 |
-
import numpy as np
|
3 |
-
from omegaconf import DictConfig, ListConfig
|
4 |
-
import torch
|
5 |
-
from torch.utils.data import Dataset
|
6 |
-
from pathlib import Path
|
7 |
-
import json
|
8 |
-
from PIL import Image
|
9 |
-
from torchvision import transforms
|
10 |
-
from einops import rearrange
|
11 |
-
from ldm.util import instantiate_from_config
|
12 |
-
from datasets import load_dataset
|
13 |
-
|
14 |
-
def make_multi_folder_data(paths, caption_files=None, **kwargs):
|
15 |
-
"""Make a concat dataset from multiple folders
|
16 |
-
Don't suport captions yet
|
17 |
-
|
18 |
-
If paths is a list, that's ok, if it's a Dict interpret it as:
|
19 |
-
k=folder v=n_times to repeat that
|
20 |
-
"""
|
21 |
-
list_of_paths = []
|
22 |
-
if isinstance(paths, (Dict, DictConfig)):
|
23 |
-
assert caption_files is None, \
|
24 |
-
"Caption files not yet supported for repeats"
|
25 |
-
for folder_path, repeats in paths.items():
|
26 |
-
list_of_paths.extend([folder_path]*repeats)
|
27 |
-
paths = list_of_paths
|
28 |
-
|
29 |
-
if caption_files is not None:
|
30 |
-
datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
|
31 |
-
else:
|
32 |
-
datasets = [FolderData(p, **kwargs) for p in paths]
|
33 |
-
return torch.utils.data.ConcatDataset(datasets)
|
34 |
-
|
35 |
-
class FolderData(Dataset):
|
36 |
-
def __init__(self,
|
37 |
-
root_dir,
|
38 |
-
caption_file=None,
|
39 |
-
image_transforms=[],
|
40 |
-
ext="jpg",
|
41 |
-
default_caption="",
|
42 |
-
postprocess=None,
|
43 |
-
return_paths=False,
|
44 |
-
) -> None:
|
45 |
-
"""Create a dataset from a folder of images.
|
46 |
-
If you pass in a root directory it will be searched for images
|
47 |
-
ending in ext (ext can be a list)
|
48 |
-
"""
|
49 |
-
self.root_dir = Path(root_dir)
|
50 |
-
self.default_caption = default_caption
|
51 |
-
self.return_paths = return_paths
|
52 |
-
if isinstance(postprocess, DictConfig):
|
53 |
-
postprocess = instantiate_from_config(postprocess)
|
54 |
-
self.postprocess = postprocess
|
55 |
-
if caption_file is not None:
|
56 |
-
with open(caption_file, "rt") as f:
|
57 |
-
ext = Path(caption_file).suffix.lower()
|
58 |
-
if ext == ".json":
|
59 |
-
captions = json.load(f)
|
60 |
-
elif ext == ".jsonl":
|
61 |
-
lines = f.readlines()
|
62 |
-
lines = [json.loads(x) for x in lines]
|
63 |
-
captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
|
64 |
-
else:
|
65 |
-
raise ValueError(f"Unrecognised format: {ext}")
|
66 |
-
self.captions = captions
|
67 |
-
else:
|
68 |
-
self.captions = None
|
69 |
-
|
70 |
-
if not isinstance(ext, (tuple, list, ListConfig)):
|
71 |
-
ext = [ext]
|
72 |
-
|
73 |
-
# Only used if there is no caption file
|
74 |
-
self.paths = []
|
75 |
-
for e in ext:
|
76 |
-
self.paths.extend(list(self.root_dir.rglob(f"*.{e}")))
|
77 |
-
if isinstance(image_transforms, ListConfig):
|
78 |
-
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
79 |
-
image_transforms.extend([transforms.ToTensor(),
|
80 |
-
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
81 |
-
image_transforms = transforms.Compose(image_transforms)
|
82 |
-
self.tform = image_transforms
|
83 |
-
|
84 |
-
|
85 |
-
def __len__(self):
|
86 |
-
if self.captions is not None:
|
87 |
-
return len(self.captions.keys())
|
88 |
-
else:
|
89 |
-
return len(self.paths)
|
90 |
-
|
91 |
-
def __getitem__(self, index):
|
92 |
-
data = {}
|
93 |
-
if self.captions is not None:
|
94 |
-
chosen = list(self.captions.keys())[index]
|
95 |
-
caption = self.captions.get(chosen, None)
|
96 |
-
if caption is None:
|
97 |
-
caption = self.default_caption
|
98 |
-
filename = self.root_dir/chosen
|
99 |
-
else:
|
100 |
-
filename = self.paths[index]
|
101 |
-
|
102 |
-
if self.return_paths:
|
103 |
-
data["path"] = str(filename)
|
104 |
-
|
105 |
-
im = Image.open(filename)
|
106 |
-
im = self.process_im(im)
|
107 |
-
data["image"] = im
|
108 |
-
|
109 |
-
if self.captions is not None:
|
110 |
-
data["txt"] = caption
|
111 |
-
else:
|
112 |
-
data["txt"] = self.default_caption
|
113 |
-
|
114 |
-
if self.postprocess is not None:
|
115 |
-
data = self.postprocess(data)
|
116 |
-
|
117 |
-
return data
|
118 |
-
|
119 |
-
def process_im(self, im):
|
120 |
-
im = im.convert("RGB")
|
121 |
-
return self.tform(im)
|
122 |
-
|
123 |
-
def hf_dataset(
|
124 |
-
name,
|
125 |
-
image_transforms=[],
|
126 |
-
image_column="image",
|
127 |
-
text_column="text",
|
128 |
-
split='train',
|
129 |
-
image_key='image',
|
130 |
-
caption_key='txt',
|
131 |
-
):
|
132 |
-
"""Make huggingface dataset with appropriate list of transforms applied
|
133 |
-
"""
|
134 |
-
ds = load_dataset(name, split=split)
|
135 |
-
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
|
136 |
-
image_transforms.extend([transforms.ToTensor(),
|
137 |
-
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
138 |
-
tform = transforms.Compose(image_transforms)
|
139 |
-
|
140 |
-
assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
|
141 |
-
assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
|
142 |
-
|
143 |
-
def pre_process(examples):
|
144 |
-
processed = {}
|
145 |
-
processed[image_key] = [tform(im) for im in examples[image_column]]
|
146 |
-
processed[caption_key] = examples[text_column]
|
147 |
-
return processed
|
148 |
-
|
149 |
-
ds.set_transform(pre_process)
|
150 |
-
return ds
|
151 |
-
|
152 |
-
class TextOnly(Dataset):
|
153 |
-
def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
|
154 |
-
"""Returns only captions with dummy images"""
|
155 |
-
self.output_size = output_size
|
156 |
-
self.image_key = image_key
|
157 |
-
self.caption_key = caption_key
|
158 |
-
if isinstance(captions, Path):
|
159 |
-
self.captions = self._load_caption_file(captions)
|
160 |
-
else:
|
161 |
-
self.captions = captions
|
162 |
-
|
163 |
-
if n_gpus > 1:
|
164 |
-
# hack to make sure that all the captions appear on each gpu
|
165 |
-
repeated = [n_gpus*[x] for x in self.captions]
|
166 |
-
self.captions = []
|
167 |
-
[self.captions.extend(x) for x in repeated]
|
168 |
-
|
169 |
-
def __len__(self):
|
170 |
-
return len(self.captions)
|
171 |
-
|
172 |
-
def __getitem__(self, index):
|
173 |
-
dummy_im = torch.zeros(3, self.output_size, self.output_size)
|
174 |
-
dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
|
175 |
-
return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
|
176 |
-
|
177 |
-
def _load_caption_file(self, filename):
|
178 |
-
with open(filename, 'rt') as f:
|
179 |
-
captions = f.readlines()
|
180 |
-
return [x.strip('\n') for x in captions]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/extras.py
DELETED
@@ -1,77 +0,0 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
from omegaconf import OmegaConf
|
3 |
-
import torch
|
4 |
-
from ldm.util import instantiate_from_config
|
5 |
-
import logging
|
6 |
-
from contextlib import contextmanager
|
7 |
-
|
8 |
-
from contextlib import contextmanager
|
9 |
-
import logging
|
10 |
-
|
11 |
-
@contextmanager
|
12 |
-
def all_logging_disabled(highest_level=logging.CRITICAL):
|
13 |
-
"""
|
14 |
-
A context manager that will prevent any logging messages
|
15 |
-
triggered during the body from being processed.
|
16 |
-
|
17 |
-
:param highest_level: the maximum logging level in use.
|
18 |
-
This would only need to be changed if a custom level greater than CRITICAL
|
19 |
-
is defined.
|
20 |
-
|
21 |
-
https://gist.github.com/simon-weber/7853144
|
22 |
-
"""
|
23 |
-
# two kind-of hacks here:
|
24 |
-
# * can't get the highest logging level in effect => delegate to the user
|
25 |
-
# * can't get the current module-level override => use an undocumented
|
26 |
-
# (but non-private!) interface
|
27 |
-
|
28 |
-
previous_level = logging.root.manager.disable
|
29 |
-
|
30 |
-
logging.disable(highest_level)
|
31 |
-
|
32 |
-
try:
|
33 |
-
yield
|
34 |
-
finally:
|
35 |
-
logging.disable(previous_level)
|
36 |
-
|
37 |
-
def load_training_dir(train_dir, device, epoch="last"):
|
38 |
-
"""Load a checkpoint and config from training directory"""
|
39 |
-
train_dir = Path(train_dir)
|
40 |
-
ckpt = list(train_dir.rglob(f"*{epoch}.ckpt"))
|
41 |
-
assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files"
|
42 |
-
config = list(train_dir.rglob(f"*-project.yaml"))
|
43 |
-
assert len(ckpt) > 0, f"didn't find any config in {train_dir}"
|
44 |
-
if len(config) > 1:
|
45 |
-
print(f"found {len(config)} matching config files")
|
46 |
-
config = sorted(config)[-1]
|
47 |
-
print(f"selecting {config}")
|
48 |
-
else:
|
49 |
-
config = config[0]
|
50 |
-
|
51 |
-
|
52 |
-
config = OmegaConf.load(config)
|
53 |
-
return load_model_from_config(config, ckpt[0], device)
|
54 |
-
|
55 |
-
def load_model_from_config(config, ckpt, device="cpu", verbose=False):
|
56 |
-
"""Loads a model from config and a ckpt
|
57 |
-
if config is a path will use omegaconf to load
|
58 |
-
"""
|
59 |
-
if isinstance(config, (str, Path)):
|
60 |
-
config = OmegaConf.load(config)
|
61 |
-
|
62 |
-
with all_logging_disabled():
|
63 |
-
print(f"Loading model from {ckpt}")
|
64 |
-
pl_sd = torch.load(ckpt, map_location="cpu")
|
65 |
-
global_step = pl_sd["global_step"]
|
66 |
-
sd = pl_sd["state_dict"]
|
67 |
-
model = instantiate_from_config(config.model)
|
68 |
-
m, u = model.load_state_dict(sd, strict=False)
|
69 |
-
if len(m) > 0 and verbose:
|
70 |
-
print("missing keys:")
|
71 |
-
print(m)
|
72 |
-
if len(u) > 0 and verbose:
|
73 |
-
print("unexpected keys:")
|
74 |
-
model.to(device)
|
75 |
-
model.eval()
|
76 |
-
model.cond_stage_model.device = device
|
77 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/guidance.py
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
from typing import List, Tuple
|
2 |
-
from scipy import interpolate
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
from IPython.display import clear_output
|
7 |
-
import abc
|
8 |
-
|
9 |
-
|
10 |
-
class GuideModel(torch.nn.Module, abc.ABC):
|
11 |
-
def __init__(self) -> None:
|
12 |
-
super().__init__()
|
13 |
-
|
14 |
-
@abc.abstractmethod
|
15 |
-
def preprocess(self, x_img):
|
16 |
-
pass
|
17 |
-
|
18 |
-
@abc.abstractmethod
|
19 |
-
def compute_loss(self, inp):
|
20 |
-
pass
|
21 |
-
|
22 |
-
|
23 |
-
class Guider(torch.nn.Module):
|
24 |
-
def __init__(self, sampler, guide_model, scale=1.0, verbose=False):
|
25 |
-
"""Apply classifier guidance
|
26 |
-
|
27 |
-
Specify a guidance scale as either a scalar
|
28 |
-
Or a schedule as a list of tuples t = 0->1 and scale, e.g.
|
29 |
-
[(0, 10), (0.5, 20), (1, 50)]
|
30 |
-
"""
|
31 |
-
super().__init__()
|
32 |
-
self.sampler = sampler
|
33 |
-
self.index = 0
|
34 |
-
self.show = verbose
|
35 |
-
self.guide_model = guide_model
|
36 |
-
self.history = []
|
37 |
-
|
38 |
-
if isinstance(scale, (Tuple, List)):
|
39 |
-
times = np.array([x[0] for x in scale])
|
40 |
-
values = np.array([x[1] for x in scale])
|
41 |
-
self.scale_schedule = {"times": times, "values": values}
|
42 |
-
else:
|
43 |
-
self.scale_schedule = float(scale)
|
44 |
-
|
45 |
-
self.ddim_timesteps = sampler.ddim_timesteps
|
46 |
-
self.ddpm_num_timesteps = sampler.ddpm_num_timesteps
|
47 |
-
|
48 |
-
|
49 |
-
def get_scales(self):
|
50 |
-
if isinstance(self.scale_schedule, float):
|
51 |
-
return len(self.ddim_timesteps)*[self.scale_schedule]
|
52 |
-
|
53 |
-
interpolater = interpolate.interp1d(self.scale_schedule["times"], self.scale_schedule["values"])
|
54 |
-
fractional_steps = np.array(self.ddim_timesteps)/self.ddpm_num_timesteps
|
55 |
-
return interpolater(fractional_steps)
|
56 |
-
|
57 |
-
def modify_score(self, model, e_t, x, t, c):
|
58 |
-
|
59 |
-
# TODO look up index by t
|
60 |
-
scale = self.get_scales()[self.index]
|
61 |
-
|
62 |
-
if (scale == 0):
|
63 |
-
return e_t
|
64 |
-
|
65 |
-
sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device)
|
66 |
-
with torch.enable_grad():
|
67 |
-
x_in = x.detach().requires_grad_(True)
|
68 |
-
pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t)
|
69 |
-
x_img = model.first_stage_model.decode((1/0.18215)*pred_x0)
|
70 |
-
|
71 |
-
inp = self.guide_model.preprocess(x_img)
|
72 |
-
loss = self.guide_model.compute_loss(inp)
|
73 |
-
grads = torch.autograd.grad(loss.sum(), x_in)[0]
|
74 |
-
correction = grads * scale
|
75 |
-
|
76 |
-
if self.show:
|
77 |
-
clear_output(wait=True)
|
78 |
-
print(loss.item(), scale, correction.abs().max().item(), e_t.abs().max().item())
|
79 |
-
self.history.append([loss.item(), scale, correction.min().item(), correction.max().item()])
|
80 |
-
plt.imshow((inp[0].detach().permute(1,2,0).clamp(-1,1).cpu()+1)/2)
|
81 |
-
plt.axis('off')
|
82 |
-
plt.show()
|
83 |
-
plt.imshow(correction[0][0].detach().cpu())
|
84 |
-
plt.axis('off')
|
85 |
-
plt.show()
|
86 |
-
|
87 |
-
|
88 |
-
e_t_mod = e_t - sqrt_1ma*correction
|
89 |
-
if self.show:
|
90 |
-
fig, axs = plt.subplots(1, 3)
|
91 |
-
axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2)
|
92 |
-
axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2)
|
93 |
-
axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2)
|
94 |
-
plt.show()
|
95 |
-
self.index += 1
|
96 |
-
return e_t_mod
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/lr_scheduler.py
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
|
3 |
-
|
4 |
-
class LambdaWarmUpCosineScheduler:
|
5 |
-
"""
|
6 |
-
note: use with a base_lr of 1.0
|
7 |
-
"""
|
8 |
-
def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
|
9 |
-
self.lr_warm_up_steps = warm_up_steps
|
10 |
-
self.lr_start = lr_start
|
11 |
-
self.lr_min = lr_min
|
12 |
-
self.lr_max = lr_max
|
13 |
-
self.lr_max_decay_steps = max_decay_steps
|
14 |
-
self.last_lr = 0.
|
15 |
-
self.verbosity_interval = verbosity_interval
|
16 |
-
|
17 |
-
def schedule(self, n, **kwargs):
|
18 |
-
if self.verbosity_interval > 0:
|
19 |
-
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
|
20 |
-
if n < self.lr_warm_up_steps:
|
21 |
-
lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
|
22 |
-
self.last_lr = lr
|
23 |
-
return lr
|
24 |
-
else:
|
25 |
-
t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
|
26 |
-
t = min(t, 1.0)
|
27 |
-
lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
|
28 |
-
1 + np.cos(t * np.pi))
|
29 |
-
self.last_lr = lr
|
30 |
-
return lr
|
31 |
-
|
32 |
-
def __call__(self, n, **kwargs):
|
33 |
-
return self.schedule(n,**kwargs)
|
34 |
-
|
35 |
-
|
36 |
-
class LambdaWarmUpCosineScheduler2:
|
37 |
-
"""
|
38 |
-
supports repeated iterations, configurable via lists
|
39 |
-
note: use with a base_lr of 1.0.
|
40 |
-
"""
|
41 |
-
def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
|
42 |
-
assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
|
43 |
-
self.lr_warm_up_steps = warm_up_steps
|
44 |
-
self.f_start = f_start
|
45 |
-
self.f_min = f_min
|
46 |
-
self.f_max = f_max
|
47 |
-
self.cycle_lengths = cycle_lengths
|
48 |
-
self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
|
49 |
-
self.last_f = 0.
|
50 |
-
self.verbosity_interval = verbosity_interval
|
51 |
-
|
52 |
-
def find_in_interval(self, n):
|
53 |
-
interval = 0
|
54 |
-
for cl in self.cum_cycles[1:]:
|
55 |
-
if n <= cl:
|
56 |
-
return interval
|
57 |
-
interval += 1
|
58 |
-
|
59 |
-
def schedule(self, n, **kwargs):
|
60 |
-
cycle = self.find_in_interval(n)
|
61 |
-
n = n - self.cum_cycles[cycle]
|
62 |
-
if self.verbosity_interval > 0:
|
63 |
-
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
64 |
-
f"current cycle {cycle}")
|
65 |
-
if n < self.lr_warm_up_steps[cycle]:
|
66 |
-
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
67 |
-
self.last_f = f
|
68 |
-
return f
|
69 |
-
else:
|
70 |
-
t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
|
71 |
-
t = min(t, 1.0)
|
72 |
-
f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
|
73 |
-
1 + np.cos(t * np.pi))
|
74 |
-
self.last_f = f
|
75 |
-
return f
|
76 |
-
|
77 |
-
def __call__(self, n, **kwargs):
|
78 |
-
return self.schedule(n, **kwargs)
|
79 |
-
|
80 |
-
|
81 |
-
class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
|
82 |
-
|
83 |
-
def schedule(self, n, **kwargs):
|
84 |
-
cycle = self.find_in_interval(n)
|
85 |
-
n = n - self.cum_cycles[cycle]
|
86 |
-
if self.verbosity_interval > 0:
|
87 |
-
if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
|
88 |
-
f"current cycle {cycle}")
|
89 |
-
|
90 |
-
if n < self.lr_warm_up_steps[cycle]:
|
91 |
-
f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
|
92 |
-
self.last_f = f
|
93 |
-
return f
|
94 |
-
else:
|
95 |
-
f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
|
96 |
-
self.last_f = f
|
97 |
-
return f
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/models/autoencoder.py
DELETED
@@ -1,443 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import pytorch_lightning as pl
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from contextlib import contextmanager
|
5 |
-
|
6 |
-
from taming.modules.vqvae.quantize import VectorQuantizer
|
7 |
-
|
8 |
-
from ldm.modules.diffusionmodules.model import Encoder, Decoder
|
9 |
-
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
10 |
-
|
11 |
-
from ldm.util import instantiate_from_config
|
12 |
-
|
13 |
-
|
14 |
-
class VQModel(pl.LightningModule):
|
15 |
-
def __init__(self,
|
16 |
-
ddconfig,
|
17 |
-
lossconfig,
|
18 |
-
n_embed,
|
19 |
-
embed_dim,
|
20 |
-
ckpt_path=None,
|
21 |
-
ignore_keys=[],
|
22 |
-
image_key="image",
|
23 |
-
colorize_nlabels=None,
|
24 |
-
monitor=None,
|
25 |
-
batch_resize_range=None,
|
26 |
-
scheduler_config=None,
|
27 |
-
lr_g_factor=1.0,
|
28 |
-
remap=None,
|
29 |
-
sane_index_shape=False, # tell vector quantizer to return indices as bhw
|
30 |
-
use_ema=False
|
31 |
-
):
|
32 |
-
super().__init__()
|
33 |
-
self.embed_dim = embed_dim
|
34 |
-
self.n_embed = n_embed
|
35 |
-
self.image_key = image_key
|
36 |
-
self.encoder = Encoder(**ddconfig)
|
37 |
-
self.decoder = Decoder(**ddconfig)
|
38 |
-
self.loss = instantiate_from_config(lossconfig)
|
39 |
-
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
|
40 |
-
remap=remap,
|
41 |
-
sane_index_shape=sane_index_shape)
|
42 |
-
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
|
43 |
-
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
44 |
-
if colorize_nlabels is not None:
|
45 |
-
assert type(colorize_nlabels)==int
|
46 |
-
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
47 |
-
if monitor is not None:
|
48 |
-
self.monitor = monitor
|
49 |
-
self.batch_resize_range = batch_resize_range
|
50 |
-
if self.batch_resize_range is not None:
|
51 |
-
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
|
52 |
-
|
53 |
-
self.use_ema = use_ema
|
54 |
-
if self.use_ema:
|
55 |
-
self.model_ema = LitEma(self)
|
56 |
-
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
57 |
-
|
58 |
-
if ckpt_path is not None:
|
59 |
-
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
60 |
-
self.scheduler_config = scheduler_config
|
61 |
-
self.lr_g_factor = lr_g_factor
|
62 |
-
|
63 |
-
@contextmanager
|
64 |
-
def ema_scope(self, context=None):
|
65 |
-
if self.use_ema:
|
66 |
-
self.model_ema.store(self.parameters())
|
67 |
-
self.model_ema.copy_to(self)
|
68 |
-
if context is not None:
|
69 |
-
print(f"{context}: Switched to EMA weights")
|
70 |
-
try:
|
71 |
-
yield None
|
72 |
-
finally:
|
73 |
-
if self.use_ema:
|
74 |
-
self.model_ema.restore(self.parameters())
|
75 |
-
if context is not None:
|
76 |
-
print(f"{context}: Restored training weights")
|
77 |
-
|
78 |
-
def init_from_ckpt(self, path, ignore_keys=list()):
|
79 |
-
sd = torch.load(path, map_location="cpu")["state_dict"]
|
80 |
-
keys = list(sd.keys())
|
81 |
-
for k in keys:
|
82 |
-
for ik in ignore_keys:
|
83 |
-
if k.startswith(ik):
|
84 |
-
print("Deleting key {} from state_dict.".format(k))
|
85 |
-
del sd[k]
|
86 |
-
missing, unexpected = self.load_state_dict(sd, strict=False)
|
87 |
-
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
88 |
-
if len(missing) > 0:
|
89 |
-
print(f"Missing Keys: {missing}")
|
90 |
-
print(f"Unexpected Keys: {unexpected}")
|
91 |
-
|
92 |
-
def on_train_batch_end(self, *args, **kwargs):
|
93 |
-
if self.use_ema:
|
94 |
-
self.model_ema(self)
|
95 |
-
|
96 |
-
def encode(self, x):
|
97 |
-
h = self.encoder(x)
|
98 |
-
h = self.quant_conv(h)
|
99 |
-
quant, emb_loss, info = self.quantize(h)
|
100 |
-
return quant, emb_loss, info
|
101 |
-
|
102 |
-
def encode_to_prequant(self, x):
|
103 |
-
h = self.encoder(x)
|
104 |
-
h = self.quant_conv(h)
|
105 |
-
return h
|
106 |
-
|
107 |
-
def decode(self, quant):
|
108 |
-
quant = self.post_quant_conv(quant)
|
109 |
-
dec = self.decoder(quant)
|
110 |
-
return dec
|
111 |
-
|
112 |
-
def decode_code(self, code_b):
|
113 |
-
quant_b = self.quantize.embed_code(code_b)
|
114 |
-
dec = self.decode(quant_b)
|
115 |
-
return dec
|
116 |
-
|
117 |
-
def forward(self, input, return_pred_indices=False):
|
118 |
-
quant, diff, (_,_,ind) = self.encode(input)
|
119 |
-
dec = self.decode(quant)
|
120 |
-
if return_pred_indices:
|
121 |
-
return dec, diff, ind
|
122 |
-
return dec, diff
|
123 |
-
|
124 |
-
def get_input(self, batch, k):
|
125 |
-
x = batch[k]
|
126 |
-
if len(x.shape) == 3:
|
127 |
-
x = x[..., None]
|
128 |
-
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
129 |
-
if self.batch_resize_range is not None:
|
130 |
-
lower_size = self.batch_resize_range[0]
|
131 |
-
upper_size = self.batch_resize_range[1]
|
132 |
-
if self.global_step <= 4:
|
133 |
-
# do the first few batches with max size to avoid later oom
|
134 |
-
new_resize = upper_size
|
135 |
-
else:
|
136 |
-
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
|
137 |
-
if new_resize != x.shape[2]:
|
138 |
-
x = F.interpolate(x, size=new_resize, mode="bicubic")
|
139 |
-
x = x.detach()
|
140 |
-
return x
|
141 |
-
|
142 |
-
def training_step(self, batch, batch_idx, optimizer_idx):
|
143 |
-
# https://github.com/pytorch/pytorch/issues/37142
|
144 |
-
# try not to fool the heuristics
|
145 |
-
x = self.get_input(batch, self.image_key)
|
146 |
-
xrec, qloss, ind = self(x, return_pred_indices=True)
|
147 |
-
|
148 |
-
if optimizer_idx == 0:
|
149 |
-
# autoencode
|
150 |
-
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
151 |
-
last_layer=self.get_last_layer(), split="train",
|
152 |
-
predicted_indices=ind)
|
153 |
-
|
154 |
-
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
155 |
-
return aeloss
|
156 |
-
|
157 |
-
if optimizer_idx == 1:
|
158 |
-
# discriminator
|
159 |
-
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
|
160 |
-
last_layer=self.get_last_layer(), split="train")
|
161 |
-
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
|
162 |
-
return discloss
|
163 |
-
|
164 |
-
def validation_step(self, batch, batch_idx):
|
165 |
-
log_dict = self._validation_step(batch, batch_idx)
|
166 |
-
with self.ema_scope():
|
167 |
-
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
|
168 |
-
return log_dict
|
169 |
-
|
170 |
-
def _validation_step(self, batch, batch_idx, suffix=""):
|
171 |
-
x = self.get_input(batch, self.image_key)
|
172 |
-
xrec, qloss, ind = self(x, return_pred_indices=True)
|
173 |
-
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
|
174 |
-
self.global_step,
|
175 |
-
last_layer=self.get_last_layer(),
|
176 |
-
split="val"+suffix,
|
177 |
-
predicted_indices=ind
|
178 |
-
)
|
179 |
-
|
180 |
-
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
|
181 |
-
self.global_step,
|
182 |
-
last_layer=self.get_last_layer(),
|
183 |
-
split="val"+suffix,
|
184 |
-
predicted_indices=ind
|
185 |
-
)
|
186 |
-
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
|
187 |
-
self.log(f"val{suffix}/rec_loss", rec_loss,
|
188 |
-
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
189 |
-
self.log(f"val{suffix}/aeloss", aeloss,
|
190 |
-
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
|
191 |
-
if version.parse(pl.__version__) >= version.parse('1.4.0'):
|
192 |
-
del log_dict_ae[f"val{suffix}/rec_loss"]
|
193 |
-
self.log_dict(log_dict_ae)
|
194 |
-
self.log_dict(log_dict_disc)
|
195 |
-
return self.log_dict
|
196 |
-
|
197 |
-
def configure_optimizers(self):
|
198 |
-
lr_d = self.learning_rate
|
199 |
-
lr_g = self.lr_g_factor*self.learning_rate
|
200 |
-
print("lr_d", lr_d)
|
201 |
-
print("lr_g", lr_g)
|
202 |
-
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
203 |
-
list(self.decoder.parameters())+
|
204 |
-
list(self.quantize.parameters())+
|
205 |
-
list(self.quant_conv.parameters())+
|
206 |
-
list(self.post_quant_conv.parameters()),
|
207 |
-
lr=lr_g, betas=(0.5, 0.9))
|
208 |
-
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
209 |
-
lr=lr_d, betas=(0.5, 0.9))
|
210 |
-
|
211 |
-
if self.scheduler_config is not None:
|
212 |
-
scheduler = instantiate_from_config(self.scheduler_config)
|
213 |
-
|
214 |
-
print("Setting up LambdaLR scheduler...")
|
215 |
-
scheduler = [
|
216 |
-
{
|
217 |
-
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
|
218 |
-
'interval': 'step',
|
219 |
-
'frequency': 1
|
220 |
-
},
|
221 |
-
{
|
222 |
-
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
|
223 |
-
'interval': 'step',
|
224 |
-
'frequency': 1
|
225 |
-
},
|
226 |
-
]
|
227 |
-
return [opt_ae, opt_disc], scheduler
|
228 |
-
return [opt_ae, opt_disc], []
|
229 |
-
|
230 |
-
def get_last_layer(self):
|
231 |
-
return self.decoder.conv_out.weight
|
232 |
-
|
233 |
-
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
|
234 |
-
log = dict()
|
235 |
-
x = self.get_input(batch, self.image_key)
|
236 |
-
x = x.to(self.device)
|
237 |
-
if only_inputs:
|
238 |
-
log["inputs"] = x
|
239 |
-
return log
|
240 |
-
xrec, _ = self(x)
|
241 |
-
if x.shape[1] > 3:
|
242 |
-
# colorize with random projection
|
243 |
-
assert xrec.shape[1] > 3
|
244 |
-
x = self.to_rgb(x)
|
245 |
-
xrec = self.to_rgb(xrec)
|
246 |
-
log["inputs"] = x
|
247 |
-
log["reconstructions"] = xrec
|
248 |
-
if plot_ema:
|
249 |
-
with self.ema_scope():
|
250 |
-
xrec_ema, _ = self(x)
|
251 |
-
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
|
252 |
-
log["reconstructions_ema"] = xrec_ema
|
253 |
-
return log
|
254 |
-
|
255 |
-
def to_rgb(self, x):
|
256 |
-
assert self.image_key == "segmentation"
|
257 |
-
if not hasattr(self, "colorize"):
|
258 |
-
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
259 |
-
x = F.conv2d(x, weight=self.colorize)
|
260 |
-
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
261 |
-
return x
|
262 |
-
|
263 |
-
|
264 |
-
class VQModelInterface(VQModel):
|
265 |
-
def __init__(self, embed_dim, *args, **kwargs):
|
266 |
-
super().__init__(embed_dim=embed_dim, *args, **kwargs)
|
267 |
-
self.embed_dim = embed_dim
|
268 |
-
|
269 |
-
def encode(self, x):
|
270 |
-
h = self.encoder(x)
|
271 |
-
h = self.quant_conv(h)
|
272 |
-
return h
|
273 |
-
|
274 |
-
def decode(self, h, force_not_quantize=False):
|
275 |
-
# also go through quantization layer
|
276 |
-
if not force_not_quantize:
|
277 |
-
quant, emb_loss, info = self.quantize(h)
|
278 |
-
else:
|
279 |
-
quant = h
|
280 |
-
quant = self.post_quant_conv(quant)
|
281 |
-
dec = self.decoder(quant)
|
282 |
-
return dec
|
283 |
-
|
284 |
-
|
285 |
-
class AutoencoderKL(pl.LightningModule):
|
286 |
-
def __init__(self,
|
287 |
-
ddconfig,
|
288 |
-
lossconfig,
|
289 |
-
embed_dim,
|
290 |
-
ckpt_path=None,
|
291 |
-
ignore_keys=[],
|
292 |
-
image_key="image",
|
293 |
-
colorize_nlabels=None,
|
294 |
-
monitor=None,
|
295 |
-
):
|
296 |
-
super().__init__()
|
297 |
-
self.image_key = image_key
|
298 |
-
self.encoder = Encoder(**ddconfig)
|
299 |
-
self.decoder = Decoder(**ddconfig)
|
300 |
-
self.loss = instantiate_from_config(lossconfig)
|
301 |
-
assert ddconfig["double_z"]
|
302 |
-
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
|
303 |
-
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
304 |
-
self.embed_dim = embed_dim
|
305 |
-
if colorize_nlabels is not None:
|
306 |
-
assert type(colorize_nlabels)==int
|
307 |
-
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
|
308 |
-
if monitor is not None:
|
309 |
-
self.monitor = monitor
|
310 |
-
if ckpt_path is not None:
|
311 |
-
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
|
312 |
-
|
313 |
-
def init_from_ckpt(self, path, ignore_keys=list()):
|
314 |
-
sd = torch.load(path, map_location="cpu")["state_dict"]
|
315 |
-
keys = list(sd.keys())
|
316 |
-
for k in keys:
|
317 |
-
for ik in ignore_keys:
|
318 |
-
if k.startswith(ik):
|
319 |
-
print("Deleting key {} from state_dict.".format(k))
|
320 |
-
del sd[k]
|
321 |
-
self.load_state_dict(sd, strict=False)
|
322 |
-
print(f"Restored from {path}")
|
323 |
-
|
324 |
-
def encode(self, x):
|
325 |
-
h = self.encoder(x)
|
326 |
-
moments = self.quant_conv(h)
|
327 |
-
posterior = DiagonalGaussianDistribution(moments)
|
328 |
-
return posterior
|
329 |
-
|
330 |
-
def decode(self, z):
|
331 |
-
z = self.post_quant_conv(z)
|
332 |
-
dec = self.decoder(z)
|
333 |
-
return dec
|
334 |
-
|
335 |
-
def forward(self, input, sample_posterior=True):
|
336 |
-
posterior = self.encode(input)
|
337 |
-
if sample_posterior:
|
338 |
-
z = posterior.sample()
|
339 |
-
else:
|
340 |
-
z = posterior.mode()
|
341 |
-
dec = self.decode(z)
|
342 |
-
return dec, posterior
|
343 |
-
|
344 |
-
def get_input(self, batch, k):
|
345 |
-
x = batch[k]
|
346 |
-
if len(x.shape) == 3:
|
347 |
-
x = x[..., None]
|
348 |
-
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
|
349 |
-
return x
|
350 |
-
|
351 |
-
def training_step(self, batch, batch_idx, optimizer_idx):
|
352 |
-
inputs = self.get_input(batch, self.image_key)
|
353 |
-
reconstructions, posterior = self(inputs)
|
354 |
-
|
355 |
-
if optimizer_idx == 0:
|
356 |
-
# train encoder+decoder+logvar
|
357 |
-
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
358 |
-
last_layer=self.get_last_layer(), split="train")
|
359 |
-
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
360 |
-
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
361 |
-
return aeloss
|
362 |
-
|
363 |
-
if optimizer_idx == 1:
|
364 |
-
# train the discriminator
|
365 |
-
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
|
366 |
-
last_layer=self.get_last_layer(), split="train")
|
367 |
-
|
368 |
-
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
|
369 |
-
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
|
370 |
-
return discloss
|
371 |
-
|
372 |
-
def validation_step(self, batch, batch_idx):
|
373 |
-
inputs = self.get_input(batch, self.image_key)
|
374 |
-
reconstructions, posterior = self(inputs)
|
375 |
-
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
|
376 |
-
last_layer=self.get_last_layer(), split="val")
|
377 |
-
|
378 |
-
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
|
379 |
-
last_layer=self.get_last_layer(), split="val")
|
380 |
-
|
381 |
-
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
|
382 |
-
self.log_dict(log_dict_ae)
|
383 |
-
self.log_dict(log_dict_disc)
|
384 |
-
return self.log_dict
|
385 |
-
|
386 |
-
def configure_optimizers(self):
|
387 |
-
lr = self.learning_rate
|
388 |
-
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
|
389 |
-
list(self.decoder.parameters())+
|
390 |
-
list(self.quant_conv.parameters())+
|
391 |
-
list(self.post_quant_conv.parameters()),
|
392 |
-
lr=lr, betas=(0.5, 0.9))
|
393 |
-
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
|
394 |
-
lr=lr, betas=(0.5, 0.9))
|
395 |
-
return [opt_ae, opt_disc], []
|
396 |
-
|
397 |
-
def get_last_layer(self):
|
398 |
-
return self.decoder.conv_out.weight
|
399 |
-
|
400 |
-
@torch.no_grad()
|
401 |
-
def log_images(self, batch, only_inputs=False, **kwargs):
|
402 |
-
log = dict()
|
403 |
-
x = self.get_input(batch, self.image_key)
|
404 |
-
x = x.to(self.device)
|
405 |
-
if not only_inputs:
|
406 |
-
xrec, posterior = self(x)
|
407 |
-
if x.shape[1] > 3:
|
408 |
-
# colorize with random projection
|
409 |
-
assert xrec.shape[1] > 3
|
410 |
-
x = self.to_rgb(x)
|
411 |
-
xrec = self.to_rgb(xrec)
|
412 |
-
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
|
413 |
-
log["reconstructions"] = xrec
|
414 |
-
log["inputs"] = x
|
415 |
-
return log
|
416 |
-
|
417 |
-
def to_rgb(self, x):
|
418 |
-
assert self.image_key == "segmentation"
|
419 |
-
if not hasattr(self, "colorize"):
|
420 |
-
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
|
421 |
-
x = F.conv2d(x, weight=self.colorize)
|
422 |
-
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
|
423 |
-
return x
|
424 |
-
|
425 |
-
|
426 |
-
class IdentityFirstStage(torch.nn.Module):
|
427 |
-
def __init__(self, *args, vq_interface=False, **kwargs):
|
428 |
-
self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
|
429 |
-
super().__init__()
|
430 |
-
|
431 |
-
def encode(self, x, *args, **kwargs):
|
432 |
-
return x
|
433 |
-
|
434 |
-
def decode(self, x, *args, **kwargs):
|
435 |
-
return x
|
436 |
-
|
437 |
-
def quantize(self, x, *args, **kwargs):
|
438 |
-
if self.vq_interface:
|
439 |
-
return x, None, [None, None, None]
|
440 |
-
return x
|
441 |
-
|
442 |
-
def forward(self, x, *args, **kwargs):
|
443 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/models/diffusion/__init__.py
DELETED
File without changes
|
stable_diffusion/ldm/models/diffusion/classifier.py
DELETED
@@ -1,267 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import pytorch_lightning as pl
|
4 |
-
from omegaconf import OmegaConf
|
5 |
-
from torch.nn import functional as F
|
6 |
-
from torch.optim import AdamW
|
7 |
-
from torch.optim.lr_scheduler import LambdaLR
|
8 |
-
from copy import deepcopy
|
9 |
-
from einops import rearrange
|
10 |
-
from glob import glob
|
11 |
-
from natsort import natsorted
|
12 |
-
|
13 |
-
from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
|
14 |
-
from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
|
15 |
-
|
16 |
-
__models__ = {
|
17 |
-
'class_label': EncoderUNetModel,
|
18 |
-
'segmentation': UNetModel
|
19 |
-
}
|
20 |
-
|
21 |
-
|
22 |
-
def disabled_train(self, mode=True):
|
23 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
24 |
-
does not change anymore."""
|
25 |
-
return self
|
26 |
-
|
27 |
-
|
28 |
-
class NoisyLatentImageClassifier(pl.LightningModule):
|
29 |
-
|
30 |
-
def __init__(self,
|
31 |
-
diffusion_path,
|
32 |
-
num_classes,
|
33 |
-
ckpt_path=None,
|
34 |
-
pool='attention',
|
35 |
-
label_key=None,
|
36 |
-
diffusion_ckpt_path=None,
|
37 |
-
scheduler_config=None,
|
38 |
-
weight_decay=1.e-2,
|
39 |
-
log_steps=10,
|
40 |
-
monitor='val/loss',
|
41 |
-
*args,
|
42 |
-
**kwargs):
|
43 |
-
super().__init__(*args, **kwargs)
|
44 |
-
self.num_classes = num_classes
|
45 |
-
# get latest config of diffusion model
|
46 |
-
diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
|
47 |
-
self.diffusion_config = OmegaConf.load(diffusion_config).model
|
48 |
-
self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
|
49 |
-
self.load_diffusion()
|
50 |
-
|
51 |
-
self.monitor = monitor
|
52 |
-
self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
|
53 |
-
self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
|
54 |
-
self.log_steps = log_steps
|
55 |
-
|
56 |
-
self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
|
57 |
-
else self.diffusion_model.cond_stage_key
|
58 |
-
|
59 |
-
assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
|
60 |
-
|
61 |
-
if self.label_key not in __models__:
|
62 |
-
raise NotImplementedError()
|
63 |
-
|
64 |
-
self.load_classifier(ckpt_path, pool)
|
65 |
-
|
66 |
-
self.scheduler_config = scheduler_config
|
67 |
-
self.use_scheduler = self.scheduler_config is not None
|
68 |
-
self.weight_decay = weight_decay
|
69 |
-
|
70 |
-
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
71 |
-
sd = torch.load(path, map_location="cpu")
|
72 |
-
if "state_dict" in list(sd.keys()):
|
73 |
-
sd = sd["state_dict"]
|
74 |
-
keys = list(sd.keys())
|
75 |
-
for k in keys:
|
76 |
-
for ik in ignore_keys:
|
77 |
-
if k.startswith(ik):
|
78 |
-
print("Deleting key {} from state_dict.".format(k))
|
79 |
-
del sd[k]
|
80 |
-
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
81 |
-
sd, strict=False)
|
82 |
-
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
83 |
-
if len(missing) > 0:
|
84 |
-
print(f"Missing Keys: {missing}")
|
85 |
-
if len(unexpected) > 0:
|
86 |
-
print(f"Unexpected Keys: {unexpected}")
|
87 |
-
|
88 |
-
def load_diffusion(self):
|
89 |
-
model = instantiate_from_config(self.diffusion_config)
|
90 |
-
self.diffusion_model = model.eval()
|
91 |
-
self.diffusion_model.train = disabled_train
|
92 |
-
for param in self.diffusion_model.parameters():
|
93 |
-
param.requires_grad = False
|
94 |
-
|
95 |
-
def load_classifier(self, ckpt_path, pool):
|
96 |
-
model_config = deepcopy(self.diffusion_config.params.unet_config.params)
|
97 |
-
model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
|
98 |
-
model_config.out_channels = self.num_classes
|
99 |
-
if self.label_key == 'class_label':
|
100 |
-
model_config.pool = pool
|
101 |
-
|
102 |
-
self.model = __models__[self.label_key](**model_config)
|
103 |
-
if ckpt_path is not None:
|
104 |
-
print('#####################################################################')
|
105 |
-
print(f'load from ckpt "{ckpt_path}"')
|
106 |
-
print('#####################################################################')
|
107 |
-
self.init_from_ckpt(ckpt_path)
|
108 |
-
|
109 |
-
@torch.no_grad()
|
110 |
-
def get_x_noisy(self, x, t, noise=None):
|
111 |
-
noise = default(noise, lambda: torch.randn_like(x))
|
112 |
-
continuous_sqrt_alpha_cumprod = None
|
113 |
-
if self.diffusion_model.use_continuous_noise:
|
114 |
-
continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
|
115 |
-
# todo: make sure t+1 is correct here
|
116 |
-
|
117 |
-
return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
|
118 |
-
continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
|
119 |
-
|
120 |
-
def forward(self, x_noisy, t, *args, **kwargs):
|
121 |
-
return self.model(x_noisy, t)
|
122 |
-
|
123 |
-
@torch.no_grad()
|
124 |
-
def get_input(self, batch, k):
|
125 |
-
x = batch[k]
|
126 |
-
if len(x.shape) == 3:
|
127 |
-
x = x[..., None]
|
128 |
-
x = rearrange(x, 'b h w c -> b c h w')
|
129 |
-
x = x.to(memory_format=torch.contiguous_format).float()
|
130 |
-
return x
|
131 |
-
|
132 |
-
@torch.no_grad()
|
133 |
-
def get_conditioning(self, batch, k=None):
|
134 |
-
if k is None:
|
135 |
-
k = self.label_key
|
136 |
-
assert k is not None, 'Needs to provide label key'
|
137 |
-
|
138 |
-
targets = batch[k].to(self.device)
|
139 |
-
|
140 |
-
if self.label_key == 'segmentation':
|
141 |
-
targets = rearrange(targets, 'b h w c -> b c h w')
|
142 |
-
for down in range(self.numd):
|
143 |
-
h, w = targets.shape[-2:]
|
144 |
-
targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
|
145 |
-
|
146 |
-
# targets = rearrange(targets,'b c h w -> b h w c')
|
147 |
-
|
148 |
-
return targets
|
149 |
-
|
150 |
-
def compute_top_k(self, logits, labels, k, reduction="mean"):
|
151 |
-
_, top_ks = torch.topk(logits, k, dim=1)
|
152 |
-
if reduction == "mean":
|
153 |
-
return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
|
154 |
-
elif reduction == "none":
|
155 |
-
return (top_ks == labels[:, None]).float().sum(dim=-1)
|
156 |
-
|
157 |
-
def on_train_epoch_start(self):
|
158 |
-
# save some memory
|
159 |
-
self.diffusion_model.model.to('cpu')
|
160 |
-
|
161 |
-
@torch.no_grad()
|
162 |
-
def write_logs(self, loss, logits, targets):
|
163 |
-
log_prefix = 'train' if self.training else 'val'
|
164 |
-
log = {}
|
165 |
-
log[f"{log_prefix}/loss"] = loss.mean()
|
166 |
-
log[f"{log_prefix}/acc@1"] = self.compute_top_k(
|
167 |
-
logits, targets, k=1, reduction="mean"
|
168 |
-
)
|
169 |
-
log[f"{log_prefix}/acc@5"] = self.compute_top_k(
|
170 |
-
logits, targets, k=5, reduction="mean"
|
171 |
-
)
|
172 |
-
|
173 |
-
self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
|
174 |
-
self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
|
175 |
-
self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
|
176 |
-
lr = self.optimizers().param_groups[0]['lr']
|
177 |
-
self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
|
178 |
-
|
179 |
-
def shared_step(self, batch, t=None):
|
180 |
-
x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
|
181 |
-
targets = self.get_conditioning(batch)
|
182 |
-
if targets.dim() == 4:
|
183 |
-
targets = targets.argmax(dim=1)
|
184 |
-
if t is None:
|
185 |
-
t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
|
186 |
-
else:
|
187 |
-
t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
|
188 |
-
x_noisy = self.get_x_noisy(x, t)
|
189 |
-
logits = self(x_noisy, t)
|
190 |
-
|
191 |
-
loss = F.cross_entropy(logits, targets, reduction='none')
|
192 |
-
|
193 |
-
self.write_logs(loss.detach(), logits.detach(), targets.detach())
|
194 |
-
|
195 |
-
loss = loss.mean()
|
196 |
-
return loss, logits, x_noisy, targets
|
197 |
-
|
198 |
-
def training_step(self, batch, batch_idx):
|
199 |
-
loss, *_ = self.shared_step(batch)
|
200 |
-
return loss
|
201 |
-
|
202 |
-
def reset_noise_accs(self):
|
203 |
-
self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
|
204 |
-
range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
|
205 |
-
|
206 |
-
def on_validation_start(self):
|
207 |
-
self.reset_noise_accs()
|
208 |
-
|
209 |
-
@torch.no_grad()
|
210 |
-
def validation_step(self, batch, batch_idx):
|
211 |
-
loss, *_ = self.shared_step(batch)
|
212 |
-
|
213 |
-
for t in self.noisy_acc:
|
214 |
-
_, logits, _, targets = self.shared_step(batch, t)
|
215 |
-
self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
|
216 |
-
self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
|
217 |
-
|
218 |
-
return loss
|
219 |
-
|
220 |
-
def configure_optimizers(self):
|
221 |
-
optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
|
222 |
-
|
223 |
-
if self.use_scheduler:
|
224 |
-
scheduler = instantiate_from_config(self.scheduler_config)
|
225 |
-
|
226 |
-
print("Setting up LambdaLR scheduler...")
|
227 |
-
scheduler = [
|
228 |
-
{
|
229 |
-
'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
|
230 |
-
'interval': 'step',
|
231 |
-
'frequency': 1
|
232 |
-
}]
|
233 |
-
return [optimizer], scheduler
|
234 |
-
|
235 |
-
return optimizer
|
236 |
-
|
237 |
-
@torch.no_grad()
|
238 |
-
def log_images(self, batch, N=8, *args, **kwargs):
|
239 |
-
log = dict()
|
240 |
-
x = self.get_input(batch, self.diffusion_model.first_stage_key)
|
241 |
-
log['inputs'] = x
|
242 |
-
|
243 |
-
y = self.get_conditioning(batch)
|
244 |
-
|
245 |
-
if self.label_key == 'class_label':
|
246 |
-
y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
|
247 |
-
log['labels'] = y
|
248 |
-
|
249 |
-
if ismap(y):
|
250 |
-
log['labels'] = self.diffusion_model.to_rgb(y)
|
251 |
-
|
252 |
-
for step in range(self.log_steps):
|
253 |
-
current_time = step * self.log_time_interval
|
254 |
-
|
255 |
-
_, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
|
256 |
-
|
257 |
-
log[f'inputs@t{current_time}'] = x_noisy
|
258 |
-
|
259 |
-
pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
|
260 |
-
pred = rearrange(pred, 'b h w c -> b c h w')
|
261 |
-
|
262 |
-
log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
|
263 |
-
|
264 |
-
for key in log:
|
265 |
-
log[key] = log[key][:N]
|
266 |
-
|
267 |
-
return log
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/models/diffusion/ddim.py
DELETED
@@ -1,344 +0,0 @@
|
|
1 |
-
"""SAMPLING ONLY."""
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
from tqdm import tqdm
|
6 |
-
from functools import partial
|
7 |
-
from einops import rearrange
|
8 |
-
|
9 |
-
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
10 |
-
from ldm.models.diffusion.sampling_util import renorm_thresholding, norm_thresholding, spatial_norm_thresholding
|
11 |
-
|
12 |
-
|
13 |
-
class DDIMSampler(object):
|
14 |
-
def __init__(self, model, schedule="linear", **kwargs):
|
15 |
-
super().__init__()
|
16 |
-
self.model = model
|
17 |
-
self.ddpm_num_timesteps = model.num_timesteps
|
18 |
-
self.schedule = schedule
|
19 |
-
|
20 |
-
def to(self, device):
|
21 |
-
"""Same as to in torch module
|
22 |
-
Don't really underestand why this isn't a module in the first place"""
|
23 |
-
for k, v in self.__dict__.items():
|
24 |
-
if isinstance(v, torch.Tensor):
|
25 |
-
new_v = getattr(self, k).to(device)
|
26 |
-
setattr(self, k, new_v)
|
27 |
-
|
28 |
-
|
29 |
-
def register_buffer(self, name, attr):
|
30 |
-
if type(attr) == torch.Tensor:
|
31 |
-
if attr.device != torch.device("cuda"):
|
32 |
-
attr = attr.to(torch.device("cuda"))
|
33 |
-
setattr(self, name, attr)
|
34 |
-
|
35 |
-
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
36 |
-
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
37 |
-
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
38 |
-
alphas_cumprod = self.model.alphas_cumprod
|
39 |
-
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
40 |
-
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
41 |
-
|
42 |
-
self.register_buffer('betas', to_torch(self.model.betas))
|
43 |
-
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
44 |
-
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
45 |
-
|
46 |
-
# calculations for diffusion q(x_t | x_{t-1}) and others
|
47 |
-
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
48 |
-
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
49 |
-
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
50 |
-
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
51 |
-
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
52 |
-
|
53 |
-
# ddim sampling parameters
|
54 |
-
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
55 |
-
ddim_timesteps=self.ddim_timesteps,
|
56 |
-
eta=ddim_eta,verbose=verbose)
|
57 |
-
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
58 |
-
self.register_buffer('ddim_alphas', ddim_alphas)
|
59 |
-
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
60 |
-
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
61 |
-
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
62 |
-
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
63 |
-
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
64 |
-
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
65 |
-
|
66 |
-
|
67 |
-
def sample(self,
|
68 |
-
S,
|
69 |
-
batch_size,
|
70 |
-
shape,
|
71 |
-
conditioning=None,
|
72 |
-
callback=None,
|
73 |
-
normals_sequence=None,
|
74 |
-
img_callback=None,
|
75 |
-
quantize_x0=False,
|
76 |
-
eta=0.,
|
77 |
-
mask=None,
|
78 |
-
x0=None,
|
79 |
-
temperature=1.,
|
80 |
-
noise_dropout=0.,
|
81 |
-
score_corrector=None,
|
82 |
-
corrector_kwargs=None,
|
83 |
-
verbose=True,
|
84 |
-
x_T=None,
|
85 |
-
t_start = -1,
|
86 |
-
log_every_t=100,
|
87 |
-
unconditional_guidance_scale=1.,
|
88 |
-
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
89 |
-
dynamic_threshold=None,
|
90 |
-
till_T = None,
|
91 |
-
verbose_iter = False,
|
92 |
-
**kwargs
|
93 |
-
):
|
94 |
-
if conditioning is not None:
|
95 |
-
if isinstance(conditioning, dict):
|
96 |
-
ctmp = conditioning[list(conditioning.keys())[0]]
|
97 |
-
while isinstance(ctmp, list): ctmp = ctmp[0]
|
98 |
-
cbs = ctmp.shape[0]
|
99 |
-
if cbs != batch_size:
|
100 |
-
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
101 |
-
|
102 |
-
else:
|
103 |
-
if conditioning.shape[0] != batch_size:
|
104 |
-
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
105 |
-
|
106 |
-
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
107 |
-
# sampling
|
108 |
-
C, H, W = shape
|
109 |
-
size = (batch_size, C, H, W)
|
110 |
-
if verbose_iter:
|
111 |
-
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
112 |
-
|
113 |
-
samples, intermediates = self.ddim_sampling(conditioning, size,
|
114 |
-
callback=callback,
|
115 |
-
img_callback=img_callback,
|
116 |
-
quantize_denoised=quantize_x0,
|
117 |
-
mask=mask, x0=x0,
|
118 |
-
ddim_use_original_steps=False,
|
119 |
-
noise_dropout=noise_dropout,
|
120 |
-
temperature=temperature,
|
121 |
-
score_corrector=score_corrector,
|
122 |
-
corrector_kwargs=corrector_kwargs,
|
123 |
-
x_T=x_T,
|
124 |
-
log_every_t=log_every_t,
|
125 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
126 |
-
unconditional_conditioning=unconditional_conditioning,
|
127 |
-
dynamic_threshold=dynamic_threshold,
|
128 |
-
till_T = till_T,
|
129 |
-
verbose_iter=verbose_iter,
|
130 |
-
t_start=t_start
|
131 |
-
)
|
132 |
-
return samples, intermediates
|
133 |
-
|
134 |
-
|
135 |
-
def ddim_sampling(self, cond, shape,
|
136 |
-
x_T=None, ddim_use_original_steps=False,
|
137 |
-
callback=None, timesteps=None, quantize_denoised=False,
|
138 |
-
mask=None, x0=None, img_callback=None, log_every_t=100,
|
139 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
140 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
141 |
-
t_start=-1, till_T=None, verbose_iter=True):
|
142 |
-
device = self.model.betas.device
|
143 |
-
b = shape[0]
|
144 |
-
if x_T is None:
|
145 |
-
img = torch.randn(shape, device=device)
|
146 |
-
else:
|
147 |
-
img = x_T
|
148 |
-
|
149 |
-
if timesteps is None:
|
150 |
-
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
151 |
-
elif timesteps is not None and not ddim_use_original_steps:
|
152 |
-
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
153 |
-
timesteps = self.ddim_timesteps[:subset_end]
|
154 |
-
|
155 |
-
timesteps = timesteps[:t_start]
|
156 |
-
|
157 |
-
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
158 |
-
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
|
159 |
-
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
160 |
-
|
161 |
-
if verbose_iter:
|
162 |
-
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
163 |
-
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
|
164 |
-
else:
|
165 |
-
iterator = time_range
|
166 |
-
if till_T is not None:
|
167 |
-
till = till_T
|
168 |
-
else:
|
169 |
-
till = 0
|
170 |
-
for i, step in enumerate(iterator):
|
171 |
-
index = total_steps - i - 1
|
172 |
-
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
173 |
-
|
174 |
-
if mask is not None:
|
175 |
-
assert x0 is not None
|
176 |
-
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
177 |
-
img = img_orig * mask + (1. - mask) * img
|
178 |
-
|
179 |
-
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
180 |
-
quantize_denoised=quantize_denoised, temperature=temperature,
|
181 |
-
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
182 |
-
corrector_kwargs=corrector_kwargs,
|
183 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
184 |
-
unconditional_conditioning=unconditional_conditioning,
|
185 |
-
dynamic_threshold=dynamic_threshold)
|
186 |
-
img, pred_x0 = outs
|
187 |
-
if callback:
|
188 |
-
img = callback(i, img, pred_x0)
|
189 |
-
if img_callback: img_callback(pred_x0, i)
|
190 |
-
|
191 |
-
if index % log_every_t == 0 or index == total_steps - 1:
|
192 |
-
intermediates['x_inter'].append(img)
|
193 |
-
intermediates['pred_x0'].append(pred_x0)
|
194 |
-
if index+1 == till:
|
195 |
-
break
|
196 |
-
return img, intermediates
|
197 |
-
|
198 |
-
|
199 |
-
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
200 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
201 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
202 |
-
dynamic_threshold=None):
|
203 |
-
b, *_, device = *x.shape, x.device
|
204 |
-
|
205 |
-
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
206 |
-
e_t = self.model.apply_model(x, t, c)
|
207 |
-
else:
|
208 |
-
x_in = torch.cat([x] * 2)
|
209 |
-
t_in = torch.cat([t] * 2)
|
210 |
-
if isinstance(c, dict):
|
211 |
-
assert isinstance(unconditional_conditioning, dict)
|
212 |
-
# print(f'C: {c}')
|
213 |
-
c_in = dict()
|
214 |
-
for k in c:
|
215 |
-
if isinstance(c[k], list):
|
216 |
-
c_in[k] = [torch.cat([
|
217 |
-
unconditional_conditioning[k][i],
|
218 |
-
c[k][i]]) for i in range(len(c[k]))]
|
219 |
-
else:
|
220 |
-
c_in[k] = torch.cat([
|
221 |
-
unconditional_conditioning[k],
|
222 |
-
c[k]])
|
223 |
-
else:
|
224 |
-
c_in = torch.cat([unconditional_conditioning, c])
|
225 |
-
# print(f'C: {c.shape}')
|
226 |
-
# print(f'C_uncond: {unconditional_conditioning.shape}')
|
227 |
-
# print(f'C_in: {c_in}')
|
228 |
-
# print(f'Input shape before model: {x_in.shape} {t_in.shape}')
|
229 |
-
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
230 |
-
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
231 |
-
|
232 |
-
if score_corrector is not None:
|
233 |
-
assert self.model.parameterization == "eps"
|
234 |
-
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
235 |
-
# print(f'Final shape after model: {x.shape} {e_t.shape}')
|
236 |
-
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
237 |
-
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
238 |
-
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
239 |
-
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
240 |
-
# select parameters corresponding to the currently considered timestep
|
241 |
-
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
242 |
-
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
243 |
-
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
244 |
-
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
245 |
-
|
246 |
-
# current prediction for x_0
|
247 |
-
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
248 |
-
if quantize_denoised:
|
249 |
-
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
250 |
-
|
251 |
-
if dynamic_threshold is not None:
|
252 |
-
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
253 |
-
|
254 |
-
# direction pointing to x_t
|
255 |
-
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
256 |
-
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
257 |
-
if noise_dropout > 0.:
|
258 |
-
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
259 |
-
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
260 |
-
|
261 |
-
return x_prev, pred_x0
|
262 |
-
|
263 |
-
@torch.no_grad()
|
264 |
-
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
265 |
-
unconditional_guidance_scale=1.0, unconditional_conditioning=None):
|
266 |
-
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
267 |
-
|
268 |
-
assert t_enc <= num_reference_steps
|
269 |
-
num_steps = t_enc
|
270 |
-
|
271 |
-
if use_original_steps:
|
272 |
-
alphas_next = self.alphas_cumprod[:num_steps]
|
273 |
-
alphas = self.alphas_cumprod_prev[:num_steps]
|
274 |
-
else:
|
275 |
-
alphas_next = self.ddim_alphas[:num_steps]
|
276 |
-
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
277 |
-
|
278 |
-
x_next = x0
|
279 |
-
intermediates = []
|
280 |
-
inter_steps = []
|
281 |
-
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
282 |
-
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
283 |
-
if unconditional_guidance_scale == 1.:
|
284 |
-
noise_pred = self.model.apply_model(x_next, t, c)
|
285 |
-
else:
|
286 |
-
assert unconditional_conditioning is not None
|
287 |
-
e_t_uncond, noise_pred = torch.chunk(
|
288 |
-
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
289 |
-
torch.cat((unconditional_conditioning, c))), 2)
|
290 |
-
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
291 |
-
|
292 |
-
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
293 |
-
weighted_noise_pred = alphas_next[i].sqrt() * (
|
294 |
-
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
295 |
-
x_next = xt_weighted + weighted_noise_pred
|
296 |
-
if return_intermediates and i % (
|
297 |
-
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
298 |
-
intermediates.append(x_next)
|
299 |
-
inter_steps.append(i)
|
300 |
-
elif return_intermediates and i >= num_steps - 2:
|
301 |
-
intermediates.append(x_next)
|
302 |
-
inter_steps.append(i)
|
303 |
-
|
304 |
-
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
305 |
-
if return_intermediates:
|
306 |
-
out.update({'intermediates': intermediates})
|
307 |
-
return x_next, out
|
308 |
-
|
309 |
-
@torch.no_grad()
|
310 |
-
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
311 |
-
# fast, but does not allow for exact reconstruction
|
312 |
-
# t serves as an index to gather the correct alphas
|
313 |
-
if use_original_steps:
|
314 |
-
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
315 |
-
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
316 |
-
else:
|
317 |
-
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
318 |
-
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
319 |
-
|
320 |
-
if noise is None:
|
321 |
-
noise = torch.randn_like(x0)
|
322 |
-
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
323 |
-
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
324 |
-
|
325 |
-
@torch.no_grad()
|
326 |
-
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
327 |
-
use_original_steps=False):
|
328 |
-
|
329 |
-
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
330 |
-
timesteps = timesteps[:t_start]
|
331 |
-
|
332 |
-
time_range = np.flip(timesteps)
|
333 |
-
total_steps = timesteps.shape[0]
|
334 |
-
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
335 |
-
|
336 |
-
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
337 |
-
x_dec = x_latent
|
338 |
-
for i, step in enumerate(iterator):
|
339 |
-
index = total_steps - i - 1
|
340 |
-
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
341 |
-
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
342 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
343 |
-
unconditional_conditioning=unconditional_conditioning)
|
344 |
-
return x_dec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/models/diffusion/ddpm.py
DELETED
@@ -1,1934 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
wild mixture of
|
3 |
-
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
4 |
-
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
5 |
-
https://github.com/CompVis/taming-transformers
|
6 |
-
-- merci
|
7 |
-
"""
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
import numpy as np
|
12 |
-
import pytorch_lightning as pl
|
13 |
-
from torch.optim.lr_scheduler import LambdaLR
|
14 |
-
from einops import rearrange, repeat
|
15 |
-
from contextlib import contextmanager, nullcontext
|
16 |
-
from functools import partial
|
17 |
-
import itertools
|
18 |
-
from tqdm import tqdm
|
19 |
-
from torchvision.utils import make_grid
|
20 |
-
from pytorch_lightning.utilities.distributed import rank_zero_only
|
21 |
-
from omegaconf import ListConfig
|
22 |
-
|
23 |
-
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
24 |
-
from ldm.modules.ema import LitEma
|
25 |
-
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
26 |
-
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
27 |
-
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
28 |
-
from ldm.models.diffusion.ddim import DDIMSampler
|
29 |
-
from ldm.modules.attention import CrossAttention
|
30 |
-
|
31 |
-
|
32 |
-
__conditioning_keys__ = {'concat': 'c_concat',
|
33 |
-
'crossattn': 'c_crossattn',
|
34 |
-
'adm': 'y'}
|
35 |
-
|
36 |
-
|
37 |
-
def disabled_train(self, mode=True):
|
38 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
39 |
-
does not change anymore."""
|
40 |
-
return self
|
41 |
-
|
42 |
-
|
43 |
-
def uniform_on_device(r1, r2, shape, device):
|
44 |
-
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
45 |
-
|
46 |
-
|
47 |
-
class DDPM(pl.LightningModule):
|
48 |
-
# classic DDPM with Gaussian diffusion, in image space
|
49 |
-
def __init__(self,
|
50 |
-
unet_config,
|
51 |
-
timesteps=1000,
|
52 |
-
beta_schedule="linear",
|
53 |
-
loss_type="l2",
|
54 |
-
ckpt_path=None,
|
55 |
-
ignore_keys=[],
|
56 |
-
load_only_unet=False,
|
57 |
-
monitor="val/loss",
|
58 |
-
use_ema=True,
|
59 |
-
first_stage_key="image",
|
60 |
-
image_size=256,
|
61 |
-
channels=3,
|
62 |
-
log_every_t=100,
|
63 |
-
clip_denoised=True,
|
64 |
-
linear_start=1e-4,
|
65 |
-
linear_end=2e-2,
|
66 |
-
cosine_s=8e-3,
|
67 |
-
given_betas=None,
|
68 |
-
original_elbo_weight=0.,
|
69 |
-
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
70 |
-
l_simple_weight=1.,
|
71 |
-
conditioning_key=None,
|
72 |
-
parameterization="eps", # all assuming fixed variance schedules
|
73 |
-
scheduler_config=None,
|
74 |
-
use_positional_encodings=False,
|
75 |
-
learn_logvar=False,
|
76 |
-
logvar_init=0.,
|
77 |
-
make_it_fit=False,
|
78 |
-
ucg_training=None,
|
79 |
-
):
|
80 |
-
super().__init__()
|
81 |
-
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
82 |
-
self.parameterization = parameterization
|
83 |
-
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
|
84 |
-
self.cond_stage_model = None
|
85 |
-
self.clip_denoised = clip_denoised
|
86 |
-
self.log_every_t = log_every_t
|
87 |
-
self.first_stage_key = first_stage_key
|
88 |
-
self.image_size = image_size # try conv?
|
89 |
-
self.channels = channels
|
90 |
-
self.use_positional_encodings = use_positional_encodings
|
91 |
-
self.model = DiffusionWrapper(unet_config, conditioning_key)
|
92 |
-
count_params(self.model, verbose=True)
|
93 |
-
self.use_ema = use_ema
|
94 |
-
if self.use_ema:
|
95 |
-
self.model_ema = LitEma(self.model)
|
96 |
-
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
|
97 |
-
|
98 |
-
self.use_scheduler = scheduler_config is not None
|
99 |
-
if self.use_scheduler:
|
100 |
-
self.scheduler_config = scheduler_config
|
101 |
-
|
102 |
-
self.v_posterior = v_posterior
|
103 |
-
self.original_elbo_weight = original_elbo_weight
|
104 |
-
self.l_simple_weight = l_simple_weight
|
105 |
-
|
106 |
-
if monitor is not None:
|
107 |
-
self.monitor = monitor
|
108 |
-
self.make_it_fit = make_it_fit
|
109 |
-
if ckpt_path is not None:
|
110 |
-
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
|
111 |
-
|
112 |
-
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
|
113 |
-
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
|
114 |
-
|
115 |
-
self.loss_type = loss_type
|
116 |
-
|
117 |
-
self.learn_logvar = learn_logvar
|
118 |
-
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
|
119 |
-
if self.learn_logvar:
|
120 |
-
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
121 |
-
|
122 |
-
self.ucg_training = ucg_training or dict()
|
123 |
-
if self.ucg_training:
|
124 |
-
self.ucg_prng = np.random.RandomState()
|
125 |
-
|
126 |
-
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
127 |
-
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
128 |
-
if exists(given_betas):
|
129 |
-
betas = given_betas
|
130 |
-
else:
|
131 |
-
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
132 |
-
cosine_s=cosine_s)
|
133 |
-
alphas = 1. - betas
|
134 |
-
alphas_cumprod = np.cumprod(alphas, axis=0)
|
135 |
-
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
136 |
-
|
137 |
-
timesteps, = betas.shape
|
138 |
-
self.num_timesteps = int(timesteps)
|
139 |
-
self.linear_start = linear_start
|
140 |
-
self.linear_end = linear_end
|
141 |
-
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
142 |
-
|
143 |
-
to_torch = partial(torch.tensor, dtype=torch.float32)
|
144 |
-
|
145 |
-
self.register_buffer('betas', to_torch(betas))
|
146 |
-
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
147 |
-
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
148 |
-
|
149 |
-
# calculations for diffusion q(x_t | x_{t-1}) and others
|
150 |
-
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
151 |
-
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
152 |
-
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
153 |
-
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
154 |
-
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
155 |
-
|
156 |
-
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
157 |
-
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
|
158 |
-
1. - alphas_cumprod) + self.v_posterior * betas
|
159 |
-
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
|
160 |
-
self.register_buffer('posterior_variance', to_torch(posterior_variance))
|
161 |
-
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
162 |
-
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
|
163 |
-
self.register_buffer('posterior_mean_coef1', to_torch(
|
164 |
-
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
|
165 |
-
self.register_buffer('posterior_mean_coef2', to_torch(
|
166 |
-
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
|
167 |
-
|
168 |
-
if self.parameterization == "eps":
|
169 |
-
lvlb_weights = self.betas ** 2 / (
|
170 |
-
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
|
171 |
-
elif self.parameterization == "x0":
|
172 |
-
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
|
173 |
-
else:
|
174 |
-
raise NotImplementedError("mu not supported")
|
175 |
-
# TODO how to choose this term
|
176 |
-
lvlb_weights[0] = lvlb_weights[1]
|
177 |
-
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
|
178 |
-
assert not torch.isnan(self.lvlb_weights).all()
|
179 |
-
|
180 |
-
@contextmanager
|
181 |
-
def ema_scope(self, context=None):
|
182 |
-
if self.use_ema:
|
183 |
-
self.model_ema.store(self.model.parameters())
|
184 |
-
self.model_ema.copy_to(self.model)
|
185 |
-
if context is not None:
|
186 |
-
print(f"{context}: Switched to EMA weights")
|
187 |
-
try:
|
188 |
-
yield None
|
189 |
-
finally:
|
190 |
-
if self.use_ema:
|
191 |
-
self.model_ema.restore(self.model.parameters())
|
192 |
-
if context is not None:
|
193 |
-
print(f"{context}: Restored training weights")
|
194 |
-
|
195 |
-
@torch.no_grad()
|
196 |
-
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
197 |
-
sd = torch.load(path, map_location="cpu")
|
198 |
-
if "state_dict" in list(sd.keys()):
|
199 |
-
sd = sd["state_dict"]
|
200 |
-
keys = list(sd.keys())
|
201 |
-
for k in keys:
|
202 |
-
for ik in ignore_keys:
|
203 |
-
if k.startswith(ik):
|
204 |
-
print("Deleting key {} from state_dict.".format(k))
|
205 |
-
del sd[k]
|
206 |
-
if self.make_it_fit:
|
207 |
-
n_params = len([name for name, _ in
|
208 |
-
itertools.chain(self.named_parameters(),
|
209 |
-
self.named_buffers())])
|
210 |
-
for name, param in tqdm(
|
211 |
-
itertools.chain(self.named_parameters(),
|
212 |
-
self.named_buffers()),
|
213 |
-
desc="Fitting old weights to new weights",
|
214 |
-
total=n_params
|
215 |
-
):
|
216 |
-
if not name in sd:
|
217 |
-
continue
|
218 |
-
old_shape = sd[name].shape
|
219 |
-
new_shape = param.shape
|
220 |
-
assert len(old_shape)==len(new_shape)
|
221 |
-
if len(new_shape) > 2:
|
222 |
-
# we only modify first two axes
|
223 |
-
assert new_shape[2:] == old_shape[2:]
|
224 |
-
# assumes first axis corresponds to output dim
|
225 |
-
if not new_shape == old_shape:
|
226 |
-
new_param = param.clone()
|
227 |
-
old_param = sd[name]
|
228 |
-
if len(new_shape) == 1:
|
229 |
-
for i in range(new_param.shape[0]):
|
230 |
-
new_param[i] = old_param[i % old_shape[0]]
|
231 |
-
elif len(new_shape) >= 2:
|
232 |
-
for i in range(new_param.shape[0]):
|
233 |
-
for j in range(new_param.shape[1]):
|
234 |
-
new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
|
235 |
-
|
236 |
-
n_used_old = torch.ones(old_shape[1])
|
237 |
-
for j in range(new_param.shape[1]):
|
238 |
-
n_used_old[j % old_shape[1]] += 1
|
239 |
-
n_used_new = torch.zeros(new_shape[1])
|
240 |
-
for j in range(new_param.shape[1]):
|
241 |
-
n_used_new[j] = n_used_old[j % old_shape[1]]
|
242 |
-
|
243 |
-
n_used_new = n_used_new[None, :]
|
244 |
-
while len(n_used_new.shape) < len(new_shape):
|
245 |
-
n_used_new = n_used_new.unsqueeze(-1)
|
246 |
-
new_param /= n_used_new
|
247 |
-
|
248 |
-
sd[name] = new_param
|
249 |
-
|
250 |
-
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
251 |
-
sd, strict=False)
|
252 |
-
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
253 |
-
if len(missing) > 0:
|
254 |
-
print(f"Missing Keys: {missing}")
|
255 |
-
if len(unexpected) > 0:
|
256 |
-
print(f"Unexpected Keys: {unexpected}")
|
257 |
-
|
258 |
-
def q_mean_variance(self, x_start, t):
|
259 |
-
"""
|
260 |
-
Get the distribution q(x_t | x_0).
|
261 |
-
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
262 |
-
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
263 |
-
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
264 |
-
"""
|
265 |
-
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
|
266 |
-
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
267 |
-
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
268 |
-
return mean, variance, log_variance
|
269 |
-
|
270 |
-
def predict_start_from_noise(self, x_t, t, noise):
|
271 |
-
return (
|
272 |
-
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
|
273 |
-
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
|
274 |
-
)
|
275 |
-
|
276 |
-
def q_posterior(self, x_start, x_t, t):
|
277 |
-
posterior_mean = (
|
278 |
-
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
|
279 |
-
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
280 |
-
)
|
281 |
-
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
282 |
-
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
|
283 |
-
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
284 |
-
|
285 |
-
def p_mean_variance(self, x, t, clip_denoised: bool):
|
286 |
-
model_out = self.model(x, t)
|
287 |
-
if self.parameterization == "eps":
|
288 |
-
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
289 |
-
elif self.parameterization == "x0":
|
290 |
-
x_recon = model_out
|
291 |
-
if clip_denoised:
|
292 |
-
x_recon.clamp_(-1., 1.)
|
293 |
-
|
294 |
-
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
295 |
-
return model_mean, posterior_variance, posterior_log_variance
|
296 |
-
|
297 |
-
@torch.no_grad()
|
298 |
-
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
|
299 |
-
b, *_, device = *x.shape, x.device
|
300 |
-
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
|
301 |
-
noise = noise_like(x.shape, device, repeat_noise)
|
302 |
-
# no noise when t == 0
|
303 |
-
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
304 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
305 |
-
|
306 |
-
@torch.no_grad()
|
307 |
-
def p_sample_loop(self, shape, return_intermediates=False):
|
308 |
-
device = self.betas.device
|
309 |
-
b = shape[0]
|
310 |
-
img = torch.randn(shape, device=device)
|
311 |
-
intermediates = [img]
|
312 |
-
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
|
313 |
-
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
|
314 |
-
clip_denoised=self.clip_denoised)
|
315 |
-
if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
|
316 |
-
intermediates.append(img)
|
317 |
-
if return_intermediates:
|
318 |
-
return img, intermediates
|
319 |
-
return img
|
320 |
-
|
321 |
-
@torch.no_grad()
|
322 |
-
def sample(self, batch_size=16, return_intermediates=False):
|
323 |
-
image_size = self.image_size
|
324 |
-
channels = self.channels
|
325 |
-
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
326 |
-
return_intermediates=return_intermediates)
|
327 |
-
|
328 |
-
def q_sample(self, x_start, t, noise=None):
|
329 |
-
noise = default(noise, lambda: torch.randn_like(x_start))
|
330 |
-
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
331 |
-
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
332 |
-
|
333 |
-
def get_loss(self, pred, target, mean=True):
|
334 |
-
if self.loss_type == 'l1':
|
335 |
-
loss = (target - pred).abs()
|
336 |
-
if mean:
|
337 |
-
loss = loss.mean()
|
338 |
-
elif self.loss_type == 'l2':
|
339 |
-
if mean:
|
340 |
-
loss = torch.nn.functional.mse_loss(target, pred)
|
341 |
-
else:
|
342 |
-
loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
|
343 |
-
else:
|
344 |
-
raise NotImplementedError("unknown loss type '{loss_type}'")
|
345 |
-
|
346 |
-
return loss
|
347 |
-
|
348 |
-
def p_losses(self, x_start, t, noise=None):
|
349 |
-
noise = default(noise, lambda: torch.randn_like(x_start))
|
350 |
-
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
351 |
-
model_out = self.model(x_noisy, t)
|
352 |
-
|
353 |
-
loss_dict = {}
|
354 |
-
if self.parameterization == "eps":
|
355 |
-
target = noise
|
356 |
-
elif self.parameterization == "x0":
|
357 |
-
target = x_start
|
358 |
-
else:
|
359 |
-
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
|
360 |
-
|
361 |
-
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
|
362 |
-
|
363 |
-
log_prefix = 'train' if self.training else 'val'
|
364 |
-
|
365 |
-
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
|
366 |
-
loss_simple = loss.mean() * self.l_simple_weight
|
367 |
-
|
368 |
-
loss_vlb = (self.lvlb_weights[t] * loss).mean()
|
369 |
-
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
|
370 |
-
|
371 |
-
loss = loss_simple + self.original_elbo_weight * loss_vlb
|
372 |
-
|
373 |
-
loss_dict.update({f'{log_prefix}/loss': loss})
|
374 |
-
|
375 |
-
return loss, loss_dict
|
376 |
-
|
377 |
-
def forward(self, x, *args, **kwargs):
|
378 |
-
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
|
379 |
-
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
|
380 |
-
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
381 |
-
return self.p_losses(x, t, *args, **kwargs)
|
382 |
-
|
383 |
-
def get_input(self, batch, k):
|
384 |
-
x = batch[k]
|
385 |
-
if len(x.shape) == 3:
|
386 |
-
x = x[..., None]
|
387 |
-
x = rearrange(x, 'b h w c -> b c h w')
|
388 |
-
x = x.to(memory_format=torch.contiguous_format).float()
|
389 |
-
return x
|
390 |
-
|
391 |
-
def shared_step(self, batch):
|
392 |
-
x = self.get_input(batch, self.first_stage_key)
|
393 |
-
loss, loss_dict = self(x)
|
394 |
-
return loss, loss_dict
|
395 |
-
|
396 |
-
def training_step(self, batch, batch_idx):
|
397 |
-
for k in self.ucg_training:
|
398 |
-
p = self.ucg_training[k]["p"]
|
399 |
-
val = self.ucg_training[k]["val"]
|
400 |
-
if val is None:
|
401 |
-
val = ""
|
402 |
-
for i in range(len(batch[k])):
|
403 |
-
if self.ucg_prng.choice(2, p=[1-p, p]):
|
404 |
-
batch[k][i] = val
|
405 |
-
|
406 |
-
loss, loss_dict = self.shared_step(batch)
|
407 |
-
|
408 |
-
self.log_dict(loss_dict, prog_bar=True,
|
409 |
-
logger=True, on_step=True, on_epoch=True)
|
410 |
-
|
411 |
-
self.log("global_step", self.global_step,
|
412 |
-
prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
413 |
-
|
414 |
-
if self.use_scheduler:
|
415 |
-
lr = self.optimizers().param_groups[0]['lr']
|
416 |
-
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
|
417 |
-
|
418 |
-
return loss
|
419 |
-
|
420 |
-
@torch.no_grad()
|
421 |
-
def validation_step(self, batch, batch_idx):
|
422 |
-
_, loss_dict_no_ema = self.shared_step(batch)
|
423 |
-
with self.ema_scope():
|
424 |
-
_, loss_dict_ema = self.shared_step(batch)
|
425 |
-
loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
|
426 |
-
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
427 |
-
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
|
428 |
-
|
429 |
-
def on_train_batch_end(self, *args, **kwargs):
|
430 |
-
if self.use_ema:
|
431 |
-
self.model_ema(self.model)
|
432 |
-
|
433 |
-
def _get_rows_from_list(self, samples):
|
434 |
-
n_imgs_per_row = len(samples)
|
435 |
-
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
|
436 |
-
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
437 |
-
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
438 |
-
return denoise_grid
|
439 |
-
|
440 |
-
@torch.no_grad()
|
441 |
-
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
|
442 |
-
log = dict()
|
443 |
-
x = self.get_input(batch, self.first_stage_key)
|
444 |
-
N = min(x.shape[0], N)
|
445 |
-
n_row = min(x.shape[0], n_row)
|
446 |
-
x = x.to(self.device)[:N]
|
447 |
-
log["inputs"] = x
|
448 |
-
|
449 |
-
# get diffusion row
|
450 |
-
diffusion_row = list()
|
451 |
-
x_start = x[:n_row]
|
452 |
-
|
453 |
-
for t in range(self.num_timesteps):
|
454 |
-
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
455 |
-
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
456 |
-
t = t.to(self.device).long()
|
457 |
-
noise = torch.randn_like(x_start)
|
458 |
-
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
459 |
-
diffusion_row.append(x_noisy)
|
460 |
-
|
461 |
-
log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
|
462 |
-
|
463 |
-
if sample:
|
464 |
-
# get denoise row
|
465 |
-
with self.ema_scope("Plotting"):
|
466 |
-
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
|
467 |
-
|
468 |
-
log["samples"] = samples
|
469 |
-
log["denoise_row"] = self._get_rows_from_list(denoise_row)
|
470 |
-
|
471 |
-
if return_keys:
|
472 |
-
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
473 |
-
return log
|
474 |
-
else:
|
475 |
-
return {key: log[key] for key in return_keys}
|
476 |
-
return log
|
477 |
-
|
478 |
-
def configure_optimizers(self):
|
479 |
-
lr = self.learning_rate
|
480 |
-
params = list(self.model.parameters())
|
481 |
-
if self.learn_logvar:
|
482 |
-
params = params + [self.logvar]
|
483 |
-
opt = torch.optim.AdamW(params, lr=lr)
|
484 |
-
return opt
|
485 |
-
|
486 |
-
|
487 |
-
class LatentDiffusion(DDPM):
|
488 |
-
"""main class"""
|
489 |
-
def __init__(self,
|
490 |
-
first_stage_config,
|
491 |
-
cond_stage_config,
|
492 |
-
num_timesteps_cond=None,
|
493 |
-
cond_stage_key="image",
|
494 |
-
cond_stage_trainable=False,
|
495 |
-
concat_mode=True,
|
496 |
-
cond_stage_forward=None,
|
497 |
-
conditioning_key=None,
|
498 |
-
scale_factor=1.0,
|
499 |
-
scale_by_std=False,
|
500 |
-
unet_trainable=True,
|
501 |
-
*args, **kwargs):
|
502 |
-
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
503 |
-
self.scale_by_std = scale_by_std
|
504 |
-
assert self.num_timesteps_cond <= kwargs['timesteps']
|
505 |
-
# for backwards compatibility after implementation of DiffusionWrapper
|
506 |
-
if conditioning_key is None:
|
507 |
-
conditioning_key = 'concat' if concat_mode else 'crossattn'
|
508 |
-
if cond_stage_config == '__is_unconditional__':
|
509 |
-
conditioning_key = None
|
510 |
-
ckpt_path = kwargs.pop("ckpt_path", None)
|
511 |
-
ignore_keys = kwargs.pop("ignore_keys", [])
|
512 |
-
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
513 |
-
self.concat_mode = concat_mode
|
514 |
-
self.cond_stage_trainable = cond_stage_trainable
|
515 |
-
self.unet_trainable = unet_trainable
|
516 |
-
self.cond_stage_key = cond_stage_key
|
517 |
-
try:
|
518 |
-
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
519 |
-
except:
|
520 |
-
self.num_downs = 0
|
521 |
-
if not scale_by_std:
|
522 |
-
self.scale_factor = scale_factor
|
523 |
-
else:
|
524 |
-
self.register_buffer('scale_factor', torch.tensor(scale_factor))
|
525 |
-
self.instantiate_first_stage(first_stage_config)
|
526 |
-
self.instantiate_cond_stage(cond_stage_config)
|
527 |
-
self.cond_stage_forward = cond_stage_forward
|
528 |
-
self.clip_denoised = False
|
529 |
-
self.bbox_tokenizer = None
|
530 |
-
|
531 |
-
self.restarted_from_ckpt = False
|
532 |
-
if ckpt_path is not None:
|
533 |
-
self.init_from_ckpt(ckpt_path, ignore_keys)
|
534 |
-
self.restarted_from_ckpt = True
|
535 |
-
|
536 |
-
def make_cond_schedule(self, ):
|
537 |
-
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
|
538 |
-
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
|
539 |
-
self.cond_ids[:self.num_timesteps_cond] = ids
|
540 |
-
|
541 |
-
@rank_zero_only
|
542 |
-
@torch.no_grad()
|
543 |
-
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
|
544 |
-
# only for very first batch
|
545 |
-
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
|
546 |
-
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
|
547 |
-
# set rescale weight to 1./std of encodings
|
548 |
-
print("### USING STD-RESCALING ###")
|
549 |
-
x = super().get_input(batch, self.first_stage_key)
|
550 |
-
x = x.to(self.device)
|
551 |
-
encoder_posterior = self.encode_first_stage(x)
|
552 |
-
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
553 |
-
del self.scale_factor
|
554 |
-
self.register_buffer('scale_factor', 1. / z.flatten().std())
|
555 |
-
print(f"setting self.scale_factor to {self.scale_factor}")
|
556 |
-
print("### USING STD-RESCALING ###")
|
557 |
-
|
558 |
-
def register_schedule(self,
|
559 |
-
given_betas=None, beta_schedule="linear", timesteps=1000,
|
560 |
-
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
561 |
-
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
|
562 |
-
|
563 |
-
self.shorten_cond_schedule = self.num_timesteps_cond > 1
|
564 |
-
if self.shorten_cond_schedule:
|
565 |
-
self.make_cond_schedule()
|
566 |
-
|
567 |
-
def instantiate_first_stage(self, config):
|
568 |
-
model = instantiate_from_config(config)
|
569 |
-
self.first_stage_model = model.eval()
|
570 |
-
self.first_stage_model.train = disabled_train
|
571 |
-
for param in self.first_stage_model.parameters():
|
572 |
-
param.requires_grad = False
|
573 |
-
|
574 |
-
def instantiate_cond_stage(self, config):
|
575 |
-
if not self.cond_stage_trainable:
|
576 |
-
if config == "__is_first_stage__":
|
577 |
-
print("Using first stage also as cond stage.")
|
578 |
-
self.cond_stage_model = self.first_stage_model
|
579 |
-
elif config == "__is_unconditional__":
|
580 |
-
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
581 |
-
self.cond_stage_model = None
|
582 |
-
# self.be_unconditional = True
|
583 |
-
else:
|
584 |
-
model = instantiate_from_config(config)
|
585 |
-
self.cond_stage_model = model.eval()
|
586 |
-
# self.cond_stage_model.train = disabled_train
|
587 |
-
for param in self.cond_stage_model.parameters():
|
588 |
-
param.requires_grad = False
|
589 |
-
else:
|
590 |
-
assert config != '__is_first_stage__'
|
591 |
-
assert config != '__is_unconditional__'
|
592 |
-
model = instantiate_from_config(config)
|
593 |
-
self.cond_stage_model = model
|
594 |
-
|
595 |
-
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
|
596 |
-
denoise_row = []
|
597 |
-
for zd in tqdm(samples, desc=desc):
|
598 |
-
denoise_row.append(self.decode_first_stage(zd.to(self.device),
|
599 |
-
force_not_quantize=force_no_decoder_quantization))
|
600 |
-
n_imgs_per_row = len(denoise_row)
|
601 |
-
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
|
602 |
-
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
|
603 |
-
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
|
604 |
-
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
|
605 |
-
return denoise_grid
|
606 |
-
|
607 |
-
def get_first_stage_encoding(self, encoder_posterior):
|
608 |
-
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
609 |
-
z = encoder_posterior.sample()
|
610 |
-
elif isinstance(encoder_posterior, torch.Tensor):
|
611 |
-
z = encoder_posterior
|
612 |
-
else:
|
613 |
-
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
|
614 |
-
return self.scale_factor * z
|
615 |
-
|
616 |
-
def get_learned_conditioning(self, c):
|
617 |
-
if self.cond_stage_forward is None:
|
618 |
-
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
|
619 |
-
c = self.cond_stage_model.encode(c)
|
620 |
-
if isinstance(c, DiagonalGaussianDistribution):
|
621 |
-
c = c.mode()
|
622 |
-
else:
|
623 |
-
c = self.cond_stage_model(c)
|
624 |
-
else:
|
625 |
-
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
626 |
-
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
627 |
-
return c
|
628 |
-
|
629 |
-
def meshgrid(self, h, w):
|
630 |
-
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
|
631 |
-
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
|
632 |
-
|
633 |
-
arr = torch.cat([y, x], dim=-1)
|
634 |
-
return arr
|
635 |
-
|
636 |
-
def delta_border(self, h, w):
|
637 |
-
"""
|
638 |
-
:param h: height
|
639 |
-
:param w: width
|
640 |
-
:return: normalized distance to image border,
|
641 |
-
wtith min distance = 0 at border and max dist = 0.5 at image center
|
642 |
-
"""
|
643 |
-
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
|
644 |
-
arr = self.meshgrid(h, w) / lower_right_corner
|
645 |
-
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
|
646 |
-
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
|
647 |
-
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
|
648 |
-
return edge_dist
|
649 |
-
|
650 |
-
def get_weighting(self, h, w, Ly, Lx, device):
|
651 |
-
weighting = self.delta_border(h, w)
|
652 |
-
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
|
653 |
-
self.split_input_params["clip_max_weight"], )
|
654 |
-
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
|
655 |
-
|
656 |
-
if self.split_input_params["tie_braker"]:
|
657 |
-
L_weighting = self.delta_border(Ly, Lx)
|
658 |
-
L_weighting = torch.clip(L_weighting,
|
659 |
-
self.split_input_params["clip_min_tie_weight"],
|
660 |
-
self.split_input_params["clip_max_tie_weight"])
|
661 |
-
|
662 |
-
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
|
663 |
-
weighting = weighting * L_weighting
|
664 |
-
return weighting
|
665 |
-
|
666 |
-
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
|
667 |
-
"""
|
668 |
-
:param x: img of size (bs, c, h, w)
|
669 |
-
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
|
670 |
-
"""
|
671 |
-
bs, nc, h, w = x.shape
|
672 |
-
|
673 |
-
# number of crops in image
|
674 |
-
Ly = (h - kernel_size[0]) // stride[0] + 1
|
675 |
-
Lx = (w - kernel_size[1]) // stride[1] + 1
|
676 |
-
|
677 |
-
if uf == 1 and df == 1:
|
678 |
-
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
679 |
-
unfold = torch.nn.Unfold(**fold_params)
|
680 |
-
|
681 |
-
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
|
682 |
-
|
683 |
-
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
|
684 |
-
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
|
685 |
-
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
|
686 |
-
|
687 |
-
elif uf > 1 and df == 1:
|
688 |
-
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
689 |
-
unfold = torch.nn.Unfold(**fold_params)
|
690 |
-
|
691 |
-
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
|
692 |
-
dilation=1, padding=0,
|
693 |
-
stride=(stride[0] * uf, stride[1] * uf))
|
694 |
-
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
|
695 |
-
|
696 |
-
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
|
697 |
-
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
|
698 |
-
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
|
699 |
-
|
700 |
-
elif df > 1 and uf == 1:
|
701 |
-
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
|
702 |
-
unfold = torch.nn.Unfold(**fold_params)
|
703 |
-
|
704 |
-
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
|
705 |
-
dilation=1, padding=0,
|
706 |
-
stride=(stride[0] // df, stride[1] // df))
|
707 |
-
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
|
708 |
-
|
709 |
-
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
|
710 |
-
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
|
711 |
-
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
|
712 |
-
|
713 |
-
else:
|
714 |
-
raise NotImplementedError
|
715 |
-
|
716 |
-
return fold, unfold, normalization, weighting
|
717 |
-
|
718 |
-
@torch.no_grad()
|
719 |
-
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
|
720 |
-
cond_key=None, return_original_cond=False, bs=None, return_x=False):
|
721 |
-
x = super().get_input(batch, k)
|
722 |
-
if bs is not None:
|
723 |
-
x = x[:bs]
|
724 |
-
x = x.to(self.device)
|
725 |
-
encoder_posterior = self.encode_first_stage(x)
|
726 |
-
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
727 |
-
|
728 |
-
if self.model.conditioning_key is not None:
|
729 |
-
if cond_key is None:
|
730 |
-
cond_key = self.cond_stage_key
|
731 |
-
if cond_key != self.first_stage_key:
|
732 |
-
if cond_key in ['caption', 'coordinates_bbox', "txt"]:
|
733 |
-
xc = batch[cond_key]
|
734 |
-
elif cond_key == 'class_label':
|
735 |
-
xc = batch
|
736 |
-
else:
|
737 |
-
xc = super().get_input(batch, cond_key).to(self.device)
|
738 |
-
else:
|
739 |
-
xc = x
|
740 |
-
if not self.cond_stage_trainable or force_c_encode:
|
741 |
-
if isinstance(xc, dict) or isinstance(xc, list):
|
742 |
-
c = self.get_learned_conditioning(xc)
|
743 |
-
else:
|
744 |
-
c = self.get_learned_conditioning(xc.to(self.device))
|
745 |
-
else:
|
746 |
-
c = xc
|
747 |
-
if bs is not None:
|
748 |
-
c = c[:bs]
|
749 |
-
|
750 |
-
if self.use_positional_encodings:
|
751 |
-
pos_x, pos_y = self.compute_latent_shifts(batch)
|
752 |
-
ckey = __conditioning_keys__[self.model.conditioning_key]
|
753 |
-
c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
|
754 |
-
|
755 |
-
else:
|
756 |
-
c = None
|
757 |
-
xc = None
|
758 |
-
if self.use_positional_encodings:
|
759 |
-
pos_x, pos_y = self.compute_latent_shifts(batch)
|
760 |
-
c = {'pos_x': pos_x, 'pos_y': pos_y}
|
761 |
-
out = [z, c]
|
762 |
-
if return_first_stage_outputs:
|
763 |
-
xrec = self.decode_first_stage(z)
|
764 |
-
out.extend([x, xrec])
|
765 |
-
if return_x:
|
766 |
-
out.extend([x])
|
767 |
-
if return_original_cond:
|
768 |
-
out.append(xc)
|
769 |
-
return out
|
770 |
-
|
771 |
-
@torch.no_grad()
|
772 |
-
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
773 |
-
if predict_cids:
|
774 |
-
if z.dim() == 4:
|
775 |
-
z = torch.argmax(z.exp(), dim=1).long()
|
776 |
-
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
777 |
-
z = rearrange(z, 'b h w c -> b c h w').contiguous()
|
778 |
-
|
779 |
-
z = 1. / self.scale_factor * z
|
780 |
-
|
781 |
-
if hasattr(self, "split_input_params"):
|
782 |
-
if self.split_input_params["patch_distributed_vq"]:
|
783 |
-
ks = self.split_input_params["ks"] # eg. (128, 128)
|
784 |
-
stride = self.split_input_params["stride"] # eg. (64, 64)
|
785 |
-
uf = self.split_input_params["vqf"]
|
786 |
-
bs, nc, h, w = z.shape
|
787 |
-
if ks[0] > h or ks[1] > w:
|
788 |
-
ks = (min(ks[0], h), min(ks[1], w))
|
789 |
-
print("reducing Kernel")
|
790 |
-
|
791 |
-
if stride[0] > h or stride[1] > w:
|
792 |
-
stride = (min(stride[0], h), min(stride[1], w))
|
793 |
-
print("reducing stride")
|
794 |
-
|
795 |
-
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
|
796 |
-
|
797 |
-
z = unfold(z) # (bn, nc * prod(**ks), L)
|
798 |
-
# 1. Reshape to img shape
|
799 |
-
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
800 |
-
|
801 |
-
# 2. apply model loop over last dim
|
802 |
-
if isinstance(self.first_stage_model, VQModelInterface):
|
803 |
-
output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
|
804 |
-
force_not_quantize=predict_cids or force_not_quantize)
|
805 |
-
for i in range(z.shape[-1])]
|
806 |
-
else:
|
807 |
-
|
808 |
-
output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
|
809 |
-
for i in range(z.shape[-1])]
|
810 |
-
|
811 |
-
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
|
812 |
-
o = o * weighting
|
813 |
-
# Reverse 1. reshape to img shape
|
814 |
-
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
815 |
-
# stitch crops together
|
816 |
-
decoded = fold(o)
|
817 |
-
decoded = decoded / normalization # norm is shape (1, 1, h, w)
|
818 |
-
return decoded
|
819 |
-
else:
|
820 |
-
if isinstance(self.first_stage_model, VQModelInterface):
|
821 |
-
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
822 |
-
else:
|
823 |
-
return self.first_stage_model.decode(z)
|
824 |
-
|
825 |
-
else:
|
826 |
-
if isinstance(self.first_stage_model, VQModelInterface):
|
827 |
-
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
|
828 |
-
else:
|
829 |
-
return self.first_stage_model.decode(z)
|
830 |
-
|
831 |
-
@torch.no_grad()
|
832 |
-
def encode_first_stage(self, x):
|
833 |
-
if hasattr(self, "split_input_params"):
|
834 |
-
if self.split_input_params["patch_distributed_vq"]:
|
835 |
-
ks = self.split_input_params["ks"] # eg. (128, 128)
|
836 |
-
stride = self.split_input_params["stride"] # eg. (64, 64)
|
837 |
-
df = self.split_input_params["vqf"]
|
838 |
-
self.split_input_params['original_image_size'] = x.shape[-2:]
|
839 |
-
bs, nc, h, w = x.shape
|
840 |
-
if ks[0] > h or ks[1] > w:
|
841 |
-
ks = (min(ks[0], h), min(ks[1], w))
|
842 |
-
print("reducing Kernel")
|
843 |
-
|
844 |
-
if stride[0] > h or stride[1] > w:
|
845 |
-
stride = (min(stride[0], h), min(stride[1], w))
|
846 |
-
print("reducing stride")
|
847 |
-
|
848 |
-
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
|
849 |
-
z = unfold(x) # (bn, nc * prod(**ks), L)
|
850 |
-
# Reshape to img shape
|
851 |
-
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
852 |
-
|
853 |
-
output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
|
854 |
-
for i in range(z.shape[-1])]
|
855 |
-
|
856 |
-
o = torch.stack(output_list, axis=-1)
|
857 |
-
o = o * weighting
|
858 |
-
|
859 |
-
# Reverse reshape to img shape
|
860 |
-
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
861 |
-
# stitch crops together
|
862 |
-
decoded = fold(o)
|
863 |
-
decoded = decoded / normalization
|
864 |
-
return decoded
|
865 |
-
|
866 |
-
else:
|
867 |
-
return self.first_stage_model.encode(x)
|
868 |
-
else:
|
869 |
-
return self.first_stage_model.encode(x)
|
870 |
-
|
871 |
-
def shared_step(self, batch, **kwargs):
|
872 |
-
x, c = self.get_input(batch, self.first_stage_key)
|
873 |
-
loss = self(x, c)
|
874 |
-
return loss
|
875 |
-
|
876 |
-
def forward(self, x, c, *args, **kwargs):
|
877 |
-
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
|
878 |
-
if self.model.conditioning_key is not None:
|
879 |
-
assert c is not None
|
880 |
-
if self.cond_stage_trainable:
|
881 |
-
c = self.get_learned_conditioning(c)
|
882 |
-
if self.shorten_cond_schedule: # TODO: drop this option
|
883 |
-
tc = self.cond_ids[t].to(self.device)
|
884 |
-
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
|
885 |
-
return self.p_losses(x, c, t, *args, **kwargs)
|
886 |
-
|
887 |
-
def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
|
888 |
-
def rescale_bbox(bbox):
|
889 |
-
x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
|
890 |
-
y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
|
891 |
-
w = min(bbox[2] / crop_coordinates[2], 1 - x0)
|
892 |
-
h = min(bbox[3] / crop_coordinates[3], 1 - y0)
|
893 |
-
return x0, y0, w, h
|
894 |
-
|
895 |
-
return [rescale_bbox(b) for b in bboxes]
|
896 |
-
|
897 |
-
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
898 |
-
|
899 |
-
if isinstance(cond, dict):
|
900 |
-
# hybrid case, cond is exptected to be a dict
|
901 |
-
pass
|
902 |
-
else:
|
903 |
-
if not isinstance(cond, list):
|
904 |
-
cond = [cond]
|
905 |
-
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
|
906 |
-
cond = {key: cond}
|
907 |
-
|
908 |
-
if hasattr(self, "split_input_params"):
|
909 |
-
assert len(cond) == 1 # todo can only deal with one conditioning atm
|
910 |
-
assert not return_ids
|
911 |
-
ks = self.split_input_params["ks"] # eg. (128, 128)
|
912 |
-
stride = self.split_input_params["stride"] # eg. (64, 64)
|
913 |
-
|
914 |
-
h, w = x_noisy.shape[-2:]
|
915 |
-
|
916 |
-
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
|
917 |
-
|
918 |
-
z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
|
919 |
-
# Reshape to img shape
|
920 |
-
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
921 |
-
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
|
922 |
-
|
923 |
-
if self.cond_stage_key in ["image", "LR_image", "segmentation",
|
924 |
-
'bbox_img'] and self.model.conditioning_key: # todo check for completeness
|
925 |
-
c_key = next(iter(cond.keys())) # get key
|
926 |
-
c = next(iter(cond.values())) # get value
|
927 |
-
assert (len(c) == 1) # todo extend to list with more than one elem
|
928 |
-
c = c[0] # get element
|
929 |
-
|
930 |
-
c = unfold(c)
|
931 |
-
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
|
932 |
-
|
933 |
-
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
|
934 |
-
|
935 |
-
elif self.cond_stage_key == 'coordinates_bbox':
|
936 |
-
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
|
937 |
-
|
938 |
-
# assuming padding of unfold is always 0 and its dilation is always 1
|
939 |
-
n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
|
940 |
-
full_img_h, full_img_w = self.split_input_params['original_image_size']
|
941 |
-
# as we are operating on latents, we need the factor from the original image size to the
|
942 |
-
# spatial latent size to properly rescale the crops for regenerating the bbox annotations
|
943 |
-
num_downs = self.first_stage_model.encoder.num_resolutions - 1
|
944 |
-
rescale_latent = 2 ** (num_downs)
|
945 |
-
|
946 |
-
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we
|
947 |
-
# need to rescale the tl patch coordinates to be in between (0,1)
|
948 |
-
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
|
949 |
-
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
|
950 |
-
for patch_nr in range(z.shape[-1])]
|
951 |
-
|
952 |
-
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
|
953 |
-
patch_limits = [(x_tl, y_tl,
|
954 |
-
rescale_latent * ks[0] / full_img_w,
|
955 |
-
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
|
956 |
-
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
|
957 |
-
|
958 |
-
# tokenize crop coordinates for the bounding boxes of the respective patches
|
959 |
-
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
|
960 |
-
for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
|
961 |
-
print(patch_limits_tknzd[0].shape)
|
962 |
-
# cut tknzd crop position from conditioning
|
963 |
-
assert isinstance(cond, dict), 'cond must be dict to be fed into model'
|
964 |
-
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
|
965 |
-
print(cut_cond.shape)
|
966 |
-
|
967 |
-
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
|
968 |
-
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
|
969 |
-
print(adapted_cond.shape)
|
970 |
-
adapted_cond = self.get_learned_conditioning(adapted_cond)
|
971 |
-
print(adapted_cond.shape)
|
972 |
-
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
|
973 |
-
print(adapted_cond.shape)
|
974 |
-
|
975 |
-
cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
|
976 |
-
|
977 |
-
else:
|
978 |
-
cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
|
979 |
-
|
980 |
-
# apply model by loop over crops
|
981 |
-
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
|
982 |
-
assert not isinstance(output_list[0],
|
983 |
-
tuple) # todo cant deal with multiple model outputs check this never happens
|
984 |
-
|
985 |
-
o = torch.stack(output_list, axis=-1)
|
986 |
-
o = o * weighting
|
987 |
-
# Reverse reshape to img shape
|
988 |
-
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
989 |
-
# stitch crops together
|
990 |
-
x_recon = fold(o) / normalization
|
991 |
-
|
992 |
-
else:
|
993 |
-
x_recon = self.model(x_noisy, t, **cond)
|
994 |
-
|
995 |
-
if isinstance(x_recon, tuple) and not return_ids:
|
996 |
-
return x_recon[0]
|
997 |
-
else:
|
998 |
-
return x_recon
|
999 |
-
|
1000 |
-
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
1001 |
-
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
|
1002 |
-
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
1003 |
-
|
1004 |
-
def _prior_bpd(self, x_start):
|
1005 |
-
"""
|
1006 |
-
Get the prior KL term for the variational lower-bound, measured in
|
1007 |
-
bits-per-dim.
|
1008 |
-
This term can't be optimized, as it only depends on the encoder.
|
1009 |
-
:param x_start: the [N x C x ...] tensor of inputs.
|
1010 |
-
:return: a batch of [N] KL values (in bits), one per batch element.
|
1011 |
-
"""
|
1012 |
-
batch_size = x_start.shape[0]
|
1013 |
-
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
1014 |
-
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
1015 |
-
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
|
1016 |
-
return mean_flat(kl_prior) / np.log(2.0)
|
1017 |
-
|
1018 |
-
def p_losses(self, x_start, cond, t, noise=None):
|
1019 |
-
noise = default(noise, lambda: torch.randn_like(x_start))
|
1020 |
-
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
|
1021 |
-
model_output = self.apply_model(x_noisy, t, cond)
|
1022 |
-
|
1023 |
-
loss_dict = {}
|
1024 |
-
prefix = 'train' if self.training else 'val'
|
1025 |
-
|
1026 |
-
if self.parameterization == "x0":
|
1027 |
-
target = x_start
|
1028 |
-
elif self.parameterization == "eps":
|
1029 |
-
target = noise
|
1030 |
-
else:
|
1031 |
-
raise NotImplementedError()
|
1032 |
-
|
1033 |
-
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
|
1034 |
-
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
|
1035 |
-
|
1036 |
-
logvar_t = self.logvar[t].to(self.device)
|
1037 |
-
loss = loss_simple / torch.exp(logvar_t) + logvar_t
|
1038 |
-
# loss = loss_simple / torch.exp(self.logvar) + self.logvar
|
1039 |
-
if self.learn_logvar:
|
1040 |
-
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
|
1041 |
-
loss_dict.update({'logvar': self.logvar.data.mean()})
|
1042 |
-
|
1043 |
-
loss = self.l_simple_weight * loss.mean()
|
1044 |
-
|
1045 |
-
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
|
1046 |
-
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
|
1047 |
-
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
|
1048 |
-
loss += (self.original_elbo_weight * loss_vlb)
|
1049 |
-
loss_dict.update({f'{prefix}/loss': loss})
|
1050 |
-
|
1051 |
-
return loss, loss_dict
|
1052 |
-
|
1053 |
-
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
|
1054 |
-
return_x0=False, score_corrector=None, corrector_kwargs=None):
|
1055 |
-
t_in = t
|
1056 |
-
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
|
1057 |
-
|
1058 |
-
if score_corrector is not None:
|
1059 |
-
assert self.parameterization == "eps"
|
1060 |
-
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
|
1061 |
-
|
1062 |
-
if return_codebook_ids:
|
1063 |
-
model_out, logits = model_out
|
1064 |
-
|
1065 |
-
if self.parameterization == "eps":
|
1066 |
-
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
|
1067 |
-
elif self.parameterization == "x0":
|
1068 |
-
x_recon = model_out
|
1069 |
-
else:
|
1070 |
-
raise NotImplementedError()
|
1071 |
-
|
1072 |
-
if clip_denoised:
|
1073 |
-
x_recon.clamp_(-1., 1.)
|
1074 |
-
if quantize_denoised:
|
1075 |
-
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
|
1076 |
-
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
|
1077 |
-
if return_codebook_ids:
|
1078 |
-
return model_mean, posterior_variance, posterior_log_variance, logits
|
1079 |
-
elif return_x0:
|
1080 |
-
return model_mean, posterior_variance, posterior_log_variance, x_recon
|
1081 |
-
else:
|
1082 |
-
return model_mean, posterior_variance, posterior_log_variance
|
1083 |
-
|
1084 |
-
@torch.no_grad()
|
1085 |
-
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
1086 |
-
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
1087 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
1088 |
-
b, *_, device = *x.shape, x.device
|
1089 |
-
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
1090 |
-
return_codebook_ids=return_codebook_ids,
|
1091 |
-
quantize_denoised=quantize_denoised,
|
1092 |
-
return_x0=return_x0,
|
1093 |
-
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1094 |
-
if return_codebook_ids:
|
1095 |
-
raise DeprecationWarning("Support dropped.")
|
1096 |
-
model_mean, _, model_log_variance, logits = outputs
|
1097 |
-
elif return_x0:
|
1098 |
-
model_mean, _, model_log_variance, x0 = outputs
|
1099 |
-
else:
|
1100 |
-
model_mean, _, model_log_variance = outputs
|
1101 |
-
|
1102 |
-
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1103 |
-
if noise_dropout > 0.:
|
1104 |
-
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1105 |
-
# no noise when t == 0
|
1106 |
-
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1107 |
-
|
1108 |
-
if return_codebook_ids:
|
1109 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
1110 |
-
if return_x0:
|
1111 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
1112 |
-
else:
|
1113 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
|
1114 |
-
|
1115 |
-
@torch.no_grad()
|
1116 |
-
def p_sample_edit(self, x, c, t, clip_denoised=False, repeat_noise=False,
|
1117 |
-
return_codebook_ids=False, quantize_denoised=False, return_x0=False,
|
1118 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
|
1119 |
-
b, *_, device = *x.shape, x.device
|
1120 |
-
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
|
1121 |
-
return_codebook_ids=return_codebook_ids,
|
1122 |
-
quantize_denoised=quantize_denoised,
|
1123 |
-
return_x0=return_x0,
|
1124 |
-
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1125 |
-
if return_codebook_ids:
|
1126 |
-
raise DeprecationWarning("Support dropped.")
|
1127 |
-
model_mean, _, model_log_variance, logits = outputs
|
1128 |
-
elif return_x0:
|
1129 |
-
model_mean, _, model_log_variance, x0 = outputs
|
1130 |
-
else:
|
1131 |
-
model_mean, _, model_log_variance = outputs
|
1132 |
-
|
1133 |
-
noise = noise_like(x.shape, device, repeat_noise) * temperature
|
1134 |
-
if noise_dropout > 0.:
|
1135 |
-
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
1136 |
-
# no noise when t == 0
|
1137 |
-
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
|
1138 |
-
|
1139 |
-
if return_codebook_ids:
|
1140 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
|
1141 |
-
if return_x0:
|
1142 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
|
1143 |
-
else:
|
1144 |
-
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, noise
|
1145 |
-
|
1146 |
-
@torch.no_grad()
|
1147 |
-
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
|
1148 |
-
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
|
1149 |
-
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
|
1150 |
-
log_every_t=None):
|
1151 |
-
if not log_every_t:
|
1152 |
-
log_every_t = self.log_every_t
|
1153 |
-
timesteps = self.num_timesteps
|
1154 |
-
if batch_size is not None:
|
1155 |
-
b = batch_size if batch_size is not None else shape[0]
|
1156 |
-
shape = [batch_size] + list(shape)
|
1157 |
-
else:
|
1158 |
-
b = batch_size = shape[0]
|
1159 |
-
if x_T is None:
|
1160 |
-
img = torch.randn(shape, device=self.device)
|
1161 |
-
else:
|
1162 |
-
img = x_T
|
1163 |
-
intermediates = []
|
1164 |
-
if cond is not None:
|
1165 |
-
if isinstance(cond, dict):
|
1166 |
-
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1167 |
-
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1168 |
-
else:
|
1169 |
-
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1170 |
-
|
1171 |
-
if start_T is not None:
|
1172 |
-
timesteps = min(timesteps, start_T)
|
1173 |
-
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
|
1174 |
-
total=timesteps) if verbose else reversed(
|
1175 |
-
range(0, timesteps))
|
1176 |
-
if type(temperature) == float:
|
1177 |
-
temperature = [temperature] * timesteps
|
1178 |
-
|
1179 |
-
for i in iterator:
|
1180 |
-
ts = torch.full((b,), i, device=self.device, dtype=torch.long)
|
1181 |
-
if self.shorten_cond_schedule:
|
1182 |
-
assert self.model.conditioning_key != 'hybrid'
|
1183 |
-
tc = self.cond_ids[ts].to(cond.device)
|
1184 |
-
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1185 |
-
|
1186 |
-
img, x0_partial = self.p_sample(img, cond, ts,
|
1187 |
-
clip_denoised=self.clip_denoised,
|
1188 |
-
quantize_denoised=quantize_denoised, return_x0=True,
|
1189 |
-
temperature=temperature[i], noise_dropout=noise_dropout,
|
1190 |
-
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
|
1191 |
-
if mask is not None:
|
1192 |
-
assert x0 is not None
|
1193 |
-
img_orig = self.q_sample(x0, ts)
|
1194 |
-
img = img_orig * mask + (1. - mask) * img
|
1195 |
-
|
1196 |
-
if i % log_every_t == 0 or i == timesteps - 1:
|
1197 |
-
intermediates.append(x0_partial)
|
1198 |
-
if callback: callback(i)
|
1199 |
-
if img_callback: img_callback(img, i)
|
1200 |
-
return img, intermediates
|
1201 |
-
|
1202 |
-
@torch.no_grad()
|
1203 |
-
def p_sample_loop(self, cond, shape, return_intermediates=False,
|
1204 |
-
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
|
1205 |
-
mask=None, x0=None, img_callback=None, start_T=None,
|
1206 |
-
log_every_t=None, till_T=None):
|
1207 |
-
|
1208 |
-
if not log_every_t:
|
1209 |
-
log_every_t = self.log_every_t
|
1210 |
-
device = self.betas.device
|
1211 |
-
b = shape[0]
|
1212 |
-
if x_T is None:
|
1213 |
-
img = torch.randn(shape, device=device)
|
1214 |
-
else:
|
1215 |
-
img = x_T
|
1216 |
-
|
1217 |
-
intermediates = [img]
|
1218 |
-
if timesteps is None:
|
1219 |
-
timesteps = self.num_timesteps
|
1220 |
-
|
1221 |
-
if start_T is not None:
|
1222 |
-
timesteps = min(timesteps, start_T)
|
1223 |
-
if till_T is not None:
|
1224 |
-
till = till_T
|
1225 |
-
else:
|
1226 |
-
till = 0
|
1227 |
-
iterator = tqdm(reversed(range(till, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1228 |
-
range(till, timesteps))
|
1229 |
-
|
1230 |
-
if mask is not None:
|
1231 |
-
assert x0 is not None
|
1232 |
-
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
|
1233 |
-
|
1234 |
-
for i in iterator:
|
1235 |
-
ts = torch.full((b,), i, device=device, dtype=torch.long)
|
1236 |
-
if self.shorten_cond_schedule:
|
1237 |
-
assert self.model.conditioning_key != 'hybrid'
|
1238 |
-
tc = self.cond_ids[ts].to(cond.device)
|
1239 |
-
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
|
1240 |
-
|
1241 |
-
img = self.p_sample(img, cond, ts,
|
1242 |
-
clip_denoised=self.clip_denoised,
|
1243 |
-
quantize_denoised=quantize_denoised)
|
1244 |
-
if mask is not None:
|
1245 |
-
img_orig = self.q_sample(x0, ts)
|
1246 |
-
img = img_orig * mask + (1. - mask) * img
|
1247 |
-
|
1248 |
-
if i % log_every_t == 0 or i == timesteps - 1:
|
1249 |
-
intermediates.append(img)
|
1250 |
-
if callback: callback(i)
|
1251 |
-
if img_callback: img_callback(img, i)
|
1252 |
-
|
1253 |
-
if return_intermediates:
|
1254 |
-
return img, intermediates
|
1255 |
-
return img
|
1256 |
-
|
1257 |
-
@torch.no_grad()
|
1258 |
-
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1259 |
-
verbose=True, timesteps=None, quantize_denoised=False,
|
1260 |
-
mask=None, x0=None, till_T=None, shape=None,**kwargs):
|
1261 |
-
if shape is None:
|
1262 |
-
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1263 |
-
if cond is not None:
|
1264 |
-
if isinstance(cond, dict):
|
1265 |
-
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
|
1266 |
-
list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
|
1267 |
-
else:
|
1268 |
-
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
|
1269 |
-
return self.p_sample_loop(cond,
|
1270 |
-
shape,
|
1271 |
-
return_intermediates=return_intermediates, x_T=x_T,
|
1272 |
-
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
|
1273 |
-
mask=mask, x0=x0,till_T=till_T)
|
1274 |
-
|
1275 |
-
@torch.no_grad()
|
1276 |
-
def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
|
1277 |
-
if ddim:
|
1278 |
-
ddim_sampler = DDIMSampler(self)
|
1279 |
-
shape = (self.channels, self.image_size, self.image_size)
|
1280 |
-
samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
|
1281 |
-
shape, cond, verbose=False, **kwargs)
|
1282 |
-
|
1283 |
-
else:
|
1284 |
-
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
1285 |
-
return_intermediates=True, **kwargs)
|
1286 |
-
|
1287 |
-
return samples, intermediates
|
1288 |
-
|
1289 |
-
@torch.no_grad()
|
1290 |
-
def get_unconditional_conditioning(self, batch_size, null_label=None):
|
1291 |
-
if null_label is not None:
|
1292 |
-
xc = null_label
|
1293 |
-
if isinstance(xc, ListConfig):
|
1294 |
-
xc = list(xc)
|
1295 |
-
if isinstance(xc, dict) or isinstance(xc, list):
|
1296 |
-
c = self.get_learned_conditioning(xc)
|
1297 |
-
else:
|
1298 |
-
if hasattr(xc, "to"):
|
1299 |
-
xc = xc.to(self.device)
|
1300 |
-
c = self.get_learned_conditioning(xc)
|
1301 |
-
else:
|
1302 |
-
# todo: get null label from cond_stage_model
|
1303 |
-
raise NotImplementedError()
|
1304 |
-
c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
|
1305 |
-
return c
|
1306 |
-
|
1307 |
-
@torch.no_grad()
|
1308 |
-
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1309 |
-
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1310 |
-
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
1311 |
-
use_ema_scope=True,
|
1312 |
-
**kwargs):
|
1313 |
-
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1314 |
-
use_ddim = ddim_steps is not None
|
1315 |
-
|
1316 |
-
log = dict()
|
1317 |
-
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1318 |
-
return_first_stage_outputs=True,
|
1319 |
-
force_c_encode=True,
|
1320 |
-
return_original_cond=True,
|
1321 |
-
bs=N)
|
1322 |
-
N = min(x.shape[0], N)
|
1323 |
-
n_row = min(x.shape[0], n_row)
|
1324 |
-
log["inputs"] = x
|
1325 |
-
log["reconstruction"] = xrec
|
1326 |
-
if self.model.conditioning_key is not None:
|
1327 |
-
if hasattr(self.cond_stage_model, "decode"):
|
1328 |
-
xc = self.cond_stage_model.decode(c)
|
1329 |
-
log["conditioning"] = xc
|
1330 |
-
elif self.cond_stage_key in ["caption", "txt"]:
|
1331 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
|
1332 |
-
log["conditioning"] = xc
|
1333 |
-
elif self.cond_stage_key == 'class_label':
|
1334 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
|
1335 |
-
log['conditioning'] = xc
|
1336 |
-
elif isimage(xc):
|
1337 |
-
log["conditioning"] = xc
|
1338 |
-
if ismap(xc):
|
1339 |
-
log["original_conditioning"] = self.to_rgb(xc)
|
1340 |
-
|
1341 |
-
if plot_diffusion_rows:
|
1342 |
-
# get diffusion row
|
1343 |
-
diffusion_row = list()
|
1344 |
-
z_start = z[:n_row]
|
1345 |
-
for t in range(self.num_timesteps):
|
1346 |
-
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1347 |
-
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1348 |
-
t = t.to(self.device).long()
|
1349 |
-
noise = torch.randn_like(z_start)
|
1350 |
-
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1351 |
-
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1352 |
-
|
1353 |
-
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1354 |
-
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1355 |
-
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1356 |
-
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1357 |
-
log["diffusion_row"] = diffusion_grid
|
1358 |
-
|
1359 |
-
if sample:
|
1360 |
-
# get denoise row
|
1361 |
-
with ema_scope("Sampling"):
|
1362 |
-
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1363 |
-
ddim_steps=ddim_steps,eta=ddim_eta)
|
1364 |
-
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1365 |
-
x_samples = self.decode_first_stage(samples)
|
1366 |
-
log["samples"] = x_samples
|
1367 |
-
if plot_denoise_rows:
|
1368 |
-
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1369 |
-
log["denoise_row"] = denoise_grid
|
1370 |
-
|
1371 |
-
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
|
1372 |
-
self.first_stage_model, IdentityFirstStage):
|
1373 |
-
# also display when quantizing x0 while sampling
|
1374 |
-
with ema_scope("Plotting Quantized Denoised"):
|
1375 |
-
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1376 |
-
ddim_steps=ddim_steps,eta=ddim_eta,
|
1377 |
-
quantize_denoised=True)
|
1378 |
-
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1379 |
-
# quantize_denoised=True)
|
1380 |
-
x_samples = self.decode_first_stage(samples.to(self.device))
|
1381 |
-
log["samples_x0_quantized"] = x_samples
|
1382 |
-
|
1383 |
-
if unconditional_guidance_scale > 1.0:
|
1384 |
-
uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1385 |
-
# uc = torch.zeros_like(c)
|
1386 |
-
with ema_scope("Sampling with classifier-free guidance"):
|
1387 |
-
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1388 |
-
ddim_steps=ddim_steps, eta=ddim_eta,
|
1389 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
1390 |
-
unconditional_conditioning=uc,
|
1391 |
-
)
|
1392 |
-
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1393 |
-
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1394 |
-
|
1395 |
-
if inpaint:
|
1396 |
-
# make a simple center square
|
1397 |
-
b, h, w = z.shape[0], z.shape[2], z.shape[3]
|
1398 |
-
mask = torch.ones(N, h, w).to(self.device)
|
1399 |
-
# zeros will be filled in
|
1400 |
-
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1401 |
-
mask = mask[:, None, ...]
|
1402 |
-
with ema_scope("Plotting Inpaint"):
|
1403 |
-
|
1404 |
-
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
1405 |
-
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1406 |
-
x_samples = self.decode_first_stage(samples.to(self.device))
|
1407 |
-
log["samples_inpainting"] = x_samples
|
1408 |
-
log["mask"] = mask
|
1409 |
-
|
1410 |
-
# outpaint
|
1411 |
-
mask = 1. - mask
|
1412 |
-
with ema_scope("Plotting Outpaint"):
|
1413 |
-
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
1414 |
-
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1415 |
-
x_samples = self.decode_first_stage(samples.to(self.device))
|
1416 |
-
log["samples_outpainting"] = x_samples
|
1417 |
-
|
1418 |
-
if plot_progressive_rows:
|
1419 |
-
with ema_scope("Plotting Progressives"):
|
1420 |
-
img, progressives = self.progressive_denoising(c,
|
1421 |
-
shape=(self.channels, self.image_size, self.image_size),
|
1422 |
-
batch_size=N)
|
1423 |
-
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1424 |
-
log["progressive_row"] = prog_row
|
1425 |
-
|
1426 |
-
if return_keys:
|
1427 |
-
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
|
1428 |
-
return log
|
1429 |
-
else:
|
1430 |
-
return {key: log[key] for key in return_keys}
|
1431 |
-
return log
|
1432 |
-
|
1433 |
-
def configure_optimizers(self):
|
1434 |
-
lr = self.learning_rate
|
1435 |
-
params = []
|
1436 |
-
if self.unet_trainable == "attn":
|
1437 |
-
print("Training only unet attention layers")
|
1438 |
-
for n, m in self.model.named_modules():
|
1439 |
-
if isinstance(m, CrossAttention) and n.endswith('attn2'):
|
1440 |
-
params.extend(m.parameters())
|
1441 |
-
elif self.unet_trainable is True or self.unet_trainable == "all":
|
1442 |
-
print("Training the full unet")
|
1443 |
-
params = list(self.model.parameters())
|
1444 |
-
else:
|
1445 |
-
raise ValueError(f"Unrecognised setting for unet_trainable: {self.unet_trainable}")
|
1446 |
-
|
1447 |
-
if self.cond_stage_trainable:
|
1448 |
-
print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
|
1449 |
-
params = params + list(self.cond_stage_model.parameters())
|
1450 |
-
if self.learn_logvar:
|
1451 |
-
print('Diffusion model optimizing logvar')
|
1452 |
-
params.append(self.logvar)
|
1453 |
-
opt = torch.optim.AdamW(params, lr=lr)
|
1454 |
-
if self.use_scheduler:
|
1455 |
-
assert 'target' in self.scheduler_config
|
1456 |
-
scheduler = instantiate_from_config(self.scheduler_config)
|
1457 |
-
|
1458 |
-
print("Setting up LambdaLR scheduler...")
|
1459 |
-
scheduler = [
|
1460 |
-
{
|
1461 |
-
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
|
1462 |
-
'interval': 'step',
|
1463 |
-
'frequency': 1
|
1464 |
-
}]
|
1465 |
-
return [opt], scheduler
|
1466 |
-
return opt
|
1467 |
-
|
1468 |
-
@torch.no_grad()
|
1469 |
-
def to_rgb(self, x):
|
1470 |
-
x = x.float()
|
1471 |
-
if not hasattr(self, "colorize"):
|
1472 |
-
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
|
1473 |
-
x = nn.functional.conv2d(x, weight=self.colorize)
|
1474 |
-
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
|
1475 |
-
return x
|
1476 |
-
|
1477 |
-
|
1478 |
-
class DiffusionWrapper(pl.LightningModule):
|
1479 |
-
def __init__(self, diff_model_config, conditioning_key):
|
1480 |
-
super().__init__()
|
1481 |
-
self.diffusion_model = instantiate_from_config(diff_model_config)
|
1482 |
-
self.conditioning_key = conditioning_key
|
1483 |
-
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm']
|
1484 |
-
|
1485 |
-
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
|
1486 |
-
if self.conditioning_key is None:
|
1487 |
-
out = self.diffusion_model(x, t)
|
1488 |
-
elif self.conditioning_key == 'concat':
|
1489 |
-
xc = torch.cat([x] + c_concat, dim=1)
|
1490 |
-
out = self.diffusion_model(xc, t)
|
1491 |
-
elif self.conditioning_key == 'crossattn':
|
1492 |
-
cc = torch.cat(c_crossattn, 1)
|
1493 |
-
out = self.diffusion_model(x, t, context=cc)
|
1494 |
-
elif self.conditioning_key == 'hybrid':
|
1495 |
-
xc = torch.cat([x] + c_concat, dim=1)
|
1496 |
-
cc = torch.cat(c_crossattn, 1)
|
1497 |
-
out = self.diffusion_model(xc, t, context=cc)
|
1498 |
-
elif self.conditioning_key == 'hybrid-adm':
|
1499 |
-
assert c_adm is not None
|
1500 |
-
xc = torch.cat([x] + c_concat, dim=1)
|
1501 |
-
cc = torch.cat(c_crossattn, 1)
|
1502 |
-
out = self.diffusion_model(xc, t, context=cc, y=c_adm)
|
1503 |
-
elif self.conditioning_key == 'adm':
|
1504 |
-
cc = c_crossattn[0]
|
1505 |
-
out = self.diffusion_model(x, t, y=cc)
|
1506 |
-
else:
|
1507 |
-
raise NotImplementedError()
|
1508 |
-
|
1509 |
-
return out
|
1510 |
-
|
1511 |
-
|
1512 |
-
class LatentUpscaleDiffusion(LatentDiffusion):
|
1513 |
-
def __init__(self, *args, low_scale_config, low_scale_key="LR", **kwargs):
|
1514 |
-
super().__init__(*args, **kwargs)
|
1515 |
-
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
|
1516 |
-
assert not self.cond_stage_trainable
|
1517 |
-
self.instantiate_low_stage(low_scale_config)
|
1518 |
-
self.low_scale_key = low_scale_key
|
1519 |
-
|
1520 |
-
def instantiate_low_stage(self, config):
|
1521 |
-
model = instantiate_from_config(config)
|
1522 |
-
self.low_scale_model = model.eval()
|
1523 |
-
self.low_scale_model.train = disabled_train
|
1524 |
-
for param in self.low_scale_model.parameters():
|
1525 |
-
param.requires_grad = False
|
1526 |
-
|
1527 |
-
@torch.no_grad()
|
1528 |
-
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
|
1529 |
-
if not log_mode:
|
1530 |
-
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
|
1531 |
-
else:
|
1532 |
-
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1533 |
-
force_c_encode=True, return_original_cond=True, bs=bs)
|
1534 |
-
x_low = batch[self.low_scale_key][:bs]
|
1535 |
-
x_low = rearrange(x_low, 'b h w c -> b c h w')
|
1536 |
-
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
1537 |
-
zx, noise_level = self.low_scale_model(x_low)
|
1538 |
-
all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
|
1539 |
-
#import pudb; pu.db
|
1540 |
-
if log_mode:
|
1541 |
-
# TODO: maybe disable if too expensive
|
1542 |
-
interpretability = False
|
1543 |
-
if interpretability:
|
1544 |
-
zx = zx[:, :, ::2, ::2]
|
1545 |
-
x_low_rec = self.low_scale_model.decode(zx)
|
1546 |
-
return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
|
1547 |
-
return z, all_conds
|
1548 |
-
|
1549 |
-
@torch.no_grad()
|
1550 |
-
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1551 |
-
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
|
1552 |
-
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
|
1553 |
-
**kwargs):
|
1554 |
-
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1555 |
-
use_ddim = ddim_steps is not None
|
1556 |
-
|
1557 |
-
log = dict()
|
1558 |
-
z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
|
1559 |
-
log_mode=True)
|
1560 |
-
N = min(x.shape[0], N)
|
1561 |
-
n_row = min(x.shape[0], n_row)
|
1562 |
-
log["inputs"] = x
|
1563 |
-
log["reconstruction"] = xrec
|
1564 |
-
log["x_lr"] = x_low
|
1565 |
-
log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
|
1566 |
-
if self.model.conditioning_key is not None:
|
1567 |
-
if hasattr(self.cond_stage_model, "decode"):
|
1568 |
-
xc = self.cond_stage_model.decode(c)
|
1569 |
-
log["conditioning"] = xc
|
1570 |
-
elif self.cond_stage_key in ["caption", "txt"]:
|
1571 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
|
1572 |
-
log["conditioning"] = xc
|
1573 |
-
elif self.cond_stage_key == 'class_label':
|
1574 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
|
1575 |
-
log['conditioning'] = xc
|
1576 |
-
elif isimage(xc):
|
1577 |
-
log["conditioning"] = xc
|
1578 |
-
if ismap(xc):
|
1579 |
-
log["original_conditioning"] = self.to_rgb(xc)
|
1580 |
-
|
1581 |
-
if plot_diffusion_rows:
|
1582 |
-
# get diffusion row
|
1583 |
-
diffusion_row = list()
|
1584 |
-
z_start = z[:n_row]
|
1585 |
-
for t in range(self.num_timesteps):
|
1586 |
-
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1587 |
-
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1588 |
-
t = t.to(self.device).long()
|
1589 |
-
noise = torch.randn_like(z_start)
|
1590 |
-
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1591 |
-
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1592 |
-
|
1593 |
-
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1594 |
-
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1595 |
-
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1596 |
-
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1597 |
-
log["diffusion_row"] = diffusion_grid
|
1598 |
-
|
1599 |
-
if sample:
|
1600 |
-
# get denoise row
|
1601 |
-
with ema_scope("Sampling"):
|
1602 |
-
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1603 |
-
ddim_steps=ddim_steps, eta=ddim_eta)
|
1604 |
-
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1605 |
-
x_samples = self.decode_first_stage(samples)
|
1606 |
-
log["samples"] = x_samples
|
1607 |
-
if plot_denoise_rows:
|
1608 |
-
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1609 |
-
log["denoise_row"] = denoise_grid
|
1610 |
-
|
1611 |
-
if unconditional_guidance_scale > 1.0:
|
1612 |
-
uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1613 |
-
# TODO explore better "unconditional" choices for the other keys
|
1614 |
-
# maybe guide away from empty text label and highest noise level and maximally degraded zx?
|
1615 |
-
uc = dict()
|
1616 |
-
for k in c:
|
1617 |
-
if k == "c_crossattn":
|
1618 |
-
assert isinstance(c[k], list) and len(c[k]) == 1
|
1619 |
-
uc[k] = [uc_tmp]
|
1620 |
-
elif k == "c_adm": # todo: only run with text-based guidance?
|
1621 |
-
assert isinstance(c[k], torch.Tensor)
|
1622 |
-
uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
|
1623 |
-
elif isinstance(c[k], list):
|
1624 |
-
uc[k] = [c[k][i] for i in range(len(c[k]))]
|
1625 |
-
else:
|
1626 |
-
uc[k] = c[k]
|
1627 |
-
|
1628 |
-
with ema_scope("Sampling with classifier-free guidance"):
|
1629 |
-
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1630 |
-
ddim_steps=ddim_steps, eta=ddim_eta,
|
1631 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
1632 |
-
unconditional_conditioning=uc,
|
1633 |
-
)
|
1634 |
-
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1635 |
-
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1636 |
-
|
1637 |
-
if plot_progressive_rows:
|
1638 |
-
with ema_scope("Plotting Progressives"):
|
1639 |
-
img, progressives = self.progressive_denoising(c,
|
1640 |
-
shape=(self.channels, self.image_size, self.image_size),
|
1641 |
-
batch_size=N)
|
1642 |
-
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
|
1643 |
-
log["progressive_row"] = prog_row
|
1644 |
-
|
1645 |
-
return log
|
1646 |
-
|
1647 |
-
|
1648 |
-
class LatentInpaintDiffusion(LatentDiffusion):
|
1649 |
-
"""
|
1650 |
-
can either run as pure inpainting model (only concat mode) or with mixed conditionings,
|
1651 |
-
e.g. mask as concat and text via cross-attn.
|
1652 |
-
To disable finetuning mode, set finetune_keys to None
|
1653 |
-
"""
|
1654 |
-
def __init__(self,
|
1655 |
-
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
|
1656 |
-
"model_ema.diffusion_modelinput_blocks00weight"
|
1657 |
-
),
|
1658 |
-
concat_keys=("mask", "masked_image"),
|
1659 |
-
masked_image_key="masked_image",
|
1660 |
-
keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
|
1661 |
-
c_concat_log_start=None, # to log reconstruction of c_concat codes
|
1662 |
-
c_concat_log_end=None,
|
1663 |
-
*args, **kwargs
|
1664 |
-
):
|
1665 |
-
ckpt_path = kwargs.pop("ckpt_path", None)
|
1666 |
-
ignore_keys = kwargs.pop("ignore_keys", list())
|
1667 |
-
super().__init__(*args, **kwargs)
|
1668 |
-
self.masked_image_key = masked_image_key
|
1669 |
-
assert self.masked_image_key in concat_keys
|
1670 |
-
self.finetune_keys = finetune_keys
|
1671 |
-
self.concat_keys = concat_keys
|
1672 |
-
self.keep_dims = keep_finetune_dims
|
1673 |
-
self.c_concat_log_start = c_concat_log_start
|
1674 |
-
self.c_concat_log_end = c_concat_log_end
|
1675 |
-
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
|
1676 |
-
if exists(ckpt_path):
|
1677 |
-
self.init_from_ckpt(ckpt_path, ignore_keys)
|
1678 |
-
|
1679 |
-
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
1680 |
-
sd = torch.load(path, map_location="cpu")
|
1681 |
-
if "state_dict" in list(sd.keys()):
|
1682 |
-
sd = sd["state_dict"]
|
1683 |
-
keys = list(sd.keys())
|
1684 |
-
for k in keys:
|
1685 |
-
for ik in ignore_keys:
|
1686 |
-
if k.startswith(ik):
|
1687 |
-
print("Deleting key {} from state_dict.".format(k))
|
1688 |
-
del sd[k]
|
1689 |
-
|
1690 |
-
# make it explicit, finetune by including extra input channels
|
1691 |
-
if exists(self.finetune_keys) and k in self.finetune_keys:
|
1692 |
-
new_entry = None
|
1693 |
-
for name, param in self.named_parameters():
|
1694 |
-
if name in self.finetune_keys:
|
1695 |
-
print(f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
|
1696 |
-
new_entry = torch.zeros_like(param) # zero init
|
1697 |
-
assert exists(new_entry), 'did not find matching parameter to modify'
|
1698 |
-
new_entry[:, :self.keep_dims, ...] = sd[k]
|
1699 |
-
sd[k] = new_entry
|
1700 |
-
|
1701 |
-
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False)
|
1702 |
-
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
1703 |
-
if len(missing) > 0:
|
1704 |
-
print(f"Missing Keys: {missing}")
|
1705 |
-
if len(unexpected) > 0:
|
1706 |
-
print(f"Unexpected Keys: {unexpected}")
|
1707 |
-
|
1708 |
-
@torch.no_grad()
|
1709 |
-
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
1710 |
-
# note: restricted to non-trainable encoders currently
|
1711 |
-
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
|
1712 |
-
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1713 |
-
force_c_encode=True, return_original_cond=True, bs=bs)
|
1714 |
-
|
1715 |
-
assert exists(self.concat_keys)
|
1716 |
-
c_cat = list()
|
1717 |
-
for ck in self.concat_keys:
|
1718 |
-
cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
1719 |
-
if bs is not None:
|
1720 |
-
cc = cc[:bs]
|
1721 |
-
cc = cc.to(self.device)
|
1722 |
-
bchw = z.shape
|
1723 |
-
if ck != self.masked_image_key:
|
1724 |
-
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
1725 |
-
else:
|
1726 |
-
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
|
1727 |
-
c_cat.append(cc)
|
1728 |
-
c_cat = torch.cat(c_cat, dim=1)
|
1729 |
-
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
1730 |
-
if return_first_stage_outputs:
|
1731 |
-
return z, all_conds, x, xrec, xc
|
1732 |
-
return z, all_conds
|
1733 |
-
|
1734 |
-
@torch.no_grad()
|
1735 |
-
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1736 |
-
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1737 |
-
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
1738 |
-
use_ema_scope=True,
|
1739 |
-
**kwargs):
|
1740 |
-
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1741 |
-
use_ddim = ddim_steps is not None
|
1742 |
-
|
1743 |
-
log = dict()
|
1744 |
-
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
|
1745 |
-
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
|
1746 |
-
N = min(x.shape[0], N)
|
1747 |
-
n_row = min(x.shape[0], n_row)
|
1748 |
-
log["inputs"] = x
|
1749 |
-
log["reconstruction"] = xrec
|
1750 |
-
if self.model.conditioning_key is not None:
|
1751 |
-
if hasattr(self.cond_stage_model, "decode"):
|
1752 |
-
xc = self.cond_stage_model.decode(c)
|
1753 |
-
log["conditioning"] = xc
|
1754 |
-
elif self.cond_stage_key in ["caption", "txt"]:
|
1755 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
1756 |
-
log["conditioning"] = xc
|
1757 |
-
elif self.cond_stage_key == 'class_label':
|
1758 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
1759 |
-
log['conditioning'] = xc
|
1760 |
-
elif isimage(xc):
|
1761 |
-
log["conditioning"] = xc
|
1762 |
-
if ismap(xc):
|
1763 |
-
log["original_conditioning"] = self.to_rgb(xc)
|
1764 |
-
|
1765 |
-
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
|
1766 |
-
log["c_concat_decoded"] = self.decode_first_stage(c_cat[:,self.c_concat_log_start:self.c_concat_log_end])
|
1767 |
-
|
1768 |
-
if plot_diffusion_rows:
|
1769 |
-
# get diffusion row
|
1770 |
-
diffusion_row = list()
|
1771 |
-
z_start = z[:n_row]
|
1772 |
-
for t in range(self.num_timesteps):
|
1773 |
-
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
1774 |
-
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
1775 |
-
t = t.to(self.device).long()
|
1776 |
-
noise = torch.randn_like(z_start)
|
1777 |
-
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
1778 |
-
diffusion_row.append(self.decode_first_stage(z_noisy))
|
1779 |
-
|
1780 |
-
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
1781 |
-
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
1782 |
-
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
1783 |
-
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
1784 |
-
log["diffusion_row"] = diffusion_grid
|
1785 |
-
|
1786 |
-
if sample:
|
1787 |
-
# get denoise row
|
1788 |
-
with ema_scope("Sampling"):
|
1789 |
-
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
1790 |
-
batch_size=N, ddim=use_ddim,
|
1791 |
-
ddim_steps=ddim_steps, eta=ddim_eta)
|
1792 |
-
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1793 |
-
x_samples = self.decode_first_stage(samples)
|
1794 |
-
log["samples"] = x_samples
|
1795 |
-
if plot_denoise_rows:
|
1796 |
-
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1797 |
-
log["denoise_row"] = denoise_grid
|
1798 |
-
|
1799 |
-
if unconditional_guidance_scale > 1.0:
|
1800 |
-
uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1801 |
-
uc_cat = c_cat
|
1802 |
-
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
1803 |
-
with ema_scope("Sampling with classifier-free guidance"):
|
1804 |
-
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
1805 |
-
batch_size=N, ddim=use_ddim,
|
1806 |
-
ddim_steps=ddim_steps, eta=ddim_eta,
|
1807 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
1808 |
-
unconditional_conditioning=uc_full,
|
1809 |
-
)
|
1810 |
-
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1811 |
-
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1812 |
-
|
1813 |
-
log["masked_image"] = rearrange(batch["masked_image"],
|
1814 |
-
'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
1815 |
-
return log
|
1816 |
-
|
1817 |
-
|
1818 |
-
class Layout2ImgDiffusion(LatentDiffusion):
|
1819 |
-
# TODO: move all layout-specific hacks to this class
|
1820 |
-
def __init__(self, cond_stage_key, *args, **kwargs):
|
1821 |
-
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
|
1822 |
-
super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
|
1823 |
-
|
1824 |
-
def log_images(self, batch, N=8, *args, **kwargs):
|
1825 |
-
logs = super().log_images(batch=batch, N=N, *args, **kwargs)
|
1826 |
-
|
1827 |
-
key = 'train' if self.training else 'validation'
|
1828 |
-
dset = self.trainer.datamodule.datasets[key]
|
1829 |
-
mapper = dset.conditional_builders[self.cond_stage_key]
|
1830 |
-
|
1831 |
-
bbox_imgs = []
|
1832 |
-
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
|
1833 |
-
for tknzd_bbox in batch[self.cond_stage_key][:N]:
|
1834 |
-
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
|
1835 |
-
bbox_imgs.append(bboximg)
|
1836 |
-
|
1837 |
-
cond_img = torch.stack(bbox_imgs, dim=0)
|
1838 |
-
logs['bbox_image'] = cond_img
|
1839 |
-
return logs
|
1840 |
-
|
1841 |
-
|
1842 |
-
class SimpleUpscaleDiffusion(LatentDiffusion):
|
1843 |
-
def __init__(self, *args, low_scale_key="LR", **kwargs):
|
1844 |
-
super().__init__(*args, **kwargs)
|
1845 |
-
# assumes that neither the cond_stage nor the low_scale_model contain trainable params
|
1846 |
-
assert not self.cond_stage_trainable
|
1847 |
-
self.low_scale_key = low_scale_key
|
1848 |
-
|
1849 |
-
@torch.no_grad()
|
1850 |
-
def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
|
1851 |
-
if not log_mode:
|
1852 |
-
z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
|
1853 |
-
else:
|
1854 |
-
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
1855 |
-
force_c_encode=True, return_original_cond=True, bs=bs)
|
1856 |
-
x_low = batch[self.low_scale_key][:bs]
|
1857 |
-
x_low = rearrange(x_low, 'b h w c -> b c h w')
|
1858 |
-
x_low = x_low.to(memory_format=torch.contiguous_format).float()
|
1859 |
-
|
1860 |
-
encoder_posterior = self.encode_first_stage(x_low)
|
1861 |
-
zx = self.get_first_stage_encoding(encoder_posterior).detach()
|
1862 |
-
all_conds = {"c_concat": [zx], "c_crossattn": [c]}
|
1863 |
-
|
1864 |
-
if log_mode:
|
1865 |
-
# TODO: maybe disable if too expensive
|
1866 |
-
interpretability = False
|
1867 |
-
if interpretability:
|
1868 |
-
zx = zx[:, :, ::2, ::2]
|
1869 |
-
return z, all_conds, x, xrec, xc, x_low
|
1870 |
-
return z, all_conds
|
1871 |
-
|
1872 |
-
@torch.no_grad()
|
1873 |
-
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1874 |
-
plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
|
1875 |
-
unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
|
1876 |
-
**kwargs):
|
1877 |
-
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
1878 |
-
use_ddim = ddim_steps is not None
|
1879 |
-
|
1880 |
-
log = dict()
|
1881 |
-
z, c, x, xrec, xc, x_low = self.get_input(batch, self.first_stage_key, bs=N, log_mode=True)
|
1882 |
-
N = min(x.shape[0], N)
|
1883 |
-
n_row = min(x.shape[0], n_row)
|
1884 |
-
log["inputs"] = x
|
1885 |
-
log["reconstruction"] = xrec
|
1886 |
-
log["x_lr"] = x_low
|
1887 |
-
|
1888 |
-
if self.model.conditioning_key is not None:
|
1889 |
-
if hasattr(self.cond_stage_model, "decode"):
|
1890 |
-
xc = self.cond_stage_model.decode(c)
|
1891 |
-
log["conditioning"] = xc
|
1892 |
-
elif self.cond_stage_key in ["caption", "txt"]:
|
1893 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
|
1894 |
-
log["conditioning"] = xc
|
1895 |
-
elif self.cond_stage_key == 'class_label':
|
1896 |
-
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
|
1897 |
-
log['conditioning'] = xc
|
1898 |
-
elif isimage(xc):
|
1899 |
-
log["conditioning"] = xc
|
1900 |
-
if ismap(xc):
|
1901 |
-
log["original_conditioning"] = self.to_rgb(xc)
|
1902 |
-
|
1903 |
-
if sample:
|
1904 |
-
# get denoise row
|
1905 |
-
with ema_scope("Sampling"):
|
1906 |
-
samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1907 |
-
ddim_steps=ddim_steps, eta=ddim_eta)
|
1908 |
-
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1909 |
-
x_samples = self.decode_first_stage(samples)
|
1910 |
-
log["samples"] = x_samples
|
1911 |
-
|
1912 |
-
if unconditional_guidance_scale > 1.0:
|
1913 |
-
uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
1914 |
-
uc = dict()
|
1915 |
-
for k in c:
|
1916 |
-
if k == "c_crossattn":
|
1917 |
-
assert isinstance(c[k], list) and len(c[k]) == 1
|
1918 |
-
uc[k] = [uc_tmp]
|
1919 |
-
elif isinstance(c[k], list):
|
1920 |
-
uc[k] = [c[k][i] for i in range(len(c[k]))]
|
1921 |
-
else:
|
1922 |
-
uc[k] = c[k]
|
1923 |
-
|
1924 |
-
with ema_scope("Sampling with classifier-free guidance"):
|
1925 |
-
samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
|
1926 |
-
ddim_steps=ddim_steps, eta=ddim_eta,
|
1927 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
1928 |
-
unconditional_conditioning=uc,
|
1929 |
-
)
|
1930 |
-
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
1931 |
-
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
1932 |
-
|
1933 |
-
|
1934 |
-
return log
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/models/diffusion/dpm_solver/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .sampler import DPMSolverSampler
|
|
|
|
stable_diffusion/ldm/models/diffusion/dpm_solver/dpm_solver.py
DELETED
@@ -1,1184 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
import math
|
4 |
-
|
5 |
-
|
6 |
-
class NoiseScheduleVP:
|
7 |
-
def __init__(
|
8 |
-
self,
|
9 |
-
schedule='discrete',
|
10 |
-
betas=None,
|
11 |
-
alphas_cumprod=None,
|
12 |
-
continuous_beta_0=0.1,
|
13 |
-
continuous_beta_1=20.,
|
14 |
-
):
|
15 |
-
"""Create a wrapper class for the forward SDE (VP type).
|
16 |
-
|
17 |
-
***
|
18 |
-
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
19 |
-
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
20 |
-
***
|
21 |
-
|
22 |
-
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
23 |
-
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
24 |
-
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
25 |
-
|
26 |
-
log_alpha_t = self.marginal_log_mean_coeff(t)
|
27 |
-
sigma_t = self.marginal_std(t)
|
28 |
-
lambda_t = self.marginal_lambda(t)
|
29 |
-
|
30 |
-
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
31 |
-
|
32 |
-
t = self.inverse_lambda(lambda_t)
|
33 |
-
|
34 |
-
===============================================================
|
35 |
-
|
36 |
-
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
37 |
-
|
38 |
-
1. For discrete-time DPMs:
|
39 |
-
|
40 |
-
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
41 |
-
t_i = (i + 1) / N
|
42 |
-
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
43 |
-
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
44 |
-
|
45 |
-
Args:
|
46 |
-
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
47 |
-
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
48 |
-
|
49 |
-
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
50 |
-
|
51 |
-
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
52 |
-
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
53 |
-
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
54 |
-
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
55 |
-
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
56 |
-
and
|
57 |
-
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
58 |
-
|
59 |
-
|
60 |
-
2. For continuous-time DPMs:
|
61 |
-
|
62 |
-
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
63 |
-
schedule are the default settings in DDPM and improved-DDPM:
|
64 |
-
|
65 |
-
Args:
|
66 |
-
beta_min: A `float` number. The smallest beta for the linear schedule.
|
67 |
-
beta_max: A `float` number. The largest beta for the linear schedule.
|
68 |
-
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
69 |
-
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
70 |
-
T: A `float` number. The ending time of the forward process.
|
71 |
-
|
72 |
-
===============================================================
|
73 |
-
|
74 |
-
Args:
|
75 |
-
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
76 |
-
'linear' or 'cosine' for continuous-time DPMs.
|
77 |
-
Returns:
|
78 |
-
A wrapper object of the forward SDE (VP type).
|
79 |
-
|
80 |
-
===============================================================
|
81 |
-
|
82 |
-
Example:
|
83 |
-
|
84 |
-
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
85 |
-
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
86 |
-
|
87 |
-
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
88 |
-
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
89 |
-
|
90 |
-
# For continuous-time DPMs (VPSDE), linear schedule:
|
91 |
-
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
92 |
-
|
93 |
-
"""
|
94 |
-
|
95 |
-
if schedule not in ['discrete', 'linear', 'cosine']:
|
96 |
-
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
97 |
-
|
98 |
-
self.schedule = schedule
|
99 |
-
if schedule == 'discrete':
|
100 |
-
if betas is not None:
|
101 |
-
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
102 |
-
else:
|
103 |
-
assert alphas_cumprod is not None
|
104 |
-
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
105 |
-
self.total_N = len(log_alphas)
|
106 |
-
self.T = 1.
|
107 |
-
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
108 |
-
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
109 |
-
else:
|
110 |
-
self.total_N = 1000
|
111 |
-
self.beta_0 = continuous_beta_0
|
112 |
-
self.beta_1 = continuous_beta_1
|
113 |
-
self.cosine_s = 0.008
|
114 |
-
self.cosine_beta_max = 999.
|
115 |
-
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
116 |
-
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
117 |
-
self.schedule = schedule
|
118 |
-
if schedule == 'cosine':
|
119 |
-
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
120 |
-
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
121 |
-
self.T = 0.9946
|
122 |
-
else:
|
123 |
-
self.T = 1.
|
124 |
-
|
125 |
-
def marginal_log_mean_coeff(self, t):
|
126 |
-
"""
|
127 |
-
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
128 |
-
"""
|
129 |
-
if self.schedule == 'discrete':
|
130 |
-
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
131 |
-
elif self.schedule == 'linear':
|
132 |
-
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
133 |
-
elif self.schedule == 'cosine':
|
134 |
-
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
135 |
-
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
136 |
-
return log_alpha_t
|
137 |
-
|
138 |
-
def marginal_alpha(self, t):
|
139 |
-
"""
|
140 |
-
Compute alpha_t of a given continuous-time label t in [0, T].
|
141 |
-
"""
|
142 |
-
return torch.exp(self.marginal_log_mean_coeff(t))
|
143 |
-
|
144 |
-
def marginal_std(self, t):
|
145 |
-
"""
|
146 |
-
Compute sigma_t of a given continuous-time label t in [0, T].
|
147 |
-
"""
|
148 |
-
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
149 |
-
|
150 |
-
def marginal_lambda(self, t):
|
151 |
-
"""
|
152 |
-
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
153 |
-
"""
|
154 |
-
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
155 |
-
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
156 |
-
return log_mean_coeff - log_std
|
157 |
-
|
158 |
-
def inverse_lambda(self, lamb):
|
159 |
-
"""
|
160 |
-
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
161 |
-
"""
|
162 |
-
if self.schedule == 'linear':
|
163 |
-
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
164 |
-
Delta = self.beta_0**2 + tmp
|
165 |
-
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
166 |
-
elif self.schedule == 'discrete':
|
167 |
-
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
168 |
-
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
169 |
-
return t.reshape((-1,))
|
170 |
-
else:
|
171 |
-
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
172 |
-
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
173 |
-
t = t_fn(log_alpha)
|
174 |
-
return t
|
175 |
-
|
176 |
-
|
177 |
-
def model_wrapper(
|
178 |
-
model,
|
179 |
-
noise_schedule,
|
180 |
-
model_type="noise",
|
181 |
-
model_kwargs={},
|
182 |
-
guidance_type="uncond",
|
183 |
-
condition=None,
|
184 |
-
unconditional_condition=None,
|
185 |
-
guidance_scale=1.,
|
186 |
-
classifier_fn=None,
|
187 |
-
classifier_kwargs={},
|
188 |
-
):
|
189 |
-
"""Create a wrapper function for the noise prediction model.
|
190 |
-
|
191 |
-
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
192 |
-
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
193 |
-
|
194 |
-
We support four types of the diffusion model by setting `model_type`:
|
195 |
-
|
196 |
-
1. "noise": noise prediction model. (Trained by predicting noise).
|
197 |
-
|
198 |
-
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
199 |
-
|
200 |
-
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
201 |
-
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
202 |
-
|
203 |
-
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
204 |
-
arXiv preprint arXiv:2202.00512 (2022).
|
205 |
-
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
206 |
-
arXiv preprint arXiv:2210.02303 (2022).
|
207 |
-
|
208 |
-
4. "score": marginal score function. (Trained by denoising score matching).
|
209 |
-
Note that the score function and the noise prediction model follows a simple relationship:
|
210 |
-
```
|
211 |
-
noise(x_t, t) = -sigma_t * score(x_t, t)
|
212 |
-
```
|
213 |
-
|
214 |
-
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
215 |
-
1. "uncond": unconditional sampling by DPMs.
|
216 |
-
The input `model` has the following format:
|
217 |
-
``
|
218 |
-
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
219 |
-
``
|
220 |
-
|
221 |
-
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
222 |
-
The input `model` has the following format:
|
223 |
-
``
|
224 |
-
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
225 |
-
``
|
226 |
-
|
227 |
-
The input `classifier_fn` has the following format:
|
228 |
-
``
|
229 |
-
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
230 |
-
``
|
231 |
-
|
232 |
-
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
233 |
-
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
234 |
-
|
235 |
-
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
236 |
-
The input `model` has the following format:
|
237 |
-
``
|
238 |
-
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
239 |
-
``
|
240 |
-
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
241 |
-
|
242 |
-
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
243 |
-
arXiv preprint arXiv:2207.12598 (2022).
|
244 |
-
|
245 |
-
|
246 |
-
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
247 |
-
or continuous-time labels (i.e. epsilon to T).
|
248 |
-
|
249 |
-
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
250 |
-
``
|
251 |
-
def model_fn(x, t_continuous) -> noise:
|
252 |
-
t_input = get_model_input_time(t_continuous)
|
253 |
-
return noise_pred(model, x, t_input, **model_kwargs)
|
254 |
-
``
|
255 |
-
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
256 |
-
|
257 |
-
===============================================================
|
258 |
-
|
259 |
-
Args:
|
260 |
-
model: A diffusion model with the corresponding format described above.
|
261 |
-
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
262 |
-
model_type: A `str`. The parameterization type of the diffusion model.
|
263 |
-
"noise" or "x_start" or "v" or "score".
|
264 |
-
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
265 |
-
guidance_type: A `str`. The type of the guidance for sampling.
|
266 |
-
"uncond" or "classifier" or "classifier-free".
|
267 |
-
condition: A pytorch tensor. The condition for the guided sampling.
|
268 |
-
Only used for "classifier" or "classifier-free" guidance type.
|
269 |
-
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
270 |
-
Only used for "classifier-free" guidance type.
|
271 |
-
guidance_scale: A `float`. The scale for the guided sampling.
|
272 |
-
classifier_fn: A classifier function. Only used for the classifier guidance.
|
273 |
-
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
274 |
-
Returns:
|
275 |
-
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
276 |
-
"""
|
277 |
-
|
278 |
-
def get_model_input_time(t_continuous):
|
279 |
-
"""
|
280 |
-
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
281 |
-
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
282 |
-
For continuous-time DPMs, we just use `t_continuous`.
|
283 |
-
"""
|
284 |
-
if noise_schedule.schedule == 'discrete':
|
285 |
-
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
286 |
-
else:
|
287 |
-
return t_continuous
|
288 |
-
|
289 |
-
def noise_pred_fn(x, t_continuous, cond=None):
|
290 |
-
if t_continuous.reshape((-1,)).shape[0] == 1:
|
291 |
-
t_continuous = t_continuous.expand((x.shape[0]))
|
292 |
-
t_input = get_model_input_time(t_continuous)
|
293 |
-
if cond is None:
|
294 |
-
output = model(x, t_input, **model_kwargs)
|
295 |
-
else:
|
296 |
-
output = model(x, t_input, cond, **model_kwargs)
|
297 |
-
if model_type == "noise":
|
298 |
-
return output
|
299 |
-
elif model_type == "x_start":
|
300 |
-
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
301 |
-
dims = x.dim()
|
302 |
-
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
303 |
-
elif model_type == "v":
|
304 |
-
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
305 |
-
dims = x.dim()
|
306 |
-
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
307 |
-
elif model_type == "score":
|
308 |
-
sigma_t = noise_schedule.marginal_std(t_continuous)
|
309 |
-
dims = x.dim()
|
310 |
-
return -expand_dims(sigma_t, dims) * output
|
311 |
-
|
312 |
-
def cond_grad_fn(x, t_input):
|
313 |
-
"""
|
314 |
-
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
315 |
-
"""
|
316 |
-
with torch.enable_grad():
|
317 |
-
x_in = x.detach().requires_grad_(True)
|
318 |
-
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
319 |
-
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
320 |
-
|
321 |
-
def model_fn(x, t_continuous):
|
322 |
-
"""
|
323 |
-
The noise predicition model function that is used for DPM-Solver.
|
324 |
-
"""
|
325 |
-
if t_continuous.reshape((-1,)).shape[0] == 1:
|
326 |
-
t_continuous = t_continuous.expand((x.shape[0]))
|
327 |
-
if guidance_type == "uncond":
|
328 |
-
return noise_pred_fn(x, t_continuous)
|
329 |
-
elif guidance_type == "classifier":
|
330 |
-
assert classifier_fn is not None
|
331 |
-
t_input = get_model_input_time(t_continuous)
|
332 |
-
cond_grad = cond_grad_fn(x, t_input)
|
333 |
-
sigma_t = noise_schedule.marginal_std(t_continuous)
|
334 |
-
noise = noise_pred_fn(x, t_continuous)
|
335 |
-
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
336 |
-
elif guidance_type == "classifier-free":
|
337 |
-
if guidance_scale == 1. or unconditional_condition is None:
|
338 |
-
return noise_pred_fn(x, t_continuous, cond=condition)
|
339 |
-
else:
|
340 |
-
x_in = torch.cat([x] * 2)
|
341 |
-
t_in = torch.cat([t_continuous] * 2)
|
342 |
-
c_in = torch.cat([unconditional_condition, condition])
|
343 |
-
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
344 |
-
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
345 |
-
|
346 |
-
assert model_type in ["noise", "x_start", "v"]
|
347 |
-
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
348 |
-
return model_fn
|
349 |
-
|
350 |
-
|
351 |
-
class DPM_Solver:
|
352 |
-
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
|
353 |
-
"""Construct a DPM-Solver.
|
354 |
-
|
355 |
-
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
|
356 |
-
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
|
357 |
-
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
|
358 |
-
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
|
359 |
-
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
|
360 |
-
|
361 |
-
Args:
|
362 |
-
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
363 |
-
``
|
364 |
-
def model_fn(x, t_continuous):
|
365 |
-
return noise
|
366 |
-
``
|
367 |
-
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
368 |
-
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
|
369 |
-
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
|
370 |
-
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
|
371 |
-
|
372 |
-
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
373 |
-
"""
|
374 |
-
self.model = model_fn
|
375 |
-
self.noise_schedule = noise_schedule
|
376 |
-
self.predict_x0 = predict_x0
|
377 |
-
self.thresholding = thresholding
|
378 |
-
self.max_val = max_val
|
379 |
-
|
380 |
-
def noise_prediction_fn(self, x, t):
|
381 |
-
"""
|
382 |
-
Return the noise prediction model.
|
383 |
-
"""
|
384 |
-
return self.model(x, t)
|
385 |
-
|
386 |
-
def data_prediction_fn(self, x, t):
|
387 |
-
"""
|
388 |
-
Return the data prediction model (with thresholding).
|
389 |
-
"""
|
390 |
-
noise = self.noise_prediction_fn(x, t)
|
391 |
-
dims = x.dim()
|
392 |
-
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
393 |
-
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
394 |
-
if self.thresholding:
|
395 |
-
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
396 |
-
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
397 |
-
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
|
398 |
-
x0 = torch.clamp(x0, -s, s) / s
|
399 |
-
return x0
|
400 |
-
|
401 |
-
def model_fn(self, x, t):
|
402 |
-
"""
|
403 |
-
Convert the model to the noise prediction model or the data prediction model.
|
404 |
-
"""
|
405 |
-
if self.predict_x0:
|
406 |
-
return self.data_prediction_fn(x, t)
|
407 |
-
else:
|
408 |
-
return self.noise_prediction_fn(x, t)
|
409 |
-
|
410 |
-
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
411 |
-
"""Compute the intermediate time steps for sampling.
|
412 |
-
|
413 |
-
Args:
|
414 |
-
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
415 |
-
- 'logSNR': uniform logSNR for the time steps.
|
416 |
-
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
417 |
-
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
418 |
-
t_T: A `float`. The starting time of the sampling (default is T).
|
419 |
-
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
420 |
-
N: A `int`. The total number of the spacing of the time steps.
|
421 |
-
device: A torch device.
|
422 |
-
Returns:
|
423 |
-
A pytorch tensor of the time steps, with the shape (N + 1,).
|
424 |
-
"""
|
425 |
-
if skip_type == 'logSNR':
|
426 |
-
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
427 |
-
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
428 |
-
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
429 |
-
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
430 |
-
elif skip_type == 'time_uniform':
|
431 |
-
return torch.linspace(t_T, t_0, N + 1).to(device)
|
432 |
-
elif skip_type == 'time_quadratic':
|
433 |
-
t_order = 2
|
434 |
-
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
435 |
-
return t
|
436 |
-
else:
|
437 |
-
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
438 |
-
|
439 |
-
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
440 |
-
"""
|
441 |
-
Get the order of each step for sampling by the singlestep DPM-Solver.
|
442 |
-
|
443 |
-
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
444 |
-
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
445 |
-
- If order == 1:
|
446 |
-
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
447 |
-
- If order == 2:
|
448 |
-
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
449 |
-
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
450 |
-
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
451 |
-
- If order == 3:
|
452 |
-
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
453 |
-
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
454 |
-
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
455 |
-
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
456 |
-
|
457 |
-
============================================
|
458 |
-
Args:
|
459 |
-
order: A `int`. The max order for the solver (2 or 3).
|
460 |
-
steps: A `int`. The total number of function evaluations (NFE).
|
461 |
-
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
462 |
-
- 'logSNR': uniform logSNR for the time steps.
|
463 |
-
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
464 |
-
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
465 |
-
t_T: A `float`. The starting time of the sampling (default is T).
|
466 |
-
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
467 |
-
device: A torch device.
|
468 |
-
Returns:
|
469 |
-
orders: A list of the solver order of each step.
|
470 |
-
"""
|
471 |
-
if order == 3:
|
472 |
-
K = steps // 3 + 1
|
473 |
-
if steps % 3 == 0:
|
474 |
-
orders = [3,] * (K - 2) + [2, 1]
|
475 |
-
elif steps % 3 == 1:
|
476 |
-
orders = [3,] * (K - 1) + [1]
|
477 |
-
else:
|
478 |
-
orders = [3,] * (K - 1) + [2]
|
479 |
-
elif order == 2:
|
480 |
-
if steps % 2 == 0:
|
481 |
-
K = steps // 2
|
482 |
-
orders = [2,] * K
|
483 |
-
else:
|
484 |
-
K = steps // 2 + 1
|
485 |
-
orders = [2,] * (K - 1) + [1]
|
486 |
-
elif order == 1:
|
487 |
-
K = 1
|
488 |
-
orders = [1,] * steps
|
489 |
-
else:
|
490 |
-
raise ValueError("'order' must be '1' or '2' or '3'.")
|
491 |
-
if skip_type == 'logSNR':
|
492 |
-
# To reproduce the results in DPM-Solver paper
|
493 |
-
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
494 |
-
else:
|
495 |
-
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders)).to(device)]
|
496 |
-
return timesteps_outer, orders
|
497 |
-
|
498 |
-
def denoise_to_zero_fn(self, x, s):
|
499 |
-
"""
|
500 |
-
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
501 |
-
"""
|
502 |
-
return self.data_prediction_fn(x, s)
|
503 |
-
|
504 |
-
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
505 |
-
"""
|
506 |
-
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
507 |
-
|
508 |
-
Args:
|
509 |
-
x: A pytorch tensor. The initial value at time `s`.
|
510 |
-
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
511 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
512 |
-
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
513 |
-
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
514 |
-
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
515 |
-
Returns:
|
516 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
517 |
-
"""
|
518 |
-
ns = self.noise_schedule
|
519 |
-
dims = x.dim()
|
520 |
-
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
521 |
-
h = lambda_t - lambda_s
|
522 |
-
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
523 |
-
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
524 |
-
alpha_t = torch.exp(log_alpha_t)
|
525 |
-
|
526 |
-
if self.predict_x0:
|
527 |
-
phi_1 = torch.expm1(-h)
|
528 |
-
if model_s is None:
|
529 |
-
model_s = self.model_fn(x, s)
|
530 |
-
x_t = (
|
531 |
-
expand_dims(sigma_t / sigma_s, dims) * x
|
532 |
-
- expand_dims(alpha_t * phi_1, dims) * model_s
|
533 |
-
)
|
534 |
-
if return_intermediate:
|
535 |
-
return x_t, {'model_s': model_s}
|
536 |
-
else:
|
537 |
-
return x_t
|
538 |
-
else:
|
539 |
-
phi_1 = torch.expm1(h)
|
540 |
-
if model_s is None:
|
541 |
-
model_s = self.model_fn(x, s)
|
542 |
-
x_t = (
|
543 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
544 |
-
- expand_dims(sigma_t * phi_1, dims) * model_s
|
545 |
-
)
|
546 |
-
if return_intermediate:
|
547 |
-
return x_t, {'model_s': model_s}
|
548 |
-
else:
|
549 |
-
return x_t
|
550 |
-
|
551 |
-
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpm_solver'):
|
552 |
-
"""
|
553 |
-
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
554 |
-
|
555 |
-
Args:
|
556 |
-
x: A pytorch tensor. The initial value at time `s`.
|
557 |
-
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
558 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
559 |
-
r1: A `float`. The hyperparameter of the second-order solver.
|
560 |
-
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
561 |
-
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
562 |
-
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
563 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
564 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
565 |
-
Returns:
|
566 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
567 |
-
"""
|
568 |
-
if solver_type not in ['dpm_solver', 'taylor']:
|
569 |
-
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
570 |
-
if r1 is None:
|
571 |
-
r1 = 0.5
|
572 |
-
ns = self.noise_schedule
|
573 |
-
dims = x.dim()
|
574 |
-
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
575 |
-
h = lambda_t - lambda_s
|
576 |
-
lambda_s1 = lambda_s + r1 * h
|
577 |
-
s1 = ns.inverse_lambda(lambda_s1)
|
578 |
-
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
|
579 |
-
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
580 |
-
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
581 |
-
|
582 |
-
if self.predict_x0:
|
583 |
-
phi_11 = torch.expm1(-r1 * h)
|
584 |
-
phi_1 = torch.expm1(-h)
|
585 |
-
|
586 |
-
if model_s is None:
|
587 |
-
model_s = self.model_fn(x, s)
|
588 |
-
x_s1 = (
|
589 |
-
expand_dims(sigma_s1 / sigma_s, dims) * x
|
590 |
-
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
591 |
-
)
|
592 |
-
model_s1 = self.model_fn(x_s1, s1)
|
593 |
-
if solver_type == 'dpm_solver':
|
594 |
-
x_t = (
|
595 |
-
expand_dims(sigma_t / sigma_s, dims) * x
|
596 |
-
- expand_dims(alpha_t * phi_1, dims) * model_s
|
597 |
-
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
|
598 |
-
)
|
599 |
-
elif solver_type == 'taylor':
|
600 |
-
x_t = (
|
601 |
-
expand_dims(sigma_t / sigma_s, dims) * x
|
602 |
-
- expand_dims(alpha_t * phi_1, dims) * model_s
|
603 |
-
+ (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (model_s1 - model_s)
|
604 |
-
)
|
605 |
-
else:
|
606 |
-
phi_11 = torch.expm1(r1 * h)
|
607 |
-
phi_1 = torch.expm1(h)
|
608 |
-
|
609 |
-
if model_s is None:
|
610 |
-
model_s = self.model_fn(x, s)
|
611 |
-
x_s1 = (
|
612 |
-
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
613 |
-
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
614 |
-
)
|
615 |
-
model_s1 = self.model_fn(x_s1, s1)
|
616 |
-
if solver_type == 'dpm_solver':
|
617 |
-
x_t = (
|
618 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
619 |
-
- expand_dims(sigma_t * phi_1, dims) * model_s
|
620 |
-
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
|
621 |
-
)
|
622 |
-
elif solver_type == 'taylor':
|
623 |
-
x_t = (
|
624 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
625 |
-
- expand_dims(sigma_t * phi_1, dims) * model_s
|
626 |
-
- (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
|
627 |
-
)
|
628 |
-
if return_intermediate:
|
629 |
-
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
630 |
-
else:
|
631 |
-
return x_t
|
632 |
-
|
633 |
-
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpm_solver'):
|
634 |
-
"""
|
635 |
-
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
636 |
-
|
637 |
-
Args:
|
638 |
-
x: A pytorch tensor. The initial value at time `s`.
|
639 |
-
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
640 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
641 |
-
r1: A `float`. The hyperparameter of the third-order solver.
|
642 |
-
r2: A `float`. The hyperparameter of the third-order solver.
|
643 |
-
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
644 |
-
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
645 |
-
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
646 |
-
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
647 |
-
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
648 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
649 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
650 |
-
Returns:
|
651 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
652 |
-
"""
|
653 |
-
if solver_type not in ['dpm_solver', 'taylor']:
|
654 |
-
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
655 |
-
if r1 is None:
|
656 |
-
r1 = 1. / 3.
|
657 |
-
if r2 is None:
|
658 |
-
r2 = 2. / 3.
|
659 |
-
ns = self.noise_schedule
|
660 |
-
dims = x.dim()
|
661 |
-
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
662 |
-
h = lambda_t - lambda_s
|
663 |
-
lambda_s1 = lambda_s + r1 * h
|
664 |
-
lambda_s2 = lambda_s + r2 * h
|
665 |
-
s1 = ns.inverse_lambda(lambda_s1)
|
666 |
-
s2 = ns.inverse_lambda(lambda_s2)
|
667 |
-
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
668 |
-
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
|
669 |
-
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
670 |
-
|
671 |
-
if self.predict_x0:
|
672 |
-
phi_11 = torch.expm1(-r1 * h)
|
673 |
-
phi_12 = torch.expm1(-r2 * h)
|
674 |
-
phi_1 = torch.expm1(-h)
|
675 |
-
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
676 |
-
phi_2 = phi_1 / h + 1.
|
677 |
-
phi_3 = phi_2 / h - 0.5
|
678 |
-
|
679 |
-
if model_s is None:
|
680 |
-
model_s = self.model_fn(x, s)
|
681 |
-
if model_s1 is None:
|
682 |
-
x_s1 = (
|
683 |
-
expand_dims(sigma_s1 / sigma_s, dims) * x
|
684 |
-
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
685 |
-
)
|
686 |
-
model_s1 = self.model_fn(x_s1, s1)
|
687 |
-
x_s2 = (
|
688 |
-
expand_dims(sigma_s2 / sigma_s, dims) * x
|
689 |
-
- expand_dims(alpha_s2 * phi_12, dims) * model_s
|
690 |
-
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
|
691 |
-
)
|
692 |
-
model_s2 = self.model_fn(x_s2, s2)
|
693 |
-
if solver_type == 'dpm_solver':
|
694 |
-
x_t = (
|
695 |
-
expand_dims(sigma_t / sigma_s, dims) * x
|
696 |
-
- expand_dims(alpha_t * phi_1, dims) * model_s
|
697 |
-
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
|
698 |
-
)
|
699 |
-
elif solver_type == 'taylor':
|
700 |
-
D1_0 = (1. / r1) * (model_s1 - model_s)
|
701 |
-
D1_1 = (1. / r2) * (model_s2 - model_s)
|
702 |
-
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
703 |
-
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
704 |
-
x_t = (
|
705 |
-
expand_dims(sigma_t / sigma_s, dims) * x
|
706 |
-
- expand_dims(alpha_t * phi_1, dims) * model_s
|
707 |
-
+ expand_dims(alpha_t * phi_2, dims) * D1
|
708 |
-
- expand_dims(alpha_t * phi_3, dims) * D2
|
709 |
-
)
|
710 |
-
else:
|
711 |
-
phi_11 = torch.expm1(r1 * h)
|
712 |
-
phi_12 = torch.expm1(r2 * h)
|
713 |
-
phi_1 = torch.expm1(h)
|
714 |
-
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
715 |
-
phi_2 = phi_1 / h - 1.
|
716 |
-
phi_3 = phi_2 / h - 0.5
|
717 |
-
|
718 |
-
if model_s is None:
|
719 |
-
model_s = self.model_fn(x, s)
|
720 |
-
if model_s1 is None:
|
721 |
-
x_s1 = (
|
722 |
-
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
723 |
-
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
724 |
-
)
|
725 |
-
model_s1 = self.model_fn(x_s1, s1)
|
726 |
-
x_s2 = (
|
727 |
-
expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
|
728 |
-
- expand_dims(sigma_s2 * phi_12, dims) * model_s
|
729 |
-
- r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
|
730 |
-
)
|
731 |
-
model_s2 = self.model_fn(x_s2, s2)
|
732 |
-
if solver_type == 'dpm_solver':
|
733 |
-
x_t = (
|
734 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
735 |
-
- expand_dims(sigma_t * phi_1, dims) * model_s
|
736 |
-
- (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
|
737 |
-
)
|
738 |
-
elif solver_type == 'taylor':
|
739 |
-
D1_0 = (1. / r1) * (model_s1 - model_s)
|
740 |
-
D1_1 = (1. / r2) * (model_s2 - model_s)
|
741 |
-
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
742 |
-
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
743 |
-
x_t = (
|
744 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
745 |
-
- expand_dims(sigma_t * phi_1, dims) * model_s
|
746 |
-
- expand_dims(sigma_t * phi_2, dims) * D1
|
747 |
-
- expand_dims(sigma_t * phi_3, dims) * D2
|
748 |
-
)
|
749 |
-
|
750 |
-
if return_intermediate:
|
751 |
-
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
752 |
-
else:
|
753 |
-
return x_t
|
754 |
-
|
755 |
-
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
|
756 |
-
"""
|
757 |
-
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
758 |
-
|
759 |
-
Args:
|
760 |
-
x: A pytorch tensor. The initial value at time `s`.
|
761 |
-
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
762 |
-
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
763 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
764 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
765 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
766 |
-
Returns:
|
767 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
768 |
-
"""
|
769 |
-
if solver_type not in ['dpm_solver', 'taylor']:
|
770 |
-
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
771 |
-
ns = self.noise_schedule
|
772 |
-
dims = x.dim()
|
773 |
-
model_prev_1, model_prev_0 = model_prev_list
|
774 |
-
t_prev_1, t_prev_0 = t_prev_list
|
775 |
-
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
776 |
-
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
777 |
-
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
778 |
-
alpha_t = torch.exp(log_alpha_t)
|
779 |
-
|
780 |
-
h_0 = lambda_prev_0 - lambda_prev_1
|
781 |
-
h = lambda_t - lambda_prev_0
|
782 |
-
r0 = h_0 / h
|
783 |
-
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
784 |
-
if self.predict_x0:
|
785 |
-
if solver_type == 'dpm_solver':
|
786 |
-
x_t = (
|
787 |
-
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
788 |
-
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
789 |
-
- 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
|
790 |
-
)
|
791 |
-
elif solver_type == 'taylor':
|
792 |
-
x_t = (
|
793 |
-
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
794 |
-
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
795 |
-
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
|
796 |
-
)
|
797 |
-
else:
|
798 |
-
if solver_type == 'dpm_solver':
|
799 |
-
x_t = (
|
800 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
801 |
-
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
802 |
-
- 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
|
803 |
-
)
|
804 |
-
elif solver_type == 'taylor':
|
805 |
-
x_t = (
|
806 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
807 |
-
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
808 |
-
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
|
809 |
-
)
|
810 |
-
return x_t
|
811 |
-
|
812 |
-
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
|
813 |
-
"""
|
814 |
-
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
815 |
-
|
816 |
-
Args:
|
817 |
-
x: A pytorch tensor. The initial value at time `s`.
|
818 |
-
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
819 |
-
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
820 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
821 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
822 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
823 |
-
Returns:
|
824 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
825 |
-
"""
|
826 |
-
ns = self.noise_schedule
|
827 |
-
dims = x.dim()
|
828 |
-
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
829 |
-
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
830 |
-
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
831 |
-
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
832 |
-
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
833 |
-
alpha_t = torch.exp(log_alpha_t)
|
834 |
-
|
835 |
-
h_1 = lambda_prev_1 - lambda_prev_2
|
836 |
-
h_0 = lambda_prev_0 - lambda_prev_1
|
837 |
-
h = lambda_t - lambda_prev_0
|
838 |
-
r0, r1 = h_0 / h, h_1 / h
|
839 |
-
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
840 |
-
D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
|
841 |
-
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
|
842 |
-
D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
|
843 |
-
if self.predict_x0:
|
844 |
-
x_t = (
|
845 |
-
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
846 |
-
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
847 |
-
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
|
848 |
-
- expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h**2 - 0.5), dims) * D2
|
849 |
-
)
|
850 |
-
else:
|
851 |
-
x_t = (
|
852 |
-
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
853 |
-
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
854 |
-
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
|
855 |
-
- expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h**2 - 0.5), dims) * D2
|
856 |
-
)
|
857 |
-
return x_t
|
858 |
-
|
859 |
-
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None, r2=None):
|
860 |
-
"""
|
861 |
-
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
862 |
-
|
863 |
-
Args:
|
864 |
-
x: A pytorch tensor. The initial value at time `s`.
|
865 |
-
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
866 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
867 |
-
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
868 |
-
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
869 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
870 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
871 |
-
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
872 |
-
r2: A `float`. The hyperparameter of the third-order solver.
|
873 |
-
Returns:
|
874 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
875 |
-
"""
|
876 |
-
if order == 1:
|
877 |
-
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
878 |
-
elif order == 2:
|
879 |
-
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
|
880 |
-
elif order == 3:
|
881 |
-
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
|
882 |
-
else:
|
883 |
-
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
884 |
-
|
885 |
-
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
|
886 |
-
"""
|
887 |
-
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
888 |
-
|
889 |
-
Args:
|
890 |
-
x: A pytorch tensor. The initial value at time `s`.
|
891 |
-
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
892 |
-
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
893 |
-
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
894 |
-
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
895 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
896 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
897 |
-
Returns:
|
898 |
-
x_t: A pytorch tensor. The approximated solution at time `t`.
|
899 |
-
"""
|
900 |
-
if order == 1:
|
901 |
-
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
902 |
-
elif order == 2:
|
903 |
-
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
904 |
-
elif order == 3:
|
905 |
-
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
906 |
-
else:
|
907 |
-
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
908 |
-
|
909 |
-
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpm_solver'):
|
910 |
-
"""
|
911 |
-
The adaptive step size solver based on singlestep DPM-Solver.
|
912 |
-
|
913 |
-
Args:
|
914 |
-
x: A pytorch tensor. The initial value at time `t_T`.
|
915 |
-
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
916 |
-
t_T: A `float`. The starting time of the sampling (default is T).
|
917 |
-
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
918 |
-
h_init: A `float`. The initial step size (for logSNR).
|
919 |
-
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
920 |
-
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
921 |
-
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
922 |
-
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
923 |
-
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
924 |
-
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
925 |
-
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
926 |
-
Returns:
|
927 |
-
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
928 |
-
|
929 |
-
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
930 |
-
"""
|
931 |
-
ns = self.noise_schedule
|
932 |
-
s = t_T * torch.ones((x.shape[0],)).to(x)
|
933 |
-
lambda_s = ns.marginal_lambda(s)
|
934 |
-
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
935 |
-
h = h_init * torch.ones_like(s).to(x)
|
936 |
-
x_prev = x
|
937 |
-
nfe = 0
|
938 |
-
if order == 2:
|
939 |
-
r1 = 0.5
|
940 |
-
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
941 |
-
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
|
942 |
-
elif order == 3:
|
943 |
-
r1, r2 = 1. / 3., 2. / 3.
|
944 |
-
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
|
945 |
-
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
|
946 |
-
else:
|
947 |
-
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
948 |
-
while torch.abs((s - t_0)).mean() > t_err:
|
949 |
-
t = ns.inverse_lambda(lambda_s + h)
|
950 |
-
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
951 |
-
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
952 |
-
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
953 |
-
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
954 |
-
E = norm_fn((x_higher - x_lower) / delta).max()
|
955 |
-
if torch.all(E <= 1.):
|
956 |
-
x = x_higher
|
957 |
-
s = t
|
958 |
-
x_prev = x_lower
|
959 |
-
lambda_s = ns.marginal_lambda(s)
|
960 |
-
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
961 |
-
nfe += order
|
962 |
-
print('adaptive solver nfe', nfe)
|
963 |
-
return x
|
964 |
-
|
965 |
-
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
966 |
-
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
967 |
-
atol=0.0078, rtol=0.05,
|
968 |
-
):
|
969 |
-
"""
|
970 |
-
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
971 |
-
|
972 |
-
=====================================================
|
973 |
-
|
974 |
-
We support the following algorithms for both noise prediction model and data prediction model:
|
975 |
-
- 'singlestep':
|
976 |
-
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
977 |
-
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
978 |
-
The total number of function evaluations (NFE) == `steps`.
|
979 |
-
Given a fixed NFE == `steps`, the sampling procedure is:
|
980 |
-
- If `order` == 1:
|
981 |
-
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
982 |
-
- If `order` == 2:
|
983 |
-
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
984 |
-
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
985 |
-
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
986 |
-
- If `order` == 3:
|
987 |
-
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
988 |
-
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
989 |
-
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
990 |
-
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
991 |
-
- 'multistep':
|
992 |
-
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
993 |
-
We initialize the first `order` values by lower order multistep solvers.
|
994 |
-
Given a fixed NFE == `steps`, the sampling procedure is:
|
995 |
-
Denote K = steps.
|
996 |
-
- If `order` == 1:
|
997 |
-
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
998 |
-
- If `order` == 2:
|
999 |
-
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
1000 |
-
- If `order` == 3:
|
1001 |
-
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
1002 |
-
- 'singlestep_fixed':
|
1003 |
-
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
1004 |
-
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
1005 |
-
- 'adaptive':
|
1006 |
-
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
1007 |
-
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
1008 |
-
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
1009 |
-
(NFE) and the sample quality.
|
1010 |
-
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
1011 |
-
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
1012 |
-
|
1013 |
-
=====================================================
|
1014 |
-
|
1015 |
-
Some advices for choosing the algorithm:
|
1016 |
-
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
1017 |
-
Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
|
1018 |
-
e.g.
|
1019 |
-
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
|
1020 |
-
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
1021 |
-
skip_type='time_uniform', method='singlestep')
|
1022 |
-
- For **guided sampling with large guidance scale** by DPMs:
|
1023 |
-
Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
|
1024 |
-
e.g.
|
1025 |
-
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
|
1026 |
-
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
1027 |
-
skip_type='time_uniform', method='multistep')
|
1028 |
-
|
1029 |
-
We support three types of `skip_type`:
|
1030 |
-
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
1031 |
-
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
1032 |
-
- 'time_quadratic': quadratic time for the time steps.
|
1033 |
-
|
1034 |
-
=====================================================
|
1035 |
-
Args:
|
1036 |
-
x: A pytorch tensor. The initial value at time `t_start`
|
1037 |
-
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
1038 |
-
steps: A `int`. The total number of function evaluations (NFE).
|
1039 |
-
t_start: A `float`. The starting time of the sampling.
|
1040 |
-
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
1041 |
-
t_end: A `float`. The ending time of the sampling.
|
1042 |
-
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
1043 |
-
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
1044 |
-
For discrete-time DPMs:
|
1045 |
-
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
1046 |
-
For continuous-time DPMs:
|
1047 |
-
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
1048 |
-
order: A `int`. The order of DPM-Solver.
|
1049 |
-
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
1050 |
-
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
1051 |
-
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
1052 |
-
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
1053 |
-
|
1054 |
-
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
1055 |
-
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
1056 |
-
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
1057 |
-
(such as CIFAR-10). However, we observed that such trick does not matter for
|
1058 |
-
high-resolutional images. As it needs an additional NFE, we do not recommend
|
1059 |
-
it for high-resolutional images.
|
1060 |
-
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
1061 |
-
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
1062 |
-
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
1063 |
-
(especially for steps <= 10). So we recommend to set it to be `True`.
|
1064 |
-
solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
|
1065 |
-
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1066 |
-
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1067 |
-
Returns:
|
1068 |
-
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
1069 |
-
|
1070 |
-
"""
|
1071 |
-
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
1072 |
-
t_T = self.noise_schedule.T if t_start is None else t_start
|
1073 |
-
device = x.device
|
1074 |
-
if method == 'adaptive':
|
1075 |
-
with torch.no_grad():
|
1076 |
-
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
|
1077 |
-
elif method == 'multistep':
|
1078 |
-
assert steps >= order
|
1079 |
-
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
1080 |
-
assert timesteps.shape[0] - 1 == steps
|
1081 |
-
with torch.no_grad():
|
1082 |
-
vec_t = timesteps[0].expand((x.shape[0]))
|
1083 |
-
model_prev_list = [self.model_fn(x, vec_t)]
|
1084 |
-
t_prev_list = [vec_t]
|
1085 |
-
# Init the first `order` values by lower order multistep DPM-Solver.
|
1086 |
-
for init_order in range(1, order):
|
1087 |
-
vec_t = timesteps[init_order].expand(x.shape[0])
|
1088 |
-
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order, solver_type=solver_type)
|
1089 |
-
model_prev_list.append(self.model_fn(x, vec_t))
|
1090 |
-
t_prev_list.append(vec_t)
|
1091 |
-
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
1092 |
-
for step in range(order, steps + 1):
|
1093 |
-
vec_t = timesteps[step].expand(x.shape[0])
|
1094 |
-
if lower_order_final and steps < 15:
|
1095 |
-
step_order = min(order, steps + 1 - step)
|
1096 |
-
else:
|
1097 |
-
step_order = order
|
1098 |
-
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order, solver_type=solver_type)
|
1099 |
-
for i in range(order - 1):
|
1100 |
-
t_prev_list[i] = t_prev_list[i + 1]
|
1101 |
-
model_prev_list[i] = model_prev_list[i + 1]
|
1102 |
-
t_prev_list[-1] = vec_t
|
1103 |
-
# We do not need to evaluate the final model value.
|
1104 |
-
if step < steps:
|
1105 |
-
model_prev_list[-1] = self.model_fn(x, vec_t)
|
1106 |
-
elif method in ['singlestep', 'singlestep_fixed']:
|
1107 |
-
if method == 'singlestep':
|
1108 |
-
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device)
|
1109 |
-
elif method == 'singlestep_fixed':
|
1110 |
-
K = steps // order
|
1111 |
-
orders = [order,] * K
|
1112 |
-
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
1113 |
-
for i, order in enumerate(orders):
|
1114 |
-
t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
|
1115 |
-
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(), N=order, device=device)
|
1116 |
-
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
1117 |
-
vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
|
1118 |
-
h = lambda_inner[-1] - lambda_inner[0]
|
1119 |
-
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
1120 |
-
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
1121 |
-
x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
|
1122 |
-
if denoise_to_zero:
|
1123 |
-
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
1124 |
-
return x
|
1125 |
-
|
1126 |
-
|
1127 |
-
|
1128 |
-
#############################################################
|
1129 |
-
# other utility functions
|
1130 |
-
#############################################################
|
1131 |
-
|
1132 |
-
def interpolate_fn(x, xp, yp):
|
1133 |
-
"""
|
1134 |
-
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
1135 |
-
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
1136 |
-
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
1137 |
-
|
1138 |
-
Args:
|
1139 |
-
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
1140 |
-
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
1141 |
-
yp: PyTorch tensor with shape [C, K].
|
1142 |
-
Returns:
|
1143 |
-
The function values f(x), with shape [N, C].
|
1144 |
-
"""
|
1145 |
-
N, K = x.shape[0], xp.shape[1]
|
1146 |
-
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
1147 |
-
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
1148 |
-
x_idx = torch.argmin(x_indices, dim=2)
|
1149 |
-
cand_start_idx = x_idx - 1
|
1150 |
-
start_idx = torch.where(
|
1151 |
-
torch.eq(x_idx, 0),
|
1152 |
-
torch.tensor(1, device=x.device),
|
1153 |
-
torch.where(
|
1154 |
-
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1155 |
-
),
|
1156 |
-
)
|
1157 |
-
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
1158 |
-
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
1159 |
-
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
1160 |
-
start_idx2 = torch.where(
|
1161 |
-
torch.eq(x_idx, 0),
|
1162 |
-
torch.tensor(0, device=x.device),
|
1163 |
-
torch.where(
|
1164 |
-
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1165 |
-
),
|
1166 |
-
)
|
1167 |
-
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
1168 |
-
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
1169 |
-
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
1170 |
-
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
1171 |
-
return cand
|
1172 |
-
|
1173 |
-
|
1174 |
-
def expand_dims(v, dims):
|
1175 |
-
"""
|
1176 |
-
Expand the tensor `v` to the dim `dims`.
|
1177 |
-
|
1178 |
-
Args:
|
1179 |
-
`v`: a PyTorch tensor with shape [N].
|
1180 |
-
`dim`: a `int`.
|
1181 |
-
Returns:
|
1182 |
-
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
1183 |
-
"""
|
1184 |
-
return v[(...,) + (None,)*(dims - 1)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/models/diffusion/dpm_solver/sampler.py
DELETED
@@ -1,82 +0,0 @@
|
|
1 |
-
"""SAMPLING ONLY."""
|
2 |
-
|
3 |
-
import torch
|
4 |
-
|
5 |
-
from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
|
6 |
-
|
7 |
-
|
8 |
-
class DPMSolverSampler(object):
|
9 |
-
def __init__(self, model, **kwargs):
|
10 |
-
super().__init__()
|
11 |
-
self.model = model
|
12 |
-
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
|
13 |
-
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
|
14 |
-
|
15 |
-
def register_buffer(self, name, attr):
|
16 |
-
if type(attr) == torch.Tensor:
|
17 |
-
if attr.device != torch.device("cuda"):
|
18 |
-
attr = attr.to(torch.device("cuda"))
|
19 |
-
setattr(self, name, attr)
|
20 |
-
|
21 |
-
@torch.no_grad()
|
22 |
-
def sample(self,
|
23 |
-
S,
|
24 |
-
batch_size,
|
25 |
-
shape,
|
26 |
-
conditioning=None,
|
27 |
-
callback=None,
|
28 |
-
normals_sequence=None,
|
29 |
-
img_callback=None,
|
30 |
-
quantize_x0=False,
|
31 |
-
eta=0.,
|
32 |
-
mask=None,
|
33 |
-
x0=None,
|
34 |
-
temperature=1.,
|
35 |
-
noise_dropout=0.,
|
36 |
-
score_corrector=None,
|
37 |
-
corrector_kwargs=None,
|
38 |
-
verbose=True,
|
39 |
-
x_T=None,
|
40 |
-
log_every_t=100,
|
41 |
-
unconditional_guidance_scale=1.,
|
42 |
-
unconditional_conditioning=None,
|
43 |
-
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
44 |
-
**kwargs
|
45 |
-
):
|
46 |
-
if conditioning is not None:
|
47 |
-
if isinstance(conditioning, dict):
|
48 |
-
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
49 |
-
if cbs != batch_size:
|
50 |
-
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
51 |
-
else:
|
52 |
-
if conditioning.shape[0] != batch_size:
|
53 |
-
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
54 |
-
|
55 |
-
# sampling
|
56 |
-
C, H, W = shape
|
57 |
-
size = (batch_size, C, H, W)
|
58 |
-
|
59 |
-
# print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
|
60 |
-
|
61 |
-
device = self.model.betas.device
|
62 |
-
if x_T is None:
|
63 |
-
img = torch.randn(size, device=device)
|
64 |
-
else:
|
65 |
-
img = x_T
|
66 |
-
|
67 |
-
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
|
68 |
-
|
69 |
-
model_fn = model_wrapper(
|
70 |
-
lambda x, t, c: self.model.apply_model(x, t, c),
|
71 |
-
ns,
|
72 |
-
model_type="noise",
|
73 |
-
guidance_type="classifier-free",
|
74 |
-
condition=conditioning,
|
75 |
-
unconditional_condition=unconditional_conditioning,
|
76 |
-
guidance_scale=unconditional_guidance_scale,
|
77 |
-
)
|
78 |
-
|
79 |
-
dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
|
80 |
-
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
|
81 |
-
|
82 |
-
return x.to(device), None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/models/diffusion/plms.py
DELETED
@@ -1,259 +0,0 @@
|
|
1 |
-
"""SAMPLING ONLY."""
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
from tqdm import tqdm
|
6 |
-
from functools import partial
|
7 |
-
|
8 |
-
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
9 |
-
from ldm.models.diffusion.sampling_util import norm_thresholding
|
10 |
-
|
11 |
-
|
12 |
-
class PLMSSampler(object):
|
13 |
-
def __init__(self, model, schedule="linear", **kwargs):
|
14 |
-
super().__init__()
|
15 |
-
self.model = model
|
16 |
-
self.ddpm_num_timesteps = model.num_timesteps
|
17 |
-
self.schedule = schedule
|
18 |
-
|
19 |
-
def register_buffer(self, name, attr):
|
20 |
-
if type(attr) == torch.Tensor:
|
21 |
-
if attr.device != torch.device("cuda"):
|
22 |
-
attr = attr.to(torch.device("cuda"))
|
23 |
-
setattr(self, name, attr)
|
24 |
-
|
25 |
-
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
26 |
-
if ddim_eta != 0:
|
27 |
-
raise ValueError('ddim_eta must be 0 for PLMS')
|
28 |
-
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
|
29 |
-
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
30 |
-
alphas_cumprod = self.model.alphas_cumprod
|
31 |
-
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
32 |
-
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
33 |
-
|
34 |
-
self.register_buffer('betas', to_torch(self.model.betas))
|
35 |
-
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
36 |
-
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
|
37 |
-
|
38 |
-
# calculations for diffusion q(x_t | x_{t-1}) and others
|
39 |
-
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
|
40 |
-
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
|
41 |
-
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
|
42 |
-
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
|
43 |
-
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
|
44 |
-
|
45 |
-
# ddim sampling parameters
|
46 |
-
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
|
47 |
-
ddim_timesteps=self.ddim_timesteps,
|
48 |
-
eta=ddim_eta,verbose=verbose)
|
49 |
-
self.register_buffer('ddim_sigmas', ddim_sigmas)
|
50 |
-
self.register_buffer('ddim_alphas', ddim_alphas)
|
51 |
-
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
|
52 |
-
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
|
53 |
-
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
|
54 |
-
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
|
55 |
-
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
|
56 |
-
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
|
57 |
-
|
58 |
-
@torch.no_grad()
|
59 |
-
def sample(self,
|
60 |
-
S,
|
61 |
-
batch_size,
|
62 |
-
shape,
|
63 |
-
conditioning=None,
|
64 |
-
callback=None,
|
65 |
-
normals_sequence=None,
|
66 |
-
img_callback=None,
|
67 |
-
quantize_x0=False,
|
68 |
-
eta=0.,
|
69 |
-
mask=None,
|
70 |
-
x0=None,
|
71 |
-
temperature=1.,
|
72 |
-
noise_dropout=0.,
|
73 |
-
score_corrector=None,
|
74 |
-
corrector_kwargs=None,
|
75 |
-
verbose=True,
|
76 |
-
x_T=None,
|
77 |
-
log_every_t=100,
|
78 |
-
unconditional_guidance_scale=1.,
|
79 |
-
unconditional_conditioning=None,
|
80 |
-
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
81 |
-
dynamic_threshold=None,
|
82 |
-
**kwargs
|
83 |
-
):
|
84 |
-
if conditioning is not None:
|
85 |
-
if isinstance(conditioning, dict):
|
86 |
-
ctmp = conditioning[list(conditioning.keys())[0]]
|
87 |
-
while isinstance(ctmp, list): ctmp = ctmp[0]
|
88 |
-
cbs = ctmp.shape[0]
|
89 |
-
if cbs != batch_size:
|
90 |
-
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
91 |
-
else:
|
92 |
-
if conditioning.shape[0] != batch_size:
|
93 |
-
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
94 |
-
|
95 |
-
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
96 |
-
# sampling
|
97 |
-
C, H, W = shape
|
98 |
-
size = (batch_size, C, H, W)
|
99 |
-
print(f'Data shape for PLMS sampling is {size}')
|
100 |
-
|
101 |
-
samples, intermediates = self.plms_sampling(conditioning, size,
|
102 |
-
callback=callback,
|
103 |
-
img_callback=img_callback,
|
104 |
-
quantize_denoised=quantize_x0,
|
105 |
-
mask=mask, x0=x0,
|
106 |
-
ddim_use_original_steps=False,
|
107 |
-
noise_dropout=noise_dropout,
|
108 |
-
temperature=temperature,
|
109 |
-
score_corrector=score_corrector,
|
110 |
-
corrector_kwargs=corrector_kwargs,
|
111 |
-
x_T=x_T,
|
112 |
-
log_every_t=log_every_t,
|
113 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
114 |
-
unconditional_conditioning=unconditional_conditioning,
|
115 |
-
dynamic_threshold=dynamic_threshold,
|
116 |
-
)
|
117 |
-
return samples, intermediates
|
118 |
-
|
119 |
-
@torch.no_grad()
|
120 |
-
def plms_sampling(self, cond, shape,
|
121 |
-
x_T=None, ddim_use_original_steps=False,
|
122 |
-
callback=None, timesteps=None, quantize_denoised=False,
|
123 |
-
mask=None, x0=None, img_callback=None, log_every_t=100,
|
124 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
125 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None,
|
126 |
-
dynamic_threshold=None):
|
127 |
-
device = self.model.betas.device
|
128 |
-
b = shape[0]
|
129 |
-
if x_T is None:
|
130 |
-
img = torch.randn(shape, device=device)
|
131 |
-
else:
|
132 |
-
img = x_T
|
133 |
-
|
134 |
-
if timesteps is None:
|
135 |
-
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
|
136 |
-
elif timesteps is not None and not ddim_use_original_steps:
|
137 |
-
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
|
138 |
-
timesteps = self.ddim_timesteps[:subset_end]
|
139 |
-
|
140 |
-
intermediates = {'x_inter': [img], 'pred_x0': [img]}
|
141 |
-
time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
|
142 |
-
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
143 |
-
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
144 |
-
|
145 |
-
iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
|
146 |
-
old_eps = []
|
147 |
-
|
148 |
-
for i, step in enumerate(iterator):
|
149 |
-
index = total_steps - i - 1
|
150 |
-
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
151 |
-
ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
|
152 |
-
|
153 |
-
if mask is not None:
|
154 |
-
assert x0 is not None
|
155 |
-
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
|
156 |
-
img = img_orig * mask + (1. - mask) * img
|
157 |
-
|
158 |
-
outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
|
159 |
-
quantize_denoised=quantize_denoised, temperature=temperature,
|
160 |
-
noise_dropout=noise_dropout, score_corrector=score_corrector,
|
161 |
-
corrector_kwargs=corrector_kwargs,
|
162 |
-
unconditional_guidance_scale=unconditional_guidance_scale,
|
163 |
-
unconditional_conditioning=unconditional_conditioning,
|
164 |
-
old_eps=old_eps, t_next=ts_next,
|
165 |
-
dynamic_threshold=dynamic_threshold)
|
166 |
-
img, pred_x0, e_t = outs
|
167 |
-
old_eps.append(e_t)
|
168 |
-
if len(old_eps) >= 4:
|
169 |
-
old_eps.pop(0)
|
170 |
-
if callback: callback(i)
|
171 |
-
if img_callback: img_callback(pred_x0, i)
|
172 |
-
|
173 |
-
if index % log_every_t == 0 or index == total_steps - 1:
|
174 |
-
intermediates['x_inter'].append(img)
|
175 |
-
intermediates['pred_x0'].append(pred_x0)
|
176 |
-
|
177 |
-
return img, intermediates
|
178 |
-
|
179 |
-
@torch.no_grad()
|
180 |
-
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
181 |
-
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
182 |
-
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
|
183 |
-
dynamic_threshold=None):
|
184 |
-
b, *_, device = *x.shape, x.device
|
185 |
-
|
186 |
-
def get_model_output(x, t):
|
187 |
-
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
188 |
-
e_t = self.model.apply_model(x, t, c)
|
189 |
-
else:
|
190 |
-
x_in = torch.cat([x] * 2)
|
191 |
-
t_in = torch.cat([t] * 2)
|
192 |
-
if isinstance(c, dict):
|
193 |
-
assert isinstance(unconditional_conditioning, dict)
|
194 |
-
c_in = dict()
|
195 |
-
for k in c:
|
196 |
-
if isinstance(c[k], list):
|
197 |
-
c_in[k] = [torch.cat([
|
198 |
-
unconditional_conditioning[k][i],
|
199 |
-
c[k][i]]) for i in range(len(c[k]))]
|
200 |
-
else:
|
201 |
-
c_in[k] = torch.cat([
|
202 |
-
unconditional_conditioning[k],
|
203 |
-
c[k]])
|
204 |
-
else:
|
205 |
-
c_in = torch.cat([unconditional_conditioning, c])
|
206 |
-
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
207 |
-
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
208 |
-
|
209 |
-
if score_corrector is not None:
|
210 |
-
assert self.model.parameterization == "eps"
|
211 |
-
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
212 |
-
|
213 |
-
return e_t
|
214 |
-
|
215 |
-
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
216 |
-
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
217 |
-
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
218 |
-
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
219 |
-
|
220 |
-
def get_x_prev_and_pred_x0(e_t, index):
|
221 |
-
# select parameters corresponding to the currently considered timestep
|
222 |
-
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
223 |
-
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
224 |
-
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
225 |
-
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
226 |
-
|
227 |
-
# current prediction for x_0
|
228 |
-
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
229 |
-
if quantize_denoised:
|
230 |
-
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
231 |
-
if dynamic_threshold is not None:
|
232 |
-
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
|
233 |
-
# direction pointing to x_t
|
234 |
-
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
235 |
-
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
236 |
-
if noise_dropout > 0.:
|
237 |
-
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
238 |
-
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
239 |
-
return x_prev, pred_x0
|
240 |
-
|
241 |
-
e_t = get_model_output(x, t)
|
242 |
-
if len(old_eps) == 0:
|
243 |
-
# Pseudo Improved Euler (2nd order)
|
244 |
-
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
245 |
-
e_t_next = get_model_output(x_prev, t_next)
|
246 |
-
e_t_prime = (e_t + e_t_next) / 2
|
247 |
-
elif len(old_eps) == 1:
|
248 |
-
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
249 |
-
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
250 |
-
elif len(old_eps) == 2:
|
251 |
-
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
252 |
-
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
253 |
-
elif len(old_eps) >= 3:
|
254 |
-
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
255 |
-
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
256 |
-
|
257 |
-
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
258 |
-
|
259 |
-
return x_prev, pred_x0, e_t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/models/diffusion/sampling_util.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
|
4 |
-
|
5 |
-
def append_dims(x, target_dims):
|
6 |
-
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
7 |
-
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
8 |
-
dims_to_append = target_dims - x.ndim
|
9 |
-
if dims_to_append < 0:
|
10 |
-
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
11 |
-
return x[(...,) + (None,) * dims_to_append]
|
12 |
-
|
13 |
-
|
14 |
-
def renorm_thresholding(x0, value):
|
15 |
-
# renorm
|
16 |
-
pred_max = x0.max()
|
17 |
-
pred_min = x0.min()
|
18 |
-
pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1
|
19 |
-
pred_x0 = 2 * pred_x0 - 1. # -1 ... 1
|
20 |
-
|
21 |
-
s = torch.quantile(
|
22 |
-
rearrange(pred_x0, 'b ... -> b (...)').abs(),
|
23 |
-
value,
|
24 |
-
dim=-1
|
25 |
-
)
|
26 |
-
s.clamp_(min=1.0)
|
27 |
-
s = s.view(-1, *((1,) * (pred_x0.ndim - 1)))
|
28 |
-
|
29 |
-
# clip by threshold
|
30 |
-
# pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max
|
31 |
-
|
32 |
-
# temporary hack: numpy on cpu
|
33 |
-
pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy()
|
34 |
-
pred_x0 = torch.tensor(pred_x0).to(self.model.device)
|
35 |
-
|
36 |
-
# re.renorm
|
37 |
-
pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1
|
38 |
-
pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range
|
39 |
-
return pred_x0
|
40 |
-
|
41 |
-
|
42 |
-
def norm_thresholding(x0, value):
|
43 |
-
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
44 |
-
return x0 * (value / s)
|
45 |
-
|
46 |
-
|
47 |
-
def spatial_norm_thresholding(x0, value):
|
48 |
-
# b c h w
|
49 |
-
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
50 |
-
return x0 * (value / s)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/attention.py
DELETED
@@ -1,269 +0,0 @@
|
|
1 |
-
from inspect import isfunction
|
2 |
-
import math
|
3 |
-
import torch
|
4 |
-
import torch.nn.functional as F
|
5 |
-
from torch import nn, einsum
|
6 |
-
from einops import rearrange, repeat
|
7 |
-
|
8 |
-
from ldm.modules.diffusionmodules.util import checkpoint
|
9 |
-
|
10 |
-
|
11 |
-
def exists(val):
|
12 |
-
return val is not None
|
13 |
-
|
14 |
-
|
15 |
-
def uniq(arr):
|
16 |
-
return{el: True for el in arr}.keys()
|
17 |
-
|
18 |
-
|
19 |
-
def default(val, d):
|
20 |
-
if exists(val):
|
21 |
-
return val
|
22 |
-
return d() if isfunction(d) else d
|
23 |
-
|
24 |
-
|
25 |
-
def max_neg_value(t):
|
26 |
-
return -torch.finfo(t.dtype).max
|
27 |
-
|
28 |
-
|
29 |
-
def init_(tensor):
|
30 |
-
dim = tensor.shape[-1]
|
31 |
-
std = 1 / math.sqrt(dim)
|
32 |
-
tensor.uniform_(-std, std)
|
33 |
-
return tensor
|
34 |
-
|
35 |
-
|
36 |
-
# feedforward
|
37 |
-
class GEGLU(nn.Module):
|
38 |
-
def __init__(self, dim_in, dim_out):
|
39 |
-
super().__init__()
|
40 |
-
self.proj = nn.Linear(dim_in, dim_out * 2)
|
41 |
-
|
42 |
-
def forward(self, x):
|
43 |
-
x, gate = self.proj(x).chunk(2, dim=-1)
|
44 |
-
return x * F.gelu(gate)
|
45 |
-
|
46 |
-
|
47 |
-
class FeedForward(nn.Module):
|
48 |
-
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
49 |
-
super().__init__()
|
50 |
-
inner_dim = int(dim * mult)
|
51 |
-
dim_out = default(dim_out, dim)
|
52 |
-
project_in = nn.Sequential(
|
53 |
-
nn.Linear(dim, inner_dim),
|
54 |
-
nn.GELU()
|
55 |
-
) if not glu else GEGLU(dim, inner_dim)
|
56 |
-
|
57 |
-
self.net = nn.Sequential(
|
58 |
-
project_in,
|
59 |
-
nn.Dropout(dropout),
|
60 |
-
nn.Linear(inner_dim, dim_out)
|
61 |
-
)
|
62 |
-
|
63 |
-
def forward(self, x):
|
64 |
-
return self.net(x)
|
65 |
-
|
66 |
-
|
67 |
-
def zero_module(module):
|
68 |
-
"""
|
69 |
-
Zero out the parameters of a module and return it.
|
70 |
-
"""
|
71 |
-
for p in module.parameters():
|
72 |
-
p.detach().zero_()
|
73 |
-
return module
|
74 |
-
|
75 |
-
|
76 |
-
def Normalize(in_channels):
|
77 |
-
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
78 |
-
|
79 |
-
|
80 |
-
class LinearAttention(nn.Module):
|
81 |
-
def __init__(self, dim, heads=4, dim_head=32):
|
82 |
-
super().__init__()
|
83 |
-
self.heads = heads
|
84 |
-
hidden_dim = dim_head * heads
|
85 |
-
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
86 |
-
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
87 |
-
|
88 |
-
def forward(self, x):
|
89 |
-
b, c, h, w = x.shape
|
90 |
-
qkv = self.to_qkv(x)
|
91 |
-
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
92 |
-
k = k.softmax(dim=-1)
|
93 |
-
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
94 |
-
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
95 |
-
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
96 |
-
return self.to_out(out)
|
97 |
-
|
98 |
-
|
99 |
-
class SpatialSelfAttention(nn.Module):
|
100 |
-
def __init__(self, in_channels):
|
101 |
-
super().__init__()
|
102 |
-
self.in_channels = in_channels
|
103 |
-
|
104 |
-
self.norm = Normalize(in_channels)
|
105 |
-
self.q = torch.nn.Conv2d(in_channels,
|
106 |
-
in_channels,
|
107 |
-
kernel_size=1,
|
108 |
-
stride=1,
|
109 |
-
padding=0)
|
110 |
-
self.k = torch.nn.Conv2d(in_channels,
|
111 |
-
in_channels,
|
112 |
-
kernel_size=1,
|
113 |
-
stride=1,
|
114 |
-
padding=0)
|
115 |
-
self.v = torch.nn.Conv2d(in_channels,
|
116 |
-
in_channels,
|
117 |
-
kernel_size=1,
|
118 |
-
stride=1,
|
119 |
-
padding=0)
|
120 |
-
self.proj_out = torch.nn.Conv2d(in_channels,
|
121 |
-
in_channels,
|
122 |
-
kernel_size=1,
|
123 |
-
stride=1,
|
124 |
-
padding=0)
|
125 |
-
|
126 |
-
def forward(self, x):
|
127 |
-
h_ = x
|
128 |
-
h_ = self.norm(h_)
|
129 |
-
q = self.q(h_)
|
130 |
-
k = self.k(h_)
|
131 |
-
v = self.v(h_)
|
132 |
-
|
133 |
-
# compute attention
|
134 |
-
b,c,h,w = q.shape
|
135 |
-
q = rearrange(q, 'b c h w -> b (h w) c')
|
136 |
-
k = rearrange(k, 'b c h w -> b c (h w)')
|
137 |
-
w_ = torch.einsum('bij,bjk->bik', q, k)
|
138 |
-
|
139 |
-
w_ = w_ * (int(c)**(-0.5))
|
140 |
-
w_ = torch.nn.functional.softmax(w_, dim=2)
|
141 |
-
|
142 |
-
# attend to values
|
143 |
-
v = rearrange(v, 'b c h w -> b c (h w)')
|
144 |
-
w_ = rearrange(w_, 'b i j -> b j i')
|
145 |
-
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
146 |
-
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
147 |
-
h_ = self.proj_out(h_)
|
148 |
-
|
149 |
-
return x+h_
|
150 |
-
|
151 |
-
|
152 |
-
class CrossAttention(nn.Module):
|
153 |
-
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
154 |
-
super().__init__()
|
155 |
-
inner_dim = dim_head * heads
|
156 |
-
context_dim = default(context_dim, query_dim)
|
157 |
-
|
158 |
-
self.scale = dim_head ** -0.5
|
159 |
-
self.heads = heads
|
160 |
-
|
161 |
-
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
162 |
-
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
163 |
-
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
164 |
-
|
165 |
-
# self.attn_soft = nn.Softmax(dim=-1)
|
166 |
-
# self.attn_soft = nn.Identity()
|
167 |
-
self.to_out = nn.Sequential(
|
168 |
-
nn.Linear(inner_dim, query_dim),
|
169 |
-
nn.Dropout(dropout)
|
170 |
-
)
|
171 |
-
|
172 |
-
def forward(self, x, context=None, mask=None):
|
173 |
-
h = self.heads
|
174 |
-
|
175 |
-
q = self.to_q(x)
|
176 |
-
context = default(context, x)
|
177 |
-
k = self.to_k(context)
|
178 |
-
v = self.to_v(context)
|
179 |
-
|
180 |
-
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
181 |
-
|
182 |
-
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
183 |
-
|
184 |
-
if exists(mask):
|
185 |
-
mask = rearrange(mask, 'b ... -> b (...)')
|
186 |
-
max_neg_value = -torch.finfo(sim.dtype).max
|
187 |
-
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
188 |
-
sim.masked_fill_(~mask, max_neg_value)
|
189 |
-
|
190 |
-
# attention, what we cannot get enough of
|
191 |
-
# attn = self.attn_soft(sim)
|
192 |
-
attn = sim.softmax(dim=-1)
|
193 |
-
# attn = self.attn_soft(attn)
|
194 |
-
out = einsum('b i j, b j d -> b i d', attn, v)
|
195 |
-
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
196 |
-
return self.to_out(out)
|
197 |
-
|
198 |
-
|
199 |
-
class BasicTransformerBlock(nn.Module):
|
200 |
-
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
|
201 |
-
disable_self_attn=False):
|
202 |
-
super().__init__()
|
203 |
-
self.disable_self_attn = disable_self_attn
|
204 |
-
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
|
205 |
-
context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
|
206 |
-
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
207 |
-
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
208 |
-
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
209 |
-
self.norm1 = nn.LayerNorm(dim)
|
210 |
-
self.norm2 = nn.LayerNorm(dim)
|
211 |
-
self.norm3 = nn.LayerNorm(dim)
|
212 |
-
self.checkpoint = checkpoint
|
213 |
-
|
214 |
-
def forward(self, x, context=None):
|
215 |
-
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
216 |
-
|
217 |
-
def _forward(self, x, context=None):
|
218 |
-
x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
|
219 |
-
x = self.attn2(self.norm2(x), context=context) + x
|
220 |
-
x = self.ff(self.norm3(x)) + x
|
221 |
-
return x
|
222 |
-
|
223 |
-
|
224 |
-
class SpatialTransformer(nn.Module):
|
225 |
-
"""
|
226 |
-
Transformer block for image-like data.
|
227 |
-
First, project the input (aka embedding)
|
228 |
-
and reshape to b, t, d.
|
229 |
-
Then apply standard transformer action.
|
230 |
-
Finally, reshape to image
|
231 |
-
"""
|
232 |
-
def __init__(self, in_channels, n_heads, d_head,
|
233 |
-
depth=1, dropout=0., context_dim=None,
|
234 |
-
disable_self_attn=False):
|
235 |
-
super().__init__()
|
236 |
-
self.in_channels = in_channels
|
237 |
-
inner_dim = n_heads * d_head
|
238 |
-
self.norm = Normalize(in_channels)
|
239 |
-
|
240 |
-
self.proj_in = nn.Conv2d(in_channels,
|
241 |
-
inner_dim,
|
242 |
-
kernel_size=1,
|
243 |
-
stride=1,
|
244 |
-
padding=0)
|
245 |
-
|
246 |
-
self.transformer_blocks = nn.ModuleList(
|
247 |
-
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
|
248 |
-
disable_self_attn=disable_self_attn)
|
249 |
-
for d in range(depth)]
|
250 |
-
)
|
251 |
-
|
252 |
-
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
253 |
-
in_channels,
|
254 |
-
kernel_size=1,
|
255 |
-
stride=1,
|
256 |
-
padding=0))
|
257 |
-
|
258 |
-
def forward(self, x, context=None):
|
259 |
-
# note: if no context is given, cross-attention defaults to self-attention
|
260 |
-
b, c, h, w = x.shape
|
261 |
-
x_in = x
|
262 |
-
x = self.norm(x)
|
263 |
-
x = self.proj_in(x)
|
264 |
-
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
265 |
-
for block in self.transformer_blocks:
|
266 |
-
x = block(x, context=context)
|
267 |
-
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
268 |
-
x = self.proj_out(x)
|
269 |
-
return x + x_in
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/diffusionmodules/__init__.py
DELETED
File without changes
|
stable_diffusion/ldm/modules/diffusionmodules/model.py
DELETED
@@ -1,835 +0,0 @@
|
|
1 |
-
# pytorch_diffusion + derived encoder decoder
|
2 |
-
import math
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import numpy as np
|
6 |
-
from einops import rearrange
|
7 |
-
|
8 |
-
from ldm.util import instantiate_from_config
|
9 |
-
from ldm.modules.attention import LinearAttention
|
10 |
-
|
11 |
-
|
12 |
-
def get_timestep_embedding(timesteps, embedding_dim):
|
13 |
-
"""
|
14 |
-
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
15 |
-
From Fairseq.
|
16 |
-
Build sinusoidal embeddings.
|
17 |
-
This matches the implementation in tensor2tensor, but differs slightly
|
18 |
-
from the description in Section 3.5 of "Attention Is All You Need".
|
19 |
-
"""
|
20 |
-
assert len(timesteps.shape) == 1
|
21 |
-
|
22 |
-
half_dim = embedding_dim // 2
|
23 |
-
emb = math.log(10000) / (half_dim - 1)
|
24 |
-
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
25 |
-
emb = emb.to(device=timesteps.device)
|
26 |
-
emb = timesteps.float()[:, None] * emb[None, :]
|
27 |
-
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
28 |
-
if embedding_dim % 2 == 1: # zero pad
|
29 |
-
emb = torch.nn.functional.pad(emb, (0,1,0,0))
|
30 |
-
return emb
|
31 |
-
|
32 |
-
|
33 |
-
def nonlinearity(x):
|
34 |
-
# swish
|
35 |
-
return x*torch.sigmoid(x)
|
36 |
-
|
37 |
-
|
38 |
-
def Normalize(in_channels, num_groups=32):
|
39 |
-
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
40 |
-
|
41 |
-
|
42 |
-
class Upsample(nn.Module):
|
43 |
-
def __init__(self, in_channels, with_conv):
|
44 |
-
super().__init__()
|
45 |
-
self.with_conv = with_conv
|
46 |
-
if self.with_conv:
|
47 |
-
self.conv = torch.nn.Conv2d(in_channels,
|
48 |
-
in_channels,
|
49 |
-
kernel_size=3,
|
50 |
-
stride=1,
|
51 |
-
padding=1)
|
52 |
-
|
53 |
-
def forward(self, x):
|
54 |
-
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
55 |
-
if self.with_conv:
|
56 |
-
x = self.conv(x)
|
57 |
-
return x
|
58 |
-
|
59 |
-
|
60 |
-
class Downsample(nn.Module):
|
61 |
-
def __init__(self, in_channels, with_conv):
|
62 |
-
super().__init__()
|
63 |
-
self.with_conv = with_conv
|
64 |
-
if self.with_conv:
|
65 |
-
# no asymmetric padding in torch conv, must do it ourselves
|
66 |
-
self.conv = torch.nn.Conv2d(in_channels,
|
67 |
-
in_channels,
|
68 |
-
kernel_size=3,
|
69 |
-
stride=2,
|
70 |
-
padding=0)
|
71 |
-
|
72 |
-
def forward(self, x):
|
73 |
-
if self.with_conv:
|
74 |
-
pad = (0,1,0,1)
|
75 |
-
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
76 |
-
x = self.conv(x)
|
77 |
-
else:
|
78 |
-
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
79 |
-
return x
|
80 |
-
|
81 |
-
|
82 |
-
class ResnetBlock(nn.Module):
|
83 |
-
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
84 |
-
dropout, temb_channels=512):
|
85 |
-
super().__init__()
|
86 |
-
self.in_channels = in_channels
|
87 |
-
out_channels = in_channels if out_channels is None else out_channels
|
88 |
-
self.out_channels = out_channels
|
89 |
-
self.use_conv_shortcut = conv_shortcut
|
90 |
-
|
91 |
-
self.norm1 = Normalize(in_channels)
|
92 |
-
self.conv1 = torch.nn.Conv2d(in_channels,
|
93 |
-
out_channels,
|
94 |
-
kernel_size=3,
|
95 |
-
stride=1,
|
96 |
-
padding=1)
|
97 |
-
if temb_channels > 0:
|
98 |
-
self.temb_proj = torch.nn.Linear(temb_channels,
|
99 |
-
out_channels)
|
100 |
-
self.norm2 = Normalize(out_channels)
|
101 |
-
self.dropout = torch.nn.Dropout(dropout)
|
102 |
-
self.conv2 = torch.nn.Conv2d(out_channels,
|
103 |
-
out_channels,
|
104 |
-
kernel_size=3,
|
105 |
-
stride=1,
|
106 |
-
padding=1)
|
107 |
-
if self.in_channels != self.out_channels:
|
108 |
-
if self.use_conv_shortcut:
|
109 |
-
self.conv_shortcut = torch.nn.Conv2d(in_channels,
|
110 |
-
out_channels,
|
111 |
-
kernel_size=3,
|
112 |
-
stride=1,
|
113 |
-
padding=1)
|
114 |
-
else:
|
115 |
-
self.nin_shortcut = torch.nn.Conv2d(in_channels,
|
116 |
-
out_channels,
|
117 |
-
kernel_size=1,
|
118 |
-
stride=1,
|
119 |
-
padding=0)
|
120 |
-
|
121 |
-
def forward(self, x, temb):
|
122 |
-
h = x
|
123 |
-
h = self.norm1(h)
|
124 |
-
h = nonlinearity(h)
|
125 |
-
h = self.conv1(h)
|
126 |
-
|
127 |
-
if temb is not None:
|
128 |
-
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
|
129 |
-
|
130 |
-
h = self.norm2(h)
|
131 |
-
h = nonlinearity(h)
|
132 |
-
h = self.dropout(h)
|
133 |
-
h = self.conv2(h)
|
134 |
-
|
135 |
-
if self.in_channels != self.out_channels:
|
136 |
-
if self.use_conv_shortcut:
|
137 |
-
x = self.conv_shortcut(x)
|
138 |
-
else:
|
139 |
-
x = self.nin_shortcut(x)
|
140 |
-
|
141 |
-
return x+h
|
142 |
-
|
143 |
-
|
144 |
-
class LinAttnBlock(LinearAttention):
|
145 |
-
"""to match AttnBlock usage"""
|
146 |
-
def __init__(self, in_channels):
|
147 |
-
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
148 |
-
|
149 |
-
|
150 |
-
class AttnBlock(nn.Module):
|
151 |
-
def __init__(self, in_channels):
|
152 |
-
super().__init__()
|
153 |
-
self.in_channels = in_channels
|
154 |
-
|
155 |
-
self.norm = Normalize(in_channels)
|
156 |
-
self.q = torch.nn.Conv2d(in_channels,
|
157 |
-
in_channels,
|
158 |
-
kernel_size=1,
|
159 |
-
stride=1,
|
160 |
-
padding=0)
|
161 |
-
self.k = torch.nn.Conv2d(in_channels,
|
162 |
-
in_channels,
|
163 |
-
kernel_size=1,
|
164 |
-
stride=1,
|
165 |
-
padding=0)
|
166 |
-
self.v = torch.nn.Conv2d(in_channels,
|
167 |
-
in_channels,
|
168 |
-
kernel_size=1,
|
169 |
-
stride=1,
|
170 |
-
padding=0)
|
171 |
-
self.proj_out = torch.nn.Conv2d(in_channels,
|
172 |
-
in_channels,
|
173 |
-
kernel_size=1,
|
174 |
-
stride=1,
|
175 |
-
padding=0)
|
176 |
-
|
177 |
-
|
178 |
-
def forward(self, x):
|
179 |
-
h_ = x
|
180 |
-
h_ = self.norm(h_)
|
181 |
-
q = self.q(h_)
|
182 |
-
k = self.k(h_)
|
183 |
-
v = self.v(h_)
|
184 |
-
|
185 |
-
# compute attention
|
186 |
-
b,c,h,w = q.shape
|
187 |
-
q = q.reshape(b,c,h*w)
|
188 |
-
q = q.permute(0,2,1) # b,hw,c
|
189 |
-
k = k.reshape(b,c,h*w) # b,c,hw
|
190 |
-
w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
191 |
-
w_ = w_ * (int(c)**(-0.5))
|
192 |
-
w_ = torch.nn.functional.softmax(w_, dim=2)
|
193 |
-
|
194 |
-
# attend to values
|
195 |
-
v = v.reshape(b,c,h*w)
|
196 |
-
w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
|
197 |
-
h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
198 |
-
h_ = h_.reshape(b,c,h,w)
|
199 |
-
|
200 |
-
h_ = self.proj_out(h_)
|
201 |
-
|
202 |
-
return x+h_
|
203 |
-
|
204 |
-
|
205 |
-
def make_attn(in_channels, attn_type="vanilla"):
|
206 |
-
assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
|
207 |
-
print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
208 |
-
if attn_type == "vanilla":
|
209 |
-
return AttnBlock(in_channels)
|
210 |
-
elif attn_type == "none":
|
211 |
-
return nn.Identity(in_channels)
|
212 |
-
else:
|
213 |
-
return LinAttnBlock(in_channels)
|
214 |
-
|
215 |
-
|
216 |
-
class Model(nn.Module):
|
217 |
-
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
218 |
-
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
219 |
-
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
|
220 |
-
super().__init__()
|
221 |
-
if use_linear_attn: attn_type = "linear"
|
222 |
-
self.ch = ch
|
223 |
-
self.temb_ch = self.ch*4
|
224 |
-
self.num_resolutions = len(ch_mult)
|
225 |
-
self.num_res_blocks = num_res_blocks
|
226 |
-
self.resolution = resolution
|
227 |
-
self.in_channels = in_channels
|
228 |
-
|
229 |
-
self.use_timestep = use_timestep
|
230 |
-
if self.use_timestep:
|
231 |
-
# timestep embedding
|
232 |
-
self.temb = nn.Module()
|
233 |
-
self.temb.dense = nn.ModuleList([
|
234 |
-
torch.nn.Linear(self.ch,
|
235 |
-
self.temb_ch),
|
236 |
-
torch.nn.Linear(self.temb_ch,
|
237 |
-
self.temb_ch),
|
238 |
-
])
|
239 |
-
|
240 |
-
# downsampling
|
241 |
-
self.conv_in = torch.nn.Conv2d(in_channels,
|
242 |
-
self.ch,
|
243 |
-
kernel_size=3,
|
244 |
-
stride=1,
|
245 |
-
padding=1)
|
246 |
-
|
247 |
-
curr_res = resolution
|
248 |
-
in_ch_mult = (1,)+tuple(ch_mult)
|
249 |
-
self.down = nn.ModuleList()
|
250 |
-
for i_level in range(self.num_resolutions):
|
251 |
-
block = nn.ModuleList()
|
252 |
-
attn = nn.ModuleList()
|
253 |
-
block_in = ch*in_ch_mult[i_level]
|
254 |
-
block_out = ch*ch_mult[i_level]
|
255 |
-
for i_block in range(self.num_res_blocks):
|
256 |
-
block.append(ResnetBlock(in_channels=block_in,
|
257 |
-
out_channels=block_out,
|
258 |
-
temb_channels=self.temb_ch,
|
259 |
-
dropout=dropout))
|
260 |
-
block_in = block_out
|
261 |
-
if curr_res in attn_resolutions:
|
262 |
-
attn.append(make_attn(block_in, attn_type=attn_type))
|
263 |
-
down = nn.Module()
|
264 |
-
down.block = block
|
265 |
-
down.attn = attn
|
266 |
-
if i_level != self.num_resolutions-1:
|
267 |
-
down.downsample = Downsample(block_in, resamp_with_conv)
|
268 |
-
curr_res = curr_res // 2
|
269 |
-
self.down.append(down)
|
270 |
-
|
271 |
-
# middle
|
272 |
-
self.mid = nn.Module()
|
273 |
-
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
274 |
-
out_channels=block_in,
|
275 |
-
temb_channels=self.temb_ch,
|
276 |
-
dropout=dropout)
|
277 |
-
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
278 |
-
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
279 |
-
out_channels=block_in,
|
280 |
-
temb_channels=self.temb_ch,
|
281 |
-
dropout=dropout)
|
282 |
-
|
283 |
-
# upsampling
|
284 |
-
self.up = nn.ModuleList()
|
285 |
-
for i_level in reversed(range(self.num_resolutions)):
|
286 |
-
block = nn.ModuleList()
|
287 |
-
attn = nn.ModuleList()
|
288 |
-
block_out = ch*ch_mult[i_level]
|
289 |
-
skip_in = ch*ch_mult[i_level]
|
290 |
-
for i_block in range(self.num_res_blocks+1):
|
291 |
-
if i_block == self.num_res_blocks:
|
292 |
-
skip_in = ch*in_ch_mult[i_level]
|
293 |
-
block.append(ResnetBlock(in_channels=block_in+skip_in,
|
294 |
-
out_channels=block_out,
|
295 |
-
temb_channels=self.temb_ch,
|
296 |
-
dropout=dropout))
|
297 |
-
block_in = block_out
|
298 |
-
if curr_res in attn_resolutions:
|
299 |
-
attn.append(make_attn(block_in, attn_type=attn_type))
|
300 |
-
up = nn.Module()
|
301 |
-
up.block = block
|
302 |
-
up.attn = attn
|
303 |
-
if i_level != 0:
|
304 |
-
up.upsample = Upsample(block_in, resamp_with_conv)
|
305 |
-
curr_res = curr_res * 2
|
306 |
-
self.up.insert(0, up) # prepend to get consistent order
|
307 |
-
|
308 |
-
# end
|
309 |
-
self.norm_out = Normalize(block_in)
|
310 |
-
self.conv_out = torch.nn.Conv2d(block_in,
|
311 |
-
out_ch,
|
312 |
-
kernel_size=3,
|
313 |
-
stride=1,
|
314 |
-
padding=1)
|
315 |
-
|
316 |
-
def forward(self, x, t=None, context=None):
|
317 |
-
#assert x.shape[2] == x.shape[3] == self.resolution
|
318 |
-
if context is not None:
|
319 |
-
# assume aligned context, cat along channel axis
|
320 |
-
x = torch.cat((x, context), dim=1)
|
321 |
-
if self.use_timestep:
|
322 |
-
# timestep embedding
|
323 |
-
assert t is not None
|
324 |
-
temb = get_timestep_embedding(t, self.ch)
|
325 |
-
temb = self.temb.dense[0](temb)
|
326 |
-
temb = nonlinearity(temb)
|
327 |
-
temb = self.temb.dense[1](temb)
|
328 |
-
else:
|
329 |
-
temb = None
|
330 |
-
|
331 |
-
# downsampling
|
332 |
-
hs = [self.conv_in(x)]
|
333 |
-
for i_level in range(self.num_resolutions):
|
334 |
-
for i_block in range(self.num_res_blocks):
|
335 |
-
h = self.down[i_level].block[i_block](hs[-1], temb)
|
336 |
-
if len(self.down[i_level].attn) > 0:
|
337 |
-
h = self.down[i_level].attn[i_block](h)
|
338 |
-
hs.append(h)
|
339 |
-
if i_level != self.num_resolutions-1:
|
340 |
-
hs.append(self.down[i_level].downsample(hs[-1]))
|
341 |
-
|
342 |
-
# middle
|
343 |
-
h = hs[-1]
|
344 |
-
h = self.mid.block_1(h, temb)
|
345 |
-
h = self.mid.attn_1(h)
|
346 |
-
h = self.mid.block_2(h, temb)
|
347 |
-
|
348 |
-
# upsampling
|
349 |
-
for i_level in reversed(range(self.num_resolutions)):
|
350 |
-
for i_block in range(self.num_res_blocks+1):
|
351 |
-
h = self.up[i_level].block[i_block](
|
352 |
-
torch.cat([h, hs.pop()], dim=1), temb)
|
353 |
-
if len(self.up[i_level].attn) > 0:
|
354 |
-
h = self.up[i_level].attn[i_block](h)
|
355 |
-
if i_level != 0:
|
356 |
-
h = self.up[i_level].upsample(h)
|
357 |
-
|
358 |
-
# end
|
359 |
-
h = self.norm_out(h)
|
360 |
-
h = nonlinearity(h)
|
361 |
-
h = self.conv_out(h)
|
362 |
-
return h
|
363 |
-
|
364 |
-
def get_last_layer(self):
|
365 |
-
return self.conv_out.weight
|
366 |
-
|
367 |
-
|
368 |
-
class Encoder(nn.Module):
|
369 |
-
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
370 |
-
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
371 |
-
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
372 |
-
**ignore_kwargs):
|
373 |
-
super().__init__()
|
374 |
-
if use_linear_attn: attn_type = "linear"
|
375 |
-
self.ch = ch
|
376 |
-
self.temb_ch = 0
|
377 |
-
self.num_resolutions = len(ch_mult)
|
378 |
-
self.num_res_blocks = num_res_blocks
|
379 |
-
self.resolution = resolution
|
380 |
-
self.in_channels = in_channels
|
381 |
-
|
382 |
-
# downsampling
|
383 |
-
self.conv_in = torch.nn.Conv2d(in_channels,
|
384 |
-
self.ch,
|
385 |
-
kernel_size=3,
|
386 |
-
stride=1,
|
387 |
-
padding=1)
|
388 |
-
|
389 |
-
curr_res = resolution
|
390 |
-
in_ch_mult = (1,)+tuple(ch_mult)
|
391 |
-
self.in_ch_mult = in_ch_mult
|
392 |
-
self.down = nn.ModuleList()
|
393 |
-
for i_level in range(self.num_resolutions):
|
394 |
-
block = nn.ModuleList()
|
395 |
-
attn = nn.ModuleList()
|
396 |
-
block_in = ch*in_ch_mult[i_level]
|
397 |
-
block_out = ch*ch_mult[i_level]
|
398 |
-
for i_block in range(self.num_res_blocks):
|
399 |
-
block.append(ResnetBlock(in_channels=block_in,
|
400 |
-
out_channels=block_out,
|
401 |
-
temb_channels=self.temb_ch,
|
402 |
-
dropout=dropout))
|
403 |
-
block_in = block_out
|
404 |
-
if curr_res in attn_resolutions:
|
405 |
-
attn.append(make_attn(block_in, attn_type=attn_type))
|
406 |
-
down = nn.Module()
|
407 |
-
down.block = block
|
408 |
-
down.attn = attn
|
409 |
-
if i_level != self.num_resolutions-1:
|
410 |
-
down.downsample = Downsample(block_in, resamp_with_conv)
|
411 |
-
curr_res = curr_res // 2
|
412 |
-
self.down.append(down)
|
413 |
-
|
414 |
-
# middle
|
415 |
-
self.mid = nn.Module()
|
416 |
-
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
417 |
-
out_channels=block_in,
|
418 |
-
temb_channels=self.temb_ch,
|
419 |
-
dropout=dropout)
|
420 |
-
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
421 |
-
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
422 |
-
out_channels=block_in,
|
423 |
-
temb_channels=self.temb_ch,
|
424 |
-
dropout=dropout)
|
425 |
-
|
426 |
-
# end
|
427 |
-
self.norm_out = Normalize(block_in)
|
428 |
-
self.conv_out = torch.nn.Conv2d(block_in,
|
429 |
-
2*z_channels if double_z else z_channels,
|
430 |
-
kernel_size=3,
|
431 |
-
stride=1,
|
432 |
-
padding=1)
|
433 |
-
|
434 |
-
def forward(self, x):
|
435 |
-
# timestep embedding
|
436 |
-
temb = None
|
437 |
-
|
438 |
-
# downsampling
|
439 |
-
hs = [self.conv_in(x)]
|
440 |
-
for i_level in range(self.num_resolutions):
|
441 |
-
for i_block in range(self.num_res_blocks):
|
442 |
-
h = self.down[i_level].block[i_block](hs[-1], temb)
|
443 |
-
if len(self.down[i_level].attn) > 0:
|
444 |
-
h = self.down[i_level].attn[i_block](h)
|
445 |
-
hs.append(h)
|
446 |
-
if i_level != self.num_resolutions-1:
|
447 |
-
hs.append(self.down[i_level].downsample(hs[-1]))
|
448 |
-
|
449 |
-
# middle
|
450 |
-
h = hs[-1]
|
451 |
-
h = self.mid.block_1(h, temb)
|
452 |
-
h = self.mid.attn_1(h)
|
453 |
-
h = self.mid.block_2(h, temb)
|
454 |
-
|
455 |
-
# end
|
456 |
-
h = self.norm_out(h)
|
457 |
-
h = nonlinearity(h)
|
458 |
-
h = self.conv_out(h)
|
459 |
-
return h
|
460 |
-
|
461 |
-
|
462 |
-
class Decoder(nn.Module):
|
463 |
-
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
464 |
-
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
465 |
-
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
|
466 |
-
attn_type="vanilla", **ignorekwargs):
|
467 |
-
super().__init__()
|
468 |
-
if use_linear_attn: attn_type = "linear"
|
469 |
-
self.ch = ch
|
470 |
-
self.temb_ch = 0
|
471 |
-
self.num_resolutions = len(ch_mult)
|
472 |
-
self.num_res_blocks = num_res_blocks
|
473 |
-
self.resolution = resolution
|
474 |
-
self.in_channels = in_channels
|
475 |
-
self.give_pre_end = give_pre_end
|
476 |
-
self.tanh_out = tanh_out
|
477 |
-
|
478 |
-
# compute in_ch_mult, block_in and curr_res at lowest res
|
479 |
-
in_ch_mult = (1,)+tuple(ch_mult)
|
480 |
-
block_in = ch*ch_mult[self.num_resolutions-1]
|
481 |
-
curr_res = resolution // 2**(self.num_resolutions-1)
|
482 |
-
self.z_shape = (1,z_channels,curr_res,curr_res)
|
483 |
-
print("Working with z of shape {} = {} dimensions.".format(
|
484 |
-
self.z_shape, np.prod(self.z_shape)))
|
485 |
-
|
486 |
-
# z to block_in
|
487 |
-
self.conv_in = torch.nn.Conv2d(z_channels,
|
488 |
-
block_in,
|
489 |
-
kernel_size=3,
|
490 |
-
stride=1,
|
491 |
-
padding=1)
|
492 |
-
|
493 |
-
# middle
|
494 |
-
self.mid = nn.Module()
|
495 |
-
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
496 |
-
out_channels=block_in,
|
497 |
-
temb_channels=self.temb_ch,
|
498 |
-
dropout=dropout)
|
499 |
-
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
500 |
-
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
501 |
-
out_channels=block_in,
|
502 |
-
temb_channels=self.temb_ch,
|
503 |
-
dropout=dropout)
|
504 |
-
|
505 |
-
# upsampling
|
506 |
-
self.up = nn.ModuleList()
|
507 |
-
for i_level in reversed(range(self.num_resolutions)):
|
508 |
-
block = nn.ModuleList()
|
509 |
-
attn = nn.ModuleList()
|
510 |
-
block_out = ch*ch_mult[i_level]
|
511 |
-
for i_block in range(self.num_res_blocks+1):
|
512 |
-
block.append(ResnetBlock(in_channels=block_in,
|
513 |
-
out_channels=block_out,
|
514 |
-
temb_channels=self.temb_ch,
|
515 |
-
dropout=dropout))
|
516 |
-
block_in = block_out
|
517 |
-
if curr_res in attn_resolutions:
|
518 |
-
attn.append(make_attn(block_in, attn_type=attn_type))
|
519 |
-
up = nn.Module()
|
520 |
-
up.block = block
|
521 |
-
up.attn = attn
|
522 |
-
if i_level != 0:
|
523 |
-
up.upsample = Upsample(block_in, resamp_with_conv)
|
524 |
-
curr_res = curr_res * 2
|
525 |
-
self.up.insert(0, up) # prepend to get consistent order
|
526 |
-
|
527 |
-
# end
|
528 |
-
self.norm_out = Normalize(block_in)
|
529 |
-
self.conv_out = torch.nn.Conv2d(block_in,
|
530 |
-
out_ch,
|
531 |
-
kernel_size=3,
|
532 |
-
stride=1,
|
533 |
-
padding=1)
|
534 |
-
|
535 |
-
def forward(self, z):
|
536 |
-
#assert z.shape[1:] == self.z_shape[1:]
|
537 |
-
self.last_z_shape = z.shape
|
538 |
-
|
539 |
-
# timestep embedding
|
540 |
-
temb = None
|
541 |
-
|
542 |
-
# z to block_in
|
543 |
-
h = self.conv_in(z)
|
544 |
-
|
545 |
-
# middle
|
546 |
-
h = self.mid.block_1(h, temb)
|
547 |
-
h = self.mid.attn_1(h)
|
548 |
-
h = self.mid.block_2(h, temb)
|
549 |
-
|
550 |
-
# upsampling
|
551 |
-
for i_level in reversed(range(self.num_resolutions)):
|
552 |
-
for i_block in range(self.num_res_blocks+1):
|
553 |
-
h = self.up[i_level].block[i_block](h, temb)
|
554 |
-
if len(self.up[i_level].attn) > 0:
|
555 |
-
h = self.up[i_level].attn[i_block](h)
|
556 |
-
if i_level != 0:
|
557 |
-
h = self.up[i_level].upsample(h)
|
558 |
-
|
559 |
-
# end
|
560 |
-
if self.give_pre_end:
|
561 |
-
return h
|
562 |
-
|
563 |
-
h = self.norm_out(h)
|
564 |
-
h = nonlinearity(h)
|
565 |
-
h = self.conv_out(h)
|
566 |
-
if self.tanh_out:
|
567 |
-
h = torch.tanh(h)
|
568 |
-
return h
|
569 |
-
|
570 |
-
|
571 |
-
class SimpleDecoder(nn.Module):
|
572 |
-
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
573 |
-
super().__init__()
|
574 |
-
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
575 |
-
ResnetBlock(in_channels=in_channels,
|
576 |
-
out_channels=2 * in_channels,
|
577 |
-
temb_channels=0, dropout=0.0),
|
578 |
-
ResnetBlock(in_channels=2 * in_channels,
|
579 |
-
out_channels=4 * in_channels,
|
580 |
-
temb_channels=0, dropout=0.0),
|
581 |
-
ResnetBlock(in_channels=4 * in_channels,
|
582 |
-
out_channels=2 * in_channels,
|
583 |
-
temb_channels=0, dropout=0.0),
|
584 |
-
nn.Conv2d(2*in_channels, in_channels, 1),
|
585 |
-
Upsample(in_channels, with_conv=True)])
|
586 |
-
# end
|
587 |
-
self.norm_out = Normalize(in_channels)
|
588 |
-
self.conv_out = torch.nn.Conv2d(in_channels,
|
589 |
-
out_channels,
|
590 |
-
kernel_size=3,
|
591 |
-
stride=1,
|
592 |
-
padding=1)
|
593 |
-
|
594 |
-
def forward(self, x):
|
595 |
-
for i, layer in enumerate(self.model):
|
596 |
-
if i in [1,2,3]:
|
597 |
-
x = layer(x, None)
|
598 |
-
else:
|
599 |
-
x = layer(x)
|
600 |
-
|
601 |
-
h = self.norm_out(x)
|
602 |
-
h = nonlinearity(h)
|
603 |
-
x = self.conv_out(h)
|
604 |
-
return x
|
605 |
-
|
606 |
-
|
607 |
-
class UpsampleDecoder(nn.Module):
|
608 |
-
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
609 |
-
ch_mult=(2,2), dropout=0.0):
|
610 |
-
super().__init__()
|
611 |
-
# upsampling
|
612 |
-
self.temb_ch = 0
|
613 |
-
self.num_resolutions = len(ch_mult)
|
614 |
-
self.num_res_blocks = num_res_blocks
|
615 |
-
block_in = in_channels
|
616 |
-
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
617 |
-
self.res_blocks = nn.ModuleList()
|
618 |
-
self.upsample_blocks = nn.ModuleList()
|
619 |
-
for i_level in range(self.num_resolutions):
|
620 |
-
res_block = []
|
621 |
-
block_out = ch * ch_mult[i_level]
|
622 |
-
for i_block in range(self.num_res_blocks + 1):
|
623 |
-
res_block.append(ResnetBlock(in_channels=block_in,
|
624 |
-
out_channels=block_out,
|
625 |
-
temb_channels=self.temb_ch,
|
626 |
-
dropout=dropout))
|
627 |
-
block_in = block_out
|
628 |
-
self.res_blocks.append(nn.ModuleList(res_block))
|
629 |
-
if i_level != self.num_resolutions - 1:
|
630 |
-
self.upsample_blocks.append(Upsample(block_in, True))
|
631 |
-
curr_res = curr_res * 2
|
632 |
-
|
633 |
-
# end
|
634 |
-
self.norm_out = Normalize(block_in)
|
635 |
-
self.conv_out = torch.nn.Conv2d(block_in,
|
636 |
-
out_channels,
|
637 |
-
kernel_size=3,
|
638 |
-
stride=1,
|
639 |
-
padding=1)
|
640 |
-
|
641 |
-
def forward(self, x):
|
642 |
-
# upsampling
|
643 |
-
h = x
|
644 |
-
for k, i_level in enumerate(range(self.num_resolutions)):
|
645 |
-
for i_block in range(self.num_res_blocks + 1):
|
646 |
-
h = self.res_blocks[i_level][i_block](h, None)
|
647 |
-
if i_level != self.num_resolutions - 1:
|
648 |
-
h = self.upsample_blocks[k](h)
|
649 |
-
h = self.norm_out(h)
|
650 |
-
h = nonlinearity(h)
|
651 |
-
h = self.conv_out(h)
|
652 |
-
return h
|
653 |
-
|
654 |
-
|
655 |
-
class LatentRescaler(nn.Module):
|
656 |
-
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
657 |
-
super().__init__()
|
658 |
-
# residual block, interpolate, residual block
|
659 |
-
self.factor = factor
|
660 |
-
self.conv_in = nn.Conv2d(in_channels,
|
661 |
-
mid_channels,
|
662 |
-
kernel_size=3,
|
663 |
-
stride=1,
|
664 |
-
padding=1)
|
665 |
-
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
666 |
-
out_channels=mid_channels,
|
667 |
-
temb_channels=0,
|
668 |
-
dropout=0.0) for _ in range(depth)])
|
669 |
-
self.attn = AttnBlock(mid_channels)
|
670 |
-
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
671 |
-
out_channels=mid_channels,
|
672 |
-
temb_channels=0,
|
673 |
-
dropout=0.0) for _ in range(depth)])
|
674 |
-
|
675 |
-
self.conv_out = nn.Conv2d(mid_channels,
|
676 |
-
out_channels,
|
677 |
-
kernel_size=1,
|
678 |
-
)
|
679 |
-
|
680 |
-
def forward(self, x):
|
681 |
-
x = self.conv_in(x)
|
682 |
-
for block in self.res_block1:
|
683 |
-
x = block(x, None)
|
684 |
-
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
685 |
-
x = self.attn(x)
|
686 |
-
for block in self.res_block2:
|
687 |
-
x = block(x, None)
|
688 |
-
x = self.conv_out(x)
|
689 |
-
return x
|
690 |
-
|
691 |
-
|
692 |
-
class MergedRescaleEncoder(nn.Module):
|
693 |
-
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
694 |
-
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
695 |
-
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
696 |
-
super().__init__()
|
697 |
-
intermediate_chn = ch * ch_mult[-1]
|
698 |
-
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
699 |
-
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
700 |
-
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
701 |
-
out_ch=None)
|
702 |
-
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
703 |
-
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
704 |
-
|
705 |
-
def forward(self, x):
|
706 |
-
x = self.encoder(x)
|
707 |
-
x = self.rescaler(x)
|
708 |
-
return x
|
709 |
-
|
710 |
-
|
711 |
-
class MergedRescaleDecoder(nn.Module):
|
712 |
-
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
713 |
-
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
714 |
-
super().__init__()
|
715 |
-
tmp_chn = z_channels*ch_mult[-1]
|
716 |
-
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
717 |
-
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
718 |
-
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
719 |
-
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
720 |
-
out_channels=tmp_chn, depth=rescale_module_depth)
|
721 |
-
|
722 |
-
def forward(self, x):
|
723 |
-
x = self.rescaler(x)
|
724 |
-
x = self.decoder(x)
|
725 |
-
return x
|
726 |
-
|
727 |
-
|
728 |
-
class Upsampler(nn.Module):
|
729 |
-
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
730 |
-
super().__init__()
|
731 |
-
assert out_size >= in_size
|
732 |
-
num_blocks = int(np.log2(out_size//in_size))+1
|
733 |
-
factor_up = 1.+ (out_size % in_size)
|
734 |
-
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
735 |
-
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
736 |
-
out_channels=in_channels)
|
737 |
-
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
738 |
-
attn_resolutions=[], in_channels=None, ch=in_channels,
|
739 |
-
ch_mult=[ch_mult for _ in range(num_blocks)])
|
740 |
-
|
741 |
-
def forward(self, x):
|
742 |
-
x = self.rescaler(x)
|
743 |
-
x = self.decoder(x)
|
744 |
-
return x
|
745 |
-
|
746 |
-
|
747 |
-
class Resize(nn.Module):
|
748 |
-
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
749 |
-
super().__init__()
|
750 |
-
self.with_conv = learned
|
751 |
-
self.mode = mode
|
752 |
-
if self.with_conv:
|
753 |
-
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
754 |
-
raise NotImplementedError()
|
755 |
-
assert in_channels is not None
|
756 |
-
# no asymmetric padding in torch conv, must do it ourselves
|
757 |
-
self.conv = torch.nn.Conv2d(in_channels,
|
758 |
-
in_channels,
|
759 |
-
kernel_size=4,
|
760 |
-
stride=2,
|
761 |
-
padding=1)
|
762 |
-
|
763 |
-
def forward(self, x, scale_factor=1.0):
|
764 |
-
if scale_factor==1.0:
|
765 |
-
return x
|
766 |
-
else:
|
767 |
-
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
768 |
-
return x
|
769 |
-
|
770 |
-
class FirstStagePostProcessor(nn.Module):
|
771 |
-
|
772 |
-
def __init__(self, ch_mult:list, in_channels,
|
773 |
-
pretrained_model:nn.Module=None,
|
774 |
-
reshape=False,
|
775 |
-
n_channels=None,
|
776 |
-
dropout=0.,
|
777 |
-
pretrained_config=None):
|
778 |
-
super().__init__()
|
779 |
-
if pretrained_config is None:
|
780 |
-
assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
781 |
-
self.pretrained_model = pretrained_model
|
782 |
-
else:
|
783 |
-
assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
|
784 |
-
self.instantiate_pretrained(pretrained_config)
|
785 |
-
|
786 |
-
self.do_reshape = reshape
|
787 |
-
|
788 |
-
if n_channels is None:
|
789 |
-
n_channels = self.pretrained_model.encoder.ch
|
790 |
-
|
791 |
-
self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
|
792 |
-
self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
|
793 |
-
stride=1,padding=1)
|
794 |
-
|
795 |
-
blocks = []
|
796 |
-
downs = []
|
797 |
-
ch_in = n_channels
|
798 |
-
for m in ch_mult:
|
799 |
-
blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
|
800 |
-
ch_in = m * n_channels
|
801 |
-
downs.append(Downsample(ch_in, with_conv=False))
|
802 |
-
|
803 |
-
self.model = nn.ModuleList(blocks)
|
804 |
-
self.downsampler = nn.ModuleList(downs)
|
805 |
-
|
806 |
-
|
807 |
-
def instantiate_pretrained(self, config):
|
808 |
-
model = instantiate_from_config(config)
|
809 |
-
self.pretrained_model = model.eval()
|
810 |
-
# self.pretrained_model.train = False
|
811 |
-
for param in self.pretrained_model.parameters():
|
812 |
-
param.requires_grad = False
|
813 |
-
|
814 |
-
|
815 |
-
@torch.no_grad()
|
816 |
-
def encode_with_pretrained(self,x):
|
817 |
-
c = self.pretrained_model.encode(x)
|
818 |
-
if isinstance(c, DiagonalGaussianDistribution):
|
819 |
-
c = c.mode()
|
820 |
-
return c
|
821 |
-
|
822 |
-
def forward(self,x):
|
823 |
-
z_fs = self.encode_with_pretrained(x)
|
824 |
-
z = self.proj_norm(z_fs)
|
825 |
-
z = self.proj(z)
|
826 |
-
z = nonlinearity(z)
|
827 |
-
|
828 |
-
for submodel, downmodel in zip(self.model,self.downsampler):
|
829 |
-
z = submodel(z,temb=None)
|
830 |
-
z = downmodel(z)
|
831 |
-
|
832 |
-
if self.do_reshape:
|
833 |
-
z = rearrange(z,'b c h w -> b (h w) c')
|
834 |
-
return z
|
835 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/diffusionmodules/openaimodel.py
DELETED
@@ -1,1001 +0,0 @@
|
|
1 |
-
from abc import abstractmethod
|
2 |
-
from functools import partial
|
3 |
-
import math
|
4 |
-
from typing import Iterable
|
5 |
-
|
6 |
-
import numpy as np
|
7 |
-
import torch as th
|
8 |
-
import torch.nn as nn
|
9 |
-
import torch.nn.functional as F
|
10 |
-
|
11 |
-
from ldm.modules.diffusionmodules.util import (
|
12 |
-
checkpoint,
|
13 |
-
conv_nd,
|
14 |
-
linear,
|
15 |
-
avg_pool_nd,
|
16 |
-
zero_module,
|
17 |
-
normalization,
|
18 |
-
timestep_embedding,
|
19 |
-
)
|
20 |
-
from ldm.modules.attention import SpatialTransformer
|
21 |
-
from ldm.util import exists
|
22 |
-
|
23 |
-
|
24 |
-
# dummy replace
|
25 |
-
def convert_module_to_f16(x):
|
26 |
-
pass
|
27 |
-
|
28 |
-
def convert_module_to_f32(x):
|
29 |
-
pass
|
30 |
-
|
31 |
-
|
32 |
-
## go
|
33 |
-
class AttentionPool2d(nn.Module):
|
34 |
-
"""
|
35 |
-
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
36 |
-
"""
|
37 |
-
|
38 |
-
def __init__(
|
39 |
-
self,
|
40 |
-
spacial_dim: int,
|
41 |
-
embed_dim: int,
|
42 |
-
num_heads_channels: int,
|
43 |
-
output_dim: int = None,
|
44 |
-
):
|
45 |
-
super().__init__()
|
46 |
-
self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
|
47 |
-
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
48 |
-
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
49 |
-
self.num_heads = embed_dim // num_heads_channels
|
50 |
-
self.attention = QKVAttention(self.num_heads)
|
51 |
-
|
52 |
-
def forward(self, x):
|
53 |
-
b, c, *_spatial = x.shape
|
54 |
-
x = x.reshape(b, c, -1) # NC(HW)
|
55 |
-
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
56 |
-
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
57 |
-
x = self.qkv_proj(x)
|
58 |
-
x = self.attention(x)
|
59 |
-
x = self.c_proj(x)
|
60 |
-
return x[:, :, 0]
|
61 |
-
|
62 |
-
|
63 |
-
class TimestepBlock(nn.Module):
|
64 |
-
"""
|
65 |
-
Any module where forward() takes timestep embeddings as a second argument.
|
66 |
-
"""
|
67 |
-
|
68 |
-
@abstractmethod
|
69 |
-
def forward(self, x, emb):
|
70 |
-
"""
|
71 |
-
Apply the module to `x` given `emb` timestep embeddings.
|
72 |
-
"""
|
73 |
-
|
74 |
-
|
75 |
-
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
76 |
-
"""
|
77 |
-
A sequential module that passes timestep embeddings to the children that
|
78 |
-
support it as an extra input.
|
79 |
-
"""
|
80 |
-
|
81 |
-
def forward(self, x, emb, context=None):
|
82 |
-
for layer in self:
|
83 |
-
if isinstance(layer, TimestepBlock):
|
84 |
-
x = layer(x, emb)
|
85 |
-
elif isinstance(layer, SpatialTransformer):
|
86 |
-
x = layer(x, context)
|
87 |
-
else:
|
88 |
-
x = layer(x)
|
89 |
-
return x
|
90 |
-
|
91 |
-
|
92 |
-
class Upsample(nn.Module):
|
93 |
-
"""
|
94 |
-
An upsampling layer with an optional convolution.
|
95 |
-
:param channels: channels in the inputs and outputs.
|
96 |
-
:param use_conv: a bool determining if a convolution is applied.
|
97 |
-
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
98 |
-
upsampling occurs in the inner-two dimensions.
|
99 |
-
"""
|
100 |
-
|
101 |
-
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
102 |
-
super().__init__()
|
103 |
-
self.channels = channels
|
104 |
-
self.out_channels = out_channels or channels
|
105 |
-
self.use_conv = use_conv
|
106 |
-
self.dims = dims
|
107 |
-
if use_conv:
|
108 |
-
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
|
109 |
-
|
110 |
-
def forward(self, x):
|
111 |
-
assert x.shape[1] == self.channels
|
112 |
-
if self.dims == 3:
|
113 |
-
x = F.interpolate(
|
114 |
-
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
115 |
-
)
|
116 |
-
else:
|
117 |
-
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
118 |
-
if self.use_conv:
|
119 |
-
x = self.conv(x)
|
120 |
-
return x
|
121 |
-
|
122 |
-
class TransposedUpsample(nn.Module):
|
123 |
-
'Learned 2x upsampling without padding'
|
124 |
-
def __init__(self, channels, out_channels=None, ks=5):
|
125 |
-
super().__init__()
|
126 |
-
self.channels = channels
|
127 |
-
self.out_channels = out_channels or channels
|
128 |
-
|
129 |
-
self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
|
130 |
-
|
131 |
-
def forward(self,x):
|
132 |
-
return self.up(x)
|
133 |
-
|
134 |
-
|
135 |
-
class Downsample(nn.Module):
|
136 |
-
"""
|
137 |
-
A downsampling layer with an optional convolution.
|
138 |
-
:param channels: channels in the inputs and outputs.
|
139 |
-
:param use_conv: a bool determining if a convolution is applied.
|
140 |
-
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
141 |
-
downsampling occurs in the inner-two dimensions.
|
142 |
-
"""
|
143 |
-
|
144 |
-
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
|
145 |
-
super().__init__()
|
146 |
-
self.channels = channels
|
147 |
-
self.out_channels = out_channels or channels
|
148 |
-
self.use_conv = use_conv
|
149 |
-
self.dims = dims
|
150 |
-
stride = 2 if dims != 3 else (1, 2, 2)
|
151 |
-
if use_conv:
|
152 |
-
self.op = conv_nd(
|
153 |
-
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
154 |
-
)
|
155 |
-
else:
|
156 |
-
assert self.channels == self.out_channels
|
157 |
-
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
158 |
-
|
159 |
-
def forward(self, x):
|
160 |
-
assert x.shape[1] == self.channels
|
161 |
-
return self.op(x)
|
162 |
-
|
163 |
-
|
164 |
-
class ResBlock(TimestepBlock):
|
165 |
-
"""
|
166 |
-
A residual block that can optionally change the number of channels.
|
167 |
-
:param channels: the number of input channels.
|
168 |
-
:param emb_channels: the number of timestep embedding channels.
|
169 |
-
:param dropout: the rate of dropout.
|
170 |
-
:param out_channels: if specified, the number of out channels.
|
171 |
-
:param use_conv: if True and out_channels is specified, use a spatial
|
172 |
-
convolution instead of a smaller 1x1 convolution to change the
|
173 |
-
channels in the skip connection.
|
174 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
175 |
-
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
176 |
-
:param up: if True, use this block for upsampling.
|
177 |
-
:param down: if True, use this block for downsampling.
|
178 |
-
"""
|
179 |
-
|
180 |
-
def __init__(
|
181 |
-
self,
|
182 |
-
channels,
|
183 |
-
emb_channels,
|
184 |
-
dropout,
|
185 |
-
out_channels=None,
|
186 |
-
use_conv=False,
|
187 |
-
use_scale_shift_norm=False,
|
188 |
-
dims=2,
|
189 |
-
use_checkpoint=False,
|
190 |
-
up=False,
|
191 |
-
down=False,
|
192 |
-
):
|
193 |
-
super().__init__()
|
194 |
-
self.channels = channels
|
195 |
-
self.emb_channels = emb_channels
|
196 |
-
self.dropout = dropout
|
197 |
-
self.out_channels = out_channels or channels
|
198 |
-
self.use_conv = use_conv
|
199 |
-
self.use_checkpoint = use_checkpoint
|
200 |
-
self.use_scale_shift_norm = use_scale_shift_norm
|
201 |
-
|
202 |
-
self.in_layers = nn.Sequential(
|
203 |
-
normalization(channels),
|
204 |
-
nn.SiLU(),
|
205 |
-
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
206 |
-
)
|
207 |
-
|
208 |
-
self.updown = up or down
|
209 |
-
|
210 |
-
if up:
|
211 |
-
self.h_upd = Upsample(channels, False, dims)
|
212 |
-
self.x_upd = Upsample(channels, False, dims)
|
213 |
-
elif down:
|
214 |
-
self.h_upd = Downsample(channels, False, dims)
|
215 |
-
self.x_upd = Downsample(channels, False, dims)
|
216 |
-
else:
|
217 |
-
self.h_upd = self.x_upd = nn.Identity()
|
218 |
-
|
219 |
-
self.emb_layers = nn.Sequential(
|
220 |
-
nn.SiLU(),
|
221 |
-
linear(
|
222 |
-
emb_channels,
|
223 |
-
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
224 |
-
),
|
225 |
-
)
|
226 |
-
self.out_layers = nn.Sequential(
|
227 |
-
normalization(self.out_channels),
|
228 |
-
nn.SiLU(),
|
229 |
-
nn.Dropout(p=dropout),
|
230 |
-
zero_module(
|
231 |
-
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
232 |
-
),
|
233 |
-
)
|
234 |
-
|
235 |
-
if self.out_channels == channels:
|
236 |
-
self.skip_connection = nn.Identity()
|
237 |
-
elif use_conv:
|
238 |
-
self.skip_connection = conv_nd(
|
239 |
-
dims, channels, self.out_channels, 3, padding=1
|
240 |
-
)
|
241 |
-
else:
|
242 |
-
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
243 |
-
|
244 |
-
def forward(self, x, emb):
|
245 |
-
"""
|
246 |
-
Apply the block to a Tensor, conditioned on a timestep embedding.
|
247 |
-
:param x: an [N x C x ...] Tensor of features.
|
248 |
-
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
249 |
-
:return: an [N x C x ...] Tensor of outputs.
|
250 |
-
"""
|
251 |
-
return checkpoint(
|
252 |
-
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
253 |
-
)
|
254 |
-
|
255 |
-
|
256 |
-
def _forward(self, x, emb):
|
257 |
-
if self.updown:
|
258 |
-
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
259 |
-
h = in_rest(x)
|
260 |
-
h = self.h_upd(h)
|
261 |
-
x = self.x_upd(x)
|
262 |
-
h = in_conv(h)
|
263 |
-
else:
|
264 |
-
h = self.in_layers(x)
|
265 |
-
emb_out = self.emb_layers(emb).type(h.dtype)
|
266 |
-
while len(emb_out.shape) < len(h.shape):
|
267 |
-
emb_out = emb_out[..., None]
|
268 |
-
if self.use_scale_shift_norm:
|
269 |
-
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
270 |
-
scale, shift = th.chunk(emb_out, 2, dim=1)
|
271 |
-
h = out_norm(h) * (1 + scale) + shift
|
272 |
-
h = out_rest(h)
|
273 |
-
else:
|
274 |
-
h = h + emb_out
|
275 |
-
h = self.out_layers(h)
|
276 |
-
return self.skip_connection(x) + h
|
277 |
-
|
278 |
-
|
279 |
-
class AttentionBlock(nn.Module):
|
280 |
-
"""
|
281 |
-
An attention block that allows spatial positions to attend to each other.
|
282 |
-
Originally ported from here, but adapted to the N-d case.
|
283 |
-
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
284 |
-
"""
|
285 |
-
|
286 |
-
def __init__(
|
287 |
-
self,
|
288 |
-
channels,
|
289 |
-
num_heads=1,
|
290 |
-
num_head_channels=-1,
|
291 |
-
use_checkpoint=False,
|
292 |
-
use_new_attention_order=False,
|
293 |
-
):
|
294 |
-
super().__init__()
|
295 |
-
self.channels = channels
|
296 |
-
if num_head_channels == -1:
|
297 |
-
self.num_heads = num_heads
|
298 |
-
else:
|
299 |
-
assert (
|
300 |
-
channels % num_head_channels == 0
|
301 |
-
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
302 |
-
self.num_heads = channels // num_head_channels
|
303 |
-
self.use_checkpoint = use_checkpoint
|
304 |
-
self.norm = normalization(channels)
|
305 |
-
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
306 |
-
if use_new_attention_order:
|
307 |
-
# split qkv before split heads
|
308 |
-
self.attention = QKVAttention(self.num_heads)
|
309 |
-
else:
|
310 |
-
# split heads before split qkv
|
311 |
-
self.attention = QKVAttentionLegacy(self.num_heads)
|
312 |
-
|
313 |
-
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
314 |
-
|
315 |
-
def forward(self, x):
|
316 |
-
return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
|
317 |
-
#return pt_checkpoint(self._forward, x) # pytorch
|
318 |
-
|
319 |
-
def _forward(self, x):
|
320 |
-
b, c, *spatial = x.shape
|
321 |
-
x = x.reshape(b, c, -1)
|
322 |
-
qkv = self.qkv(self.norm(x))
|
323 |
-
h = self.attention(qkv)
|
324 |
-
h = self.proj_out(h)
|
325 |
-
return (x + h).reshape(b, c, *spatial)
|
326 |
-
|
327 |
-
|
328 |
-
def count_flops_attn(model, _x, y):
|
329 |
-
"""
|
330 |
-
A counter for the `thop` package to count the operations in an
|
331 |
-
attention operation.
|
332 |
-
Meant to be used like:
|
333 |
-
macs, params = thop.profile(
|
334 |
-
model,
|
335 |
-
inputs=(inputs, timestamps),
|
336 |
-
custom_ops={QKVAttention: QKVAttention.count_flops},
|
337 |
-
)
|
338 |
-
"""
|
339 |
-
b, c, *spatial = y[0].shape
|
340 |
-
num_spatial = int(np.prod(spatial))
|
341 |
-
# We perform two matmuls with the same number of ops.
|
342 |
-
# The first computes the weight matrix, the second computes
|
343 |
-
# the combination of the value vectors.
|
344 |
-
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
345 |
-
model.total_ops += th.DoubleTensor([matmul_ops])
|
346 |
-
|
347 |
-
|
348 |
-
class QKVAttentionLegacy(nn.Module):
|
349 |
-
"""
|
350 |
-
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
351 |
-
"""
|
352 |
-
|
353 |
-
def __init__(self, n_heads):
|
354 |
-
super().__init__()
|
355 |
-
self.n_heads = n_heads
|
356 |
-
|
357 |
-
def forward(self, qkv):
|
358 |
-
"""
|
359 |
-
Apply QKV attention.
|
360 |
-
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
361 |
-
:return: an [N x (H * C) x T] tensor after attention.
|
362 |
-
"""
|
363 |
-
bs, width, length = qkv.shape
|
364 |
-
assert width % (3 * self.n_heads) == 0
|
365 |
-
ch = width // (3 * self.n_heads)
|
366 |
-
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
367 |
-
scale = 1 / math.sqrt(math.sqrt(ch))
|
368 |
-
weight = th.einsum(
|
369 |
-
"bct,bcs->bts", q * scale, k * scale
|
370 |
-
) # More stable with f16 than dividing afterwards
|
371 |
-
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
372 |
-
a = th.einsum("bts,bcs->bct", weight, v)
|
373 |
-
return a.reshape(bs, -1, length)
|
374 |
-
|
375 |
-
@staticmethod
|
376 |
-
def count_flops(model, _x, y):
|
377 |
-
return count_flops_attn(model, _x, y)
|
378 |
-
|
379 |
-
|
380 |
-
class QKVAttention(nn.Module):
|
381 |
-
"""
|
382 |
-
A module which performs QKV attention and splits in a different order.
|
383 |
-
"""
|
384 |
-
|
385 |
-
def __init__(self, n_heads):
|
386 |
-
super().__init__()
|
387 |
-
self.n_heads = n_heads
|
388 |
-
|
389 |
-
def forward(self, qkv):
|
390 |
-
"""
|
391 |
-
Apply QKV attention.
|
392 |
-
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
393 |
-
:return: an [N x (H * C) x T] tensor after attention.
|
394 |
-
"""
|
395 |
-
bs, width, length = qkv.shape
|
396 |
-
assert width % (3 * self.n_heads) == 0
|
397 |
-
ch = width // (3 * self.n_heads)
|
398 |
-
q, k, v = qkv.chunk(3, dim=1)
|
399 |
-
scale = 1 / math.sqrt(math.sqrt(ch))
|
400 |
-
weight = th.einsum(
|
401 |
-
"bct,bcs->bts",
|
402 |
-
(q * scale).view(bs * self.n_heads, ch, length),
|
403 |
-
(k * scale).view(bs * self.n_heads, ch, length),
|
404 |
-
) # More stable with f16 than dividing afterwards
|
405 |
-
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
406 |
-
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
407 |
-
return a.reshape(bs, -1, length)
|
408 |
-
|
409 |
-
@staticmethod
|
410 |
-
def count_flops(model, _x, y):
|
411 |
-
return count_flops_attn(model, _x, y)
|
412 |
-
|
413 |
-
|
414 |
-
class UNetModel(nn.Module):
|
415 |
-
"""
|
416 |
-
The full UNet model with attention and timestep embedding.
|
417 |
-
:param in_channels: channels in the input Tensor.
|
418 |
-
:param model_channels: base channel count for the model.
|
419 |
-
:param out_channels: channels in the output Tensor.
|
420 |
-
:param num_res_blocks: number of residual blocks per downsample.
|
421 |
-
:param attention_resolutions: a collection of downsample rates at which
|
422 |
-
attention will take place. May be a set, list, or tuple.
|
423 |
-
For example, if this contains 4, then at 4x downsampling, attention
|
424 |
-
will be used.
|
425 |
-
:param dropout: the dropout probability.
|
426 |
-
:param channel_mult: channel multiplier for each level of the UNet.
|
427 |
-
:param conv_resample: if True, use learned convolutions for upsampling and
|
428 |
-
downsampling.
|
429 |
-
:param dims: determines if the signal is 1D, 2D, or 3D.
|
430 |
-
:param num_classes: if specified (as an int), then this model will be
|
431 |
-
class-conditional with `num_classes` classes.
|
432 |
-
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
433 |
-
:param num_heads: the number of attention heads in each attention layer.
|
434 |
-
:param num_heads_channels: if specified, ignore num_heads and instead use
|
435 |
-
a fixed channel width per attention head.
|
436 |
-
:param num_heads_upsample: works with num_heads to set a different number
|
437 |
-
of heads for upsampling. Deprecated.
|
438 |
-
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
439 |
-
:param resblock_updown: use residual blocks for up/downsampling.
|
440 |
-
:param use_new_attention_order: use a different attention pattern for potentially
|
441 |
-
increased efficiency.
|
442 |
-
"""
|
443 |
-
|
444 |
-
def __init__(
|
445 |
-
self,
|
446 |
-
image_size,
|
447 |
-
in_channels,
|
448 |
-
model_channels,
|
449 |
-
out_channels,
|
450 |
-
num_res_blocks,
|
451 |
-
attention_resolutions,
|
452 |
-
dropout=0,
|
453 |
-
channel_mult=(1, 2, 4, 8),
|
454 |
-
conv_resample=True,
|
455 |
-
dims=2,
|
456 |
-
num_classes=None,
|
457 |
-
use_checkpoint=False,
|
458 |
-
use_fp16=False,
|
459 |
-
num_heads=-1,
|
460 |
-
num_head_channels=-1,
|
461 |
-
num_heads_upsample=-1,
|
462 |
-
use_scale_shift_norm=False,
|
463 |
-
resblock_updown=False,
|
464 |
-
use_new_attention_order=False,
|
465 |
-
use_spatial_transformer=False, # custom transformer support
|
466 |
-
transformer_depth=1, # custom transformer support
|
467 |
-
context_dim=None, # custom transformer support
|
468 |
-
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
|
469 |
-
legacy=True,
|
470 |
-
disable_self_attentions=None,
|
471 |
-
num_attention_blocks=None
|
472 |
-
):
|
473 |
-
super().__init__()
|
474 |
-
if use_spatial_transformer:
|
475 |
-
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
476 |
-
|
477 |
-
if context_dim is not None:
|
478 |
-
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
479 |
-
from omegaconf.listconfig import ListConfig
|
480 |
-
if type(context_dim) == ListConfig:
|
481 |
-
context_dim = list(context_dim)
|
482 |
-
|
483 |
-
if num_heads_upsample == -1:
|
484 |
-
num_heads_upsample = num_heads
|
485 |
-
|
486 |
-
if num_heads == -1:
|
487 |
-
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
488 |
-
|
489 |
-
if num_head_channels == -1:
|
490 |
-
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
491 |
-
|
492 |
-
self.image_size = image_size
|
493 |
-
self.in_channels = in_channels
|
494 |
-
self.model_channels = model_channels
|
495 |
-
self.out_channels = out_channels
|
496 |
-
if isinstance(num_res_blocks, int):
|
497 |
-
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
498 |
-
else:
|
499 |
-
if len(num_res_blocks) != len(channel_mult):
|
500 |
-
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
501 |
-
"as a list/tuple (per-level) with the same length as channel_mult")
|
502 |
-
self.num_res_blocks = num_res_blocks
|
503 |
-
#self.num_res_blocks = num_res_blocks
|
504 |
-
if disable_self_attentions is not None:
|
505 |
-
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
506 |
-
assert len(disable_self_attentions) == len(channel_mult)
|
507 |
-
if num_attention_blocks is not None:
|
508 |
-
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
509 |
-
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
|
510 |
-
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
|
511 |
-
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
|
512 |
-
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
|
513 |
-
f"attention will still not be set.") # todo: convert to warning
|
514 |
-
|
515 |
-
self.attention_resolutions = attention_resolutions
|
516 |
-
self.dropout = dropout
|
517 |
-
self.channel_mult = channel_mult
|
518 |
-
self.conv_resample = conv_resample
|
519 |
-
self.num_classes = num_classes
|
520 |
-
self.use_checkpoint = use_checkpoint
|
521 |
-
self.dtype = th.float16 if use_fp16 else th.float32
|
522 |
-
self.num_heads = num_heads
|
523 |
-
self.num_head_channels = num_head_channels
|
524 |
-
self.num_heads_upsample = num_heads_upsample
|
525 |
-
self.predict_codebook_ids = n_embed is not None
|
526 |
-
self.dim_heads = []
|
527 |
-
time_embed_dim = model_channels * 4
|
528 |
-
self.time_embed = nn.Sequential(
|
529 |
-
linear(model_channels, time_embed_dim),
|
530 |
-
nn.SiLU(),
|
531 |
-
linear(time_embed_dim, time_embed_dim),
|
532 |
-
)
|
533 |
-
|
534 |
-
if self.num_classes is not None:
|
535 |
-
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
536 |
-
|
537 |
-
self.input_blocks = nn.ModuleList(
|
538 |
-
[
|
539 |
-
TimestepEmbedSequential(
|
540 |
-
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
541 |
-
)
|
542 |
-
]
|
543 |
-
)
|
544 |
-
self._feature_size = model_channels
|
545 |
-
input_block_chans = [model_channels]
|
546 |
-
ch = model_channels
|
547 |
-
ds = 1
|
548 |
-
for level, mult in enumerate(channel_mult):
|
549 |
-
for nr in range(self.num_res_blocks[level]):
|
550 |
-
layers = [
|
551 |
-
ResBlock(
|
552 |
-
ch,
|
553 |
-
time_embed_dim,
|
554 |
-
dropout,
|
555 |
-
out_channels=mult * model_channels,
|
556 |
-
dims=dims,
|
557 |
-
use_checkpoint=use_checkpoint,
|
558 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
559 |
-
)
|
560 |
-
]
|
561 |
-
ch = mult * model_channels
|
562 |
-
if ds in attention_resolutions:
|
563 |
-
if num_head_channels == -1:
|
564 |
-
dim_head = ch // num_heads
|
565 |
-
else:
|
566 |
-
num_heads = ch // num_head_channels
|
567 |
-
dim_head = num_head_channels
|
568 |
-
if legacy:
|
569 |
-
#num_heads = 1
|
570 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
571 |
-
if exists(disable_self_attentions):
|
572 |
-
disabled_sa = disable_self_attentions[level]
|
573 |
-
else:
|
574 |
-
disabled_sa = False
|
575 |
-
|
576 |
-
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
|
577 |
-
self.dim_heads.append(dim_head)
|
578 |
-
layers.append(
|
579 |
-
AttentionBlock(
|
580 |
-
ch,
|
581 |
-
use_checkpoint=use_checkpoint,
|
582 |
-
num_heads=num_heads,
|
583 |
-
num_head_channels=dim_head,
|
584 |
-
use_new_attention_order=use_new_attention_order,
|
585 |
-
) if not use_spatial_transformer else SpatialTransformer(
|
586 |
-
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
587 |
-
disable_self_attn=disabled_sa
|
588 |
-
)
|
589 |
-
)
|
590 |
-
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
591 |
-
self._feature_size += ch
|
592 |
-
input_block_chans.append(ch)
|
593 |
-
if level != len(channel_mult) - 1:
|
594 |
-
out_ch = ch
|
595 |
-
self.input_blocks.append(
|
596 |
-
TimestepEmbedSequential(
|
597 |
-
ResBlock(
|
598 |
-
ch,
|
599 |
-
time_embed_dim,
|
600 |
-
dropout,
|
601 |
-
out_channels=out_ch,
|
602 |
-
dims=dims,
|
603 |
-
use_checkpoint=use_checkpoint,
|
604 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
605 |
-
down=True,
|
606 |
-
)
|
607 |
-
if resblock_updown
|
608 |
-
else Downsample(
|
609 |
-
ch, conv_resample, dims=dims, out_channels=out_ch
|
610 |
-
)
|
611 |
-
)
|
612 |
-
)
|
613 |
-
ch = out_ch
|
614 |
-
input_block_chans.append(ch)
|
615 |
-
ds *= 2
|
616 |
-
self._feature_size += ch
|
617 |
-
|
618 |
-
if num_head_channels == -1:
|
619 |
-
dim_head = ch // num_heads
|
620 |
-
else:
|
621 |
-
num_heads = ch // num_head_channels
|
622 |
-
dim_head = num_head_channels
|
623 |
-
if legacy:
|
624 |
-
#num_heads = 1
|
625 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
626 |
-
print(dim_head)
|
627 |
-
print('legacy')
|
628 |
-
self.dim_heads.append(dim_head)
|
629 |
-
self.middle_block = TimestepEmbedSequential(
|
630 |
-
ResBlock(
|
631 |
-
ch,
|
632 |
-
time_embed_dim,
|
633 |
-
dropout,
|
634 |
-
dims=dims,
|
635 |
-
use_checkpoint=use_checkpoint,
|
636 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
637 |
-
),
|
638 |
-
AttentionBlock(
|
639 |
-
ch,
|
640 |
-
use_checkpoint=use_checkpoint,
|
641 |
-
num_heads=num_heads,
|
642 |
-
num_head_channels=dim_head,
|
643 |
-
use_new_attention_order=use_new_attention_order,
|
644 |
-
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
|
645 |
-
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
|
646 |
-
),
|
647 |
-
ResBlock(
|
648 |
-
ch,
|
649 |
-
time_embed_dim,
|
650 |
-
dropout,
|
651 |
-
dims=dims,
|
652 |
-
use_checkpoint=use_checkpoint,
|
653 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
654 |
-
),
|
655 |
-
)
|
656 |
-
self._feature_size += ch
|
657 |
-
|
658 |
-
self.output_blocks = nn.ModuleList([])
|
659 |
-
for level, mult in list(enumerate(channel_mult))[::-1]:
|
660 |
-
for i in range(self.num_res_blocks[level] + 1):
|
661 |
-
ich = input_block_chans.pop()
|
662 |
-
layers = [
|
663 |
-
ResBlock(
|
664 |
-
ch + ich,
|
665 |
-
time_embed_dim,
|
666 |
-
dropout,
|
667 |
-
out_channels=model_channels * mult,
|
668 |
-
dims=dims,
|
669 |
-
use_checkpoint=use_checkpoint,
|
670 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
671 |
-
)
|
672 |
-
]
|
673 |
-
ch = model_channels * mult
|
674 |
-
if ds in attention_resolutions:
|
675 |
-
if num_head_channels == -1:
|
676 |
-
dim_head = ch // num_heads
|
677 |
-
else:
|
678 |
-
num_heads = ch // num_head_channels
|
679 |
-
dim_head = num_head_channels
|
680 |
-
if legacy:
|
681 |
-
#num_heads = 1
|
682 |
-
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
|
683 |
-
if exists(disable_self_attentions):
|
684 |
-
disabled_sa = disable_self_attentions[level]
|
685 |
-
else:
|
686 |
-
disabled_sa = False
|
687 |
-
|
688 |
-
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
|
689 |
-
self.dim_heads.append(dim_head)
|
690 |
-
layers.append(
|
691 |
-
AttentionBlock(
|
692 |
-
ch,
|
693 |
-
use_checkpoint=use_checkpoint,
|
694 |
-
num_heads=num_heads_upsample,
|
695 |
-
num_head_channels=dim_head,
|
696 |
-
use_new_attention_order=use_new_attention_order,
|
697 |
-
) if not use_spatial_transformer else SpatialTransformer(
|
698 |
-
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
|
699 |
-
disable_self_attn=disabled_sa
|
700 |
-
)
|
701 |
-
)
|
702 |
-
if level and i == self.num_res_blocks[level]:
|
703 |
-
out_ch = ch
|
704 |
-
layers.append(
|
705 |
-
ResBlock(
|
706 |
-
ch,
|
707 |
-
time_embed_dim,
|
708 |
-
dropout,
|
709 |
-
out_channels=out_ch,
|
710 |
-
dims=dims,
|
711 |
-
use_checkpoint=use_checkpoint,
|
712 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
713 |
-
up=True,
|
714 |
-
)
|
715 |
-
if resblock_updown
|
716 |
-
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
717 |
-
)
|
718 |
-
ds //= 2
|
719 |
-
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
720 |
-
self._feature_size += ch
|
721 |
-
|
722 |
-
self.out = nn.Sequential(
|
723 |
-
normalization(ch),
|
724 |
-
nn.SiLU(),
|
725 |
-
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
|
726 |
-
)
|
727 |
-
if self.predict_codebook_ids:
|
728 |
-
self.id_predictor = nn.Sequential(
|
729 |
-
normalization(ch),
|
730 |
-
conv_nd(dims, model_channels, n_embed, 1),
|
731 |
-
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
|
732 |
-
)
|
733 |
-
|
734 |
-
def convert_to_fp16(self):
|
735 |
-
"""
|
736 |
-
Convert the torso of the model to float16.
|
737 |
-
"""
|
738 |
-
self.input_blocks.apply(convert_module_to_f16)
|
739 |
-
self.middle_block.apply(convert_module_to_f16)
|
740 |
-
self.output_blocks.apply(convert_module_to_f16)
|
741 |
-
|
742 |
-
def convert_to_fp32(self):
|
743 |
-
"""
|
744 |
-
Convert the torso of the model to float32.
|
745 |
-
"""
|
746 |
-
self.input_blocks.apply(convert_module_to_f32)
|
747 |
-
self.middle_block.apply(convert_module_to_f32)
|
748 |
-
self.output_blocks.apply(convert_module_to_f32)
|
749 |
-
|
750 |
-
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
|
751 |
-
"""
|
752 |
-
Apply the model to an input batch.
|
753 |
-
:param x: an [N x C x ...] Tensor of inputs.
|
754 |
-
:param timesteps: a 1-D batch of timesteps.
|
755 |
-
:param context: conditioning plugged in via crossattn
|
756 |
-
:param y: an [N] Tensor of labels, if class-conditional.
|
757 |
-
:return: an [N x C x ...] Tensor of outputs.
|
758 |
-
"""
|
759 |
-
assert (y is not None) == (
|
760 |
-
self.num_classes is not None
|
761 |
-
), "must specify y if and only if the model is class-conditional"
|
762 |
-
hs = []
|
763 |
-
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
|
764 |
-
emb = self.time_embed(t_emb)
|
765 |
-
|
766 |
-
if self.num_classes is not None:
|
767 |
-
assert y.shape == (x.shape[0],)
|
768 |
-
emb = emb + self.label_emb(y)
|
769 |
-
|
770 |
-
h = x.type(self.dtype)
|
771 |
-
for module in self.input_blocks:
|
772 |
-
h = module(h, emb, context)
|
773 |
-
hs.append(h)
|
774 |
-
h = self.middle_block(h, emb, context)
|
775 |
-
for module in self.output_blocks:
|
776 |
-
h = th.cat([h, hs.pop()], dim=1)
|
777 |
-
h = module(h, emb, context)
|
778 |
-
h = h.type(x.dtype)
|
779 |
-
if self.predict_codebook_ids:
|
780 |
-
return self.id_predictor(h)
|
781 |
-
else:
|
782 |
-
return self.out(h)
|
783 |
-
|
784 |
-
|
785 |
-
class EncoderUNetModel(nn.Module):
|
786 |
-
"""
|
787 |
-
The half UNet model with attention and timestep embedding.
|
788 |
-
For usage, see UNet.
|
789 |
-
"""
|
790 |
-
|
791 |
-
def __init__(
|
792 |
-
self,
|
793 |
-
image_size,
|
794 |
-
in_channels,
|
795 |
-
model_channels,
|
796 |
-
out_channels,
|
797 |
-
num_res_blocks,
|
798 |
-
attention_resolutions,
|
799 |
-
dropout=0,
|
800 |
-
channel_mult=(1, 2, 4, 8),
|
801 |
-
conv_resample=True,
|
802 |
-
dims=2,
|
803 |
-
use_checkpoint=False,
|
804 |
-
use_fp16=False,
|
805 |
-
num_heads=1,
|
806 |
-
num_head_channels=-1,
|
807 |
-
num_heads_upsample=-1,
|
808 |
-
use_scale_shift_norm=False,
|
809 |
-
resblock_updown=False,
|
810 |
-
use_new_attention_order=False,
|
811 |
-
pool="adaptive",
|
812 |
-
*args,
|
813 |
-
**kwargs
|
814 |
-
):
|
815 |
-
super().__init__()
|
816 |
-
|
817 |
-
if num_heads_upsample == -1:
|
818 |
-
num_heads_upsample = num_heads
|
819 |
-
|
820 |
-
self.in_channels = in_channels
|
821 |
-
self.model_channels = model_channels
|
822 |
-
self.out_channels = out_channels
|
823 |
-
self.num_res_blocks = num_res_blocks
|
824 |
-
self.attention_resolutions = attention_resolutions
|
825 |
-
self.dropout = dropout
|
826 |
-
self.channel_mult = channel_mult
|
827 |
-
self.conv_resample = conv_resample
|
828 |
-
self.use_checkpoint = use_checkpoint
|
829 |
-
self.dtype = th.float16 if use_fp16 else th.float32
|
830 |
-
self.num_heads = num_heads
|
831 |
-
self.num_head_channels = num_head_channels
|
832 |
-
self.num_heads_upsample = num_heads_upsample
|
833 |
-
|
834 |
-
time_embed_dim = model_channels * 4
|
835 |
-
self.time_embed = nn.Sequential(
|
836 |
-
linear(model_channels, time_embed_dim),
|
837 |
-
nn.SiLU(),
|
838 |
-
linear(time_embed_dim, time_embed_dim),
|
839 |
-
)
|
840 |
-
|
841 |
-
self.input_blocks = nn.ModuleList(
|
842 |
-
[
|
843 |
-
TimestepEmbedSequential(
|
844 |
-
conv_nd(dims, in_channels, model_channels, 3, padding=1)
|
845 |
-
)
|
846 |
-
]
|
847 |
-
)
|
848 |
-
self._feature_size = model_channels
|
849 |
-
input_block_chans = [model_channels]
|
850 |
-
ch = model_channels
|
851 |
-
ds = 1
|
852 |
-
for level, mult in enumerate(channel_mult):
|
853 |
-
for _ in range(num_res_blocks):
|
854 |
-
layers = [
|
855 |
-
ResBlock(
|
856 |
-
ch,
|
857 |
-
time_embed_dim,
|
858 |
-
dropout,
|
859 |
-
out_channels=mult * model_channels,
|
860 |
-
dims=dims,
|
861 |
-
use_checkpoint=use_checkpoint,
|
862 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
863 |
-
)
|
864 |
-
]
|
865 |
-
ch = mult * model_channels
|
866 |
-
if ds in attention_resolutions:
|
867 |
-
layers.append(
|
868 |
-
AttentionBlock(
|
869 |
-
ch,
|
870 |
-
use_checkpoint=use_checkpoint,
|
871 |
-
num_heads=num_heads,
|
872 |
-
num_head_channels=num_head_channels,
|
873 |
-
use_new_attention_order=use_new_attention_order,
|
874 |
-
)
|
875 |
-
)
|
876 |
-
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
877 |
-
self._feature_size += ch
|
878 |
-
input_block_chans.append(ch)
|
879 |
-
if level != len(channel_mult) - 1:
|
880 |
-
out_ch = ch
|
881 |
-
self.input_blocks.append(
|
882 |
-
TimestepEmbedSequential(
|
883 |
-
ResBlock(
|
884 |
-
ch,
|
885 |
-
time_embed_dim,
|
886 |
-
dropout,
|
887 |
-
out_channels=out_ch,
|
888 |
-
dims=dims,
|
889 |
-
use_checkpoint=use_checkpoint,
|
890 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
891 |
-
down=True,
|
892 |
-
)
|
893 |
-
if resblock_updown
|
894 |
-
else Downsample(
|
895 |
-
ch, conv_resample, dims=dims, out_channels=out_ch
|
896 |
-
)
|
897 |
-
)
|
898 |
-
)
|
899 |
-
ch = out_ch
|
900 |
-
input_block_chans.append(ch)
|
901 |
-
ds *= 2
|
902 |
-
self._feature_size += ch
|
903 |
-
|
904 |
-
self.middle_block = TimestepEmbedSequential(
|
905 |
-
ResBlock(
|
906 |
-
ch,
|
907 |
-
time_embed_dim,
|
908 |
-
dropout,
|
909 |
-
dims=dims,
|
910 |
-
use_checkpoint=use_checkpoint,
|
911 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
912 |
-
),
|
913 |
-
AttentionBlock(
|
914 |
-
ch,
|
915 |
-
use_checkpoint=use_checkpoint,
|
916 |
-
num_heads=num_heads,
|
917 |
-
num_head_channels=num_head_channels,
|
918 |
-
use_new_attention_order=use_new_attention_order,
|
919 |
-
),
|
920 |
-
ResBlock(
|
921 |
-
ch,
|
922 |
-
time_embed_dim,
|
923 |
-
dropout,
|
924 |
-
dims=dims,
|
925 |
-
use_checkpoint=use_checkpoint,
|
926 |
-
use_scale_shift_norm=use_scale_shift_norm,
|
927 |
-
),
|
928 |
-
)
|
929 |
-
self._feature_size += ch
|
930 |
-
self.pool = pool
|
931 |
-
if pool == "adaptive":
|
932 |
-
self.out = nn.Sequential(
|
933 |
-
normalization(ch),
|
934 |
-
nn.SiLU(),
|
935 |
-
nn.AdaptiveAvgPool2d((1, 1)),
|
936 |
-
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
937 |
-
nn.Flatten(),
|
938 |
-
)
|
939 |
-
elif pool == "attention":
|
940 |
-
assert num_head_channels != -1
|
941 |
-
self.out = nn.Sequential(
|
942 |
-
normalization(ch),
|
943 |
-
nn.SiLU(),
|
944 |
-
AttentionPool2d(
|
945 |
-
(image_size // ds), ch, num_head_channels, out_channels
|
946 |
-
),
|
947 |
-
)
|
948 |
-
elif pool == "spatial":
|
949 |
-
self.out = nn.Sequential(
|
950 |
-
nn.Linear(self._feature_size, 2048),
|
951 |
-
nn.ReLU(),
|
952 |
-
nn.Linear(2048, self.out_channels),
|
953 |
-
)
|
954 |
-
elif pool == "spatial_v2":
|
955 |
-
self.out = nn.Sequential(
|
956 |
-
nn.Linear(self._feature_size, 2048),
|
957 |
-
normalization(2048),
|
958 |
-
nn.SiLU(),
|
959 |
-
nn.Linear(2048, self.out_channels),
|
960 |
-
)
|
961 |
-
else:
|
962 |
-
raise NotImplementedError(f"Unexpected {pool} pooling")
|
963 |
-
|
964 |
-
def convert_to_fp16(self):
|
965 |
-
"""
|
966 |
-
Convert the torso of the model to float16.
|
967 |
-
"""
|
968 |
-
self.input_blocks.apply(convert_module_to_f16)
|
969 |
-
self.middle_block.apply(convert_module_to_f16)
|
970 |
-
|
971 |
-
def convert_to_fp32(self):
|
972 |
-
"""
|
973 |
-
Convert the torso of the model to float32.
|
974 |
-
"""
|
975 |
-
self.input_blocks.apply(convert_module_to_f32)
|
976 |
-
self.middle_block.apply(convert_module_to_f32)
|
977 |
-
|
978 |
-
def forward(self, x, timesteps):
|
979 |
-
"""
|
980 |
-
Apply the model to an input batch.
|
981 |
-
:param x: an [N x C x ...] Tensor of inputs.
|
982 |
-
:param timesteps: a 1-D batch of timesteps.
|
983 |
-
:return: an [N x K] Tensor of outputs.
|
984 |
-
"""
|
985 |
-
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
986 |
-
|
987 |
-
results = []
|
988 |
-
h = x.type(self.dtype)
|
989 |
-
for module in self.input_blocks:
|
990 |
-
h = module(h, emb)
|
991 |
-
if self.pool.startswith("spatial"):
|
992 |
-
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
993 |
-
h = self.middle_block(h, emb)
|
994 |
-
if self.pool.startswith("spatial"):
|
995 |
-
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
996 |
-
h = th.cat(results, axis=-1)
|
997 |
-
return self.out(h)
|
998 |
-
else:
|
999 |
-
h = h.type(x.dtype)
|
1000 |
-
return self.out(h)
|
1001 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/diffusionmodules/util.py
DELETED
@@ -1,267 +0,0 @@
|
|
1 |
-
# adopted from
|
2 |
-
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
-
# and
|
4 |
-
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
-
# and
|
6 |
-
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
-
#
|
8 |
-
# thanks!
|
9 |
-
|
10 |
-
|
11 |
-
import os
|
12 |
-
import math
|
13 |
-
import torch
|
14 |
-
import torch.nn as nn
|
15 |
-
import numpy as np
|
16 |
-
from einops import repeat
|
17 |
-
|
18 |
-
from ldm.util import instantiate_from_config
|
19 |
-
|
20 |
-
|
21 |
-
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
22 |
-
if schedule == "linear":
|
23 |
-
betas = (
|
24 |
-
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
25 |
-
)
|
26 |
-
|
27 |
-
elif schedule == "cosine":
|
28 |
-
timesteps = (
|
29 |
-
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
30 |
-
)
|
31 |
-
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
32 |
-
alphas = torch.cos(alphas).pow(2)
|
33 |
-
alphas = alphas / alphas[0]
|
34 |
-
betas = 1 - alphas[1:] / alphas[:-1]
|
35 |
-
betas = np.clip(betas, a_min=0, a_max=0.999)
|
36 |
-
|
37 |
-
elif schedule == "sqrt_linear":
|
38 |
-
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
39 |
-
elif schedule == "sqrt":
|
40 |
-
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
41 |
-
else:
|
42 |
-
raise ValueError(f"schedule '{schedule}' unknown.")
|
43 |
-
return betas.numpy()
|
44 |
-
|
45 |
-
|
46 |
-
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
47 |
-
if ddim_discr_method == 'uniform':
|
48 |
-
c = num_ddpm_timesteps // num_ddim_timesteps
|
49 |
-
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
50 |
-
elif ddim_discr_method == 'quad':
|
51 |
-
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
52 |
-
else:
|
53 |
-
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
54 |
-
|
55 |
-
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
56 |
-
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
57 |
-
steps_out = ddim_timesteps + 1
|
58 |
-
if verbose:
|
59 |
-
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
60 |
-
return steps_out
|
61 |
-
|
62 |
-
|
63 |
-
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
64 |
-
# select alphas for computing the variance schedule
|
65 |
-
alphas = alphacums[ddim_timesteps]
|
66 |
-
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
67 |
-
|
68 |
-
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
69 |
-
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
70 |
-
if verbose:
|
71 |
-
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
72 |
-
print(f'For the chosen value of eta, which is {eta}, '
|
73 |
-
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
74 |
-
return sigmas, alphas, alphas_prev
|
75 |
-
|
76 |
-
|
77 |
-
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
78 |
-
"""
|
79 |
-
Create a beta schedule that discretizes the given alpha_t_bar function,
|
80 |
-
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
81 |
-
:param num_diffusion_timesteps: the number of betas to produce.
|
82 |
-
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
83 |
-
produces the cumulative product of (1-beta) up to that
|
84 |
-
part of the diffusion process.
|
85 |
-
:param max_beta: the maximum beta to use; use values lower than 1 to
|
86 |
-
prevent singularities.
|
87 |
-
"""
|
88 |
-
betas = []
|
89 |
-
for i in range(num_diffusion_timesteps):
|
90 |
-
t1 = i / num_diffusion_timesteps
|
91 |
-
t2 = (i + 1) / num_diffusion_timesteps
|
92 |
-
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
93 |
-
return np.array(betas)
|
94 |
-
|
95 |
-
|
96 |
-
def extract_into_tensor(a, t, x_shape):
|
97 |
-
b, *_ = t.shape
|
98 |
-
out = a.gather(-1, t)
|
99 |
-
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
100 |
-
|
101 |
-
|
102 |
-
def checkpoint(func, inputs, params, flag):
|
103 |
-
"""
|
104 |
-
Evaluate a function without caching intermediate activations, allowing for
|
105 |
-
reduced memory at the expense of extra compute in the backward pass.
|
106 |
-
:param func: the function to evaluate.
|
107 |
-
:param inputs: the argument sequence to pass to `func`.
|
108 |
-
:param params: a sequence of parameters `func` depends on but does not
|
109 |
-
explicitly take as arguments.
|
110 |
-
:param flag: if False, disable gradient checkpointing.
|
111 |
-
"""
|
112 |
-
if flag:
|
113 |
-
args = tuple(inputs) + tuple(params)
|
114 |
-
return CheckpointFunction.apply(func, len(inputs), *args)
|
115 |
-
else:
|
116 |
-
return func(*inputs)
|
117 |
-
|
118 |
-
|
119 |
-
class CheckpointFunction(torch.autograd.Function):
|
120 |
-
@staticmethod
|
121 |
-
def forward(ctx, run_function, length, *args):
|
122 |
-
ctx.run_function = run_function
|
123 |
-
ctx.input_tensors = list(args[:length])
|
124 |
-
ctx.input_params = list(args[length:])
|
125 |
-
|
126 |
-
with torch.no_grad():
|
127 |
-
output_tensors = ctx.run_function(*ctx.input_tensors)
|
128 |
-
return output_tensors
|
129 |
-
|
130 |
-
@staticmethod
|
131 |
-
def backward(ctx, *output_grads):
|
132 |
-
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
133 |
-
with torch.enable_grad():
|
134 |
-
# Fixes a bug where the first op in run_function modifies the
|
135 |
-
# Tensor storage in place, which is not allowed for detach()'d
|
136 |
-
# Tensors.
|
137 |
-
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
138 |
-
output_tensors = ctx.run_function(*shallow_copies)
|
139 |
-
input_grads = torch.autograd.grad(
|
140 |
-
output_tensors,
|
141 |
-
ctx.input_tensors + ctx.input_params,
|
142 |
-
output_grads,
|
143 |
-
allow_unused=True,
|
144 |
-
)
|
145 |
-
del ctx.input_tensors
|
146 |
-
del ctx.input_params
|
147 |
-
del output_tensors
|
148 |
-
return (None, None) + input_grads
|
149 |
-
|
150 |
-
|
151 |
-
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
152 |
-
"""
|
153 |
-
Create sinusoidal timestep embeddings.
|
154 |
-
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
155 |
-
These may be fractional.
|
156 |
-
:param dim: the dimension of the output.
|
157 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
158 |
-
:return: an [N x dim] Tensor of positional embeddings.
|
159 |
-
"""
|
160 |
-
if not repeat_only:
|
161 |
-
half = dim // 2
|
162 |
-
freqs = torch.exp(
|
163 |
-
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
164 |
-
).to(device=timesteps.device)
|
165 |
-
args = timesteps[:, None].float() * freqs[None]
|
166 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
167 |
-
if dim % 2:
|
168 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
169 |
-
else:
|
170 |
-
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
171 |
-
return embedding
|
172 |
-
|
173 |
-
|
174 |
-
def zero_module(module):
|
175 |
-
"""
|
176 |
-
Zero out the parameters of a module and return it.
|
177 |
-
"""
|
178 |
-
for p in module.parameters():
|
179 |
-
p.detach().zero_()
|
180 |
-
return module
|
181 |
-
|
182 |
-
|
183 |
-
def scale_module(module, scale):
|
184 |
-
"""
|
185 |
-
Scale the parameters of a module and return it.
|
186 |
-
"""
|
187 |
-
for p in module.parameters():
|
188 |
-
p.detach().mul_(scale)
|
189 |
-
return module
|
190 |
-
|
191 |
-
|
192 |
-
def mean_flat(tensor):
|
193 |
-
"""
|
194 |
-
Take the mean over all non-batch dimensions.
|
195 |
-
"""
|
196 |
-
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
197 |
-
|
198 |
-
|
199 |
-
def normalization(channels):
|
200 |
-
"""
|
201 |
-
Make a standard normalization layer.
|
202 |
-
:param channels: number of input channels.
|
203 |
-
:return: an nn.Module for normalization.
|
204 |
-
"""
|
205 |
-
return GroupNorm32(32, channels)
|
206 |
-
|
207 |
-
|
208 |
-
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
209 |
-
class SiLU(nn.Module):
|
210 |
-
def forward(self, x):
|
211 |
-
return x * torch.sigmoid(x)
|
212 |
-
|
213 |
-
|
214 |
-
class GroupNorm32(nn.GroupNorm):
|
215 |
-
def forward(self, x):
|
216 |
-
return super().forward(x.float()).type(x.dtype)
|
217 |
-
|
218 |
-
def conv_nd(dims, *args, **kwargs):
|
219 |
-
"""
|
220 |
-
Create a 1D, 2D, or 3D convolution module.
|
221 |
-
"""
|
222 |
-
if dims == 1:
|
223 |
-
return nn.Conv1d(*args, **kwargs)
|
224 |
-
elif dims == 2:
|
225 |
-
return nn.Conv2d(*args, **kwargs)
|
226 |
-
elif dims == 3:
|
227 |
-
return nn.Conv3d(*args, **kwargs)
|
228 |
-
raise ValueError(f"unsupported dimensions: {dims}")
|
229 |
-
|
230 |
-
|
231 |
-
def linear(*args, **kwargs):
|
232 |
-
"""
|
233 |
-
Create a linear module.
|
234 |
-
"""
|
235 |
-
return nn.Linear(*args, **kwargs)
|
236 |
-
|
237 |
-
|
238 |
-
def avg_pool_nd(dims, *args, **kwargs):
|
239 |
-
"""
|
240 |
-
Create a 1D, 2D, or 3D average pooling module.
|
241 |
-
"""
|
242 |
-
if dims == 1:
|
243 |
-
return nn.AvgPool1d(*args, **kwargs)
|
244 |
-
elif dims == 2:
|
245 |
-
return nn.AvgPool2d(*args, **kwargs)
|
246 |
-
elif dims == 3:
|
247 |
-
return nn.AvgPool3d(*args, **kwargs)
|
248 |
-
raise ValueError(f"unsupported dimensions: {dims}")
|
249 |
-
|
250 |
-
|
251 |
-
class HybridConditioner(nn.Module):
|
252 |
-
|
253 |
-
def __init__(self, c_concat_config, c_crossattn_config):
|
254 |
-
super().__init__()
|
255 |
-
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
256 |
-
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
257 |
-
|
258 |
-
def forward(self, c_concat, c_crossattn):
|
259 |
-
c_concat = self.concat_conditioner(c_concat)
|
260 |
-
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
261 |
-
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
262 |
-
|
263 |
-
|
264 |
-
def noise_like(shape, device, repeat=False):
|
265 |
-
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
266 |
-
noise = lambda: torch.randn(shape, device=device)
|
267 |
-
return repeat_noise() if repeat else noise()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/distributions/__init__.py
DELETED
File without changes
|
stable_diffusion/ldm/modules/distributions/distributions.py
DELETED
@@ -1,92 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
|
4 |
-
|
5 |
-
class AbstractDistribution:
|
6 |
-
def sample(self):
|
7 |
-
raise NotImplementedError()
|
8 |
-
|
9 |
-
def mode(self):
|
10 |
-
raise NotImplementedError()
|
11 |
-
|
12 |
-
|
13 |
-
class DiracDistribution(AbstractDistribution):
|
14 |
-
def __init__(self, value):
|
15 |
-
self.value = value
|
16 |
-
|
17 |
-
def sample(self):
|
18 |
-
return self.value
|
19 |
-
|
20 |
-
def mode(self):
|
21 |
-
return self.value
|
22 |
-
|
23 |
-
|
24 |
-
class DiagonalGaussianDistribution(object):
|
25 |
-
def __init__(self, parameters, deterministic=False):
|
26 |
-
self.parameters = parameters
|
27 |
-
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
28 |
-
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
29 |
-
self.deterministic = deterministic
|
30 |
-
self.std = torch.exp(0.5 * self.logvar)
|
31 |
-
self.var = torch.exp(self.logvar)
|
32 |
-
if self.deterministic:
|
33 |
-
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
34 |
-
|
35 |
-
def sample(self):
|
36 |
-
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
37 |
-
return x
|
38 |
-
|
39 |
-
def kl(self, other=None):
|
40 |
-
if self.deterministic:
|
41 |
-
return torch.Tensor([0.])
|
42 |
-
else:
|
43 |
-
if other is None:
|
44 |
-
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
45 |
-
+ self.var - 1.0 - self.logvar,
|
46 |
-
dim=[1, 2, 3])
|
47 |
-
else:
|
48 |
-
return 0.5 * torch.sum(
|
49 |
-
torch.pow(self.mean - other.mean, 2) / other.var
|
50 |
-
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
51 |
-
dim=[1, 2, 3])
|
52 |
-
|
53 |
-
def nll(self, sample, dims=[1,2,3]):
|
54 |
-
if self.deterministic:
|
55 |
-
return torch.Tensor([0.])
|
56 |
-
logtwopi = np.log(2.0 * np.pi)
|
57 |
-
return 0.5 * torch.sum(
|
58 |
-
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
59 |
-
dim=dims)
|
60 |
-
|
61 |
-
def mode(self):
|
62 |
-
return self.mean
|
63 |
-
|
64 |
-
|
65 |
-
def normal_kl(mean1, logvar1, mean2, logvar2):
|
66 |
-
"""
|
67 |
-
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
68 |
-
Compute the KL divergence between two gaussians.
|
69 |
-
Shapes are automatically broadcasted, so batches can be compared to
|
70 |
-
scalars, among other use cases.
|
71 |
-
"""
|
72 |
-
tensor = None
|
73 |
-
for obj in (mean1, logvar1, mean2, logvar2):
|
74 |
-
if isinstance(obj, torch.Tensor):
|
75 |
-
tensor = obj
|
76 |
-
break
|
77 |
-
assert tensor is not None, "at least one argument must be a Tensor"
|
78 |
-
|
79 |
-
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
80 |
-
# Tensors, but it does not work for torch.exp().
|
81 |
-
logvar1, logvar2 = [
|
82 |
-
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
83 |
-
for x in (logvar1, logvar2)
|
84 |
-
]
|
85 |
-
|
86 |
-
return 0.5 * (
|
87 |
-
-1.0
|
88 |
-
+ logvar2
|
89 |
-
- logvar1
|
90 |
-
+ torch.exp(logvar1 - logvar2)
|
91 |
-
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
92 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/ema.py
DELETED
@@ -1,76 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
|
4 |
-
|
5 |
-
class LitEma(nn.Module):
|
6 |
-
def __init__(self, model, decay=0.9999, use_num_upates=True):
|
7 |
-
super().__init__()
|
8 |
-
if decay < 0.0 or decay > 1.0:
|
9 |
-
raise ValueError('Decay must be between 0 and 1')
|
10 |
-
|
11 |
-
self.m_name2s_name = {}
|
12 |
-
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
|
13 |
-
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
|
14 |
-
else torch.tensor(-1,dtype=torch.int))
|
15 |
-
|
16 |
-
for name, p in model.named_parameters():
|
17 |
-
if p.requires_grad:
|
18 |
-
#remove as '.'-character is not allowed in buffers
|
19 |
-
s_name = name.replace('.','')
|
20 |
-
self.m_name2s_name.update({name:s_name})
|
21 |
-
self.register_buffer(s_name,p.clone().detach().data)
|
22 |
-
|
23 |
-
self.collected_params = []
|
24 |
-
|
25 |
-
def forward(self,model):
|
26 |
-
decay = self.decay
|
27 |
-
|
28 |
-
if self.num_updates >= 0:
|
29 |
-
self.num_updates += 1
|
30 |
-
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
|
31 |
-
|
32 |
-
one_minus_decay = 1.0 - decay
|
33 |
-
|
34 |
-
with torch.no_grad():
|
35 |
-
m_param = dict(model.named_parameters())
|
36 |
-
shadow_params = dict(self.named_buffers())
|
37 |
-
|
38 |
-
for key in m_param:
|
39 |
-
if m_param[key].requires_grad:
|
40 |
-
sname = self.m_name2s_name[key]
|
41 |
-
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
|
42 |
-
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
|
43 |
-
else:
|
44 |
-
assert not key in self.m_name2s_name
|
45 |
-
|
46 |
-
def copy_to(self, model):
|
47 |
-
m_param = dict(model.named_parameters())
|
48 |
-
shadow_params = dict(self.named_buffers())
|
49 |
-
for key in m_param:
|
50 |
-
if m_param[key].requires_grad:
|
51 |
-
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
|
52 |
-
else:
|
53 |
-
assert not key in self.m_name2s_name
|
54 |
-
|
55 |
-
def store(self, parameters):
|
56 |
-
"""
|
57 |
-
Save the current parameters for restoring later.
|
58 |
-
Args:
|
59 |
-
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
60 |
-
temporarily stored.
|
61 |
-
"""
|
62 |
-
self.collected_params = [param.clone() for param in parameters]
|
63 |
-
|
64 |
-
def restore(self, parameters):
|
65 |
-
"""
|
66 |
-
Restore the parameters stored with the `store` method.
|
67 |
-
Useful to validate the model with EMA parameters without affecting the
|
68 |
-
original optimization process. Store the parameters before the
|
69 |
-
`copy_to` method. After validation (or model saving), use this to
|
70 |
-
restore the former parameters.
|
71 |
-
Args:
|
72 |
-
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
|
73 |
-
updated with the stored parameters.
|
74 |
-
"""
|
75 |
-
for c_param, param in zip(self.collected_params, parameters):
|
76 |
-
param.data.copy_(c_param.data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/encoders/__init__.py
DELETED
File without changes
|
stable_diffusion/ldm/modules/encoders/modules.py
DELETED
@@ -1,425 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import numpy as np
|
4 |
-
from functools import partial
|
5 |
-
import kornia
|
6 |
-
|
7 |
-
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
8 |
-
from ldm.util import default
|
9 |
-
import clip
|
10 |
-
|
11 |
-
|
12 |
-
class AbstractEncoder(nn.Module):
|
13 |
-
def __init__(self):
|
14 |
-
super().__init__()
|
15 |
-
|
16 |
-
def encode(self, *args, **kwargs):
|
17 |
-
raise NotImplementedError
|
18 |
-
|
19 |
-
class IdentityEncoder(AbstractEncoder):
|
20 |
-
|
21 |
-
def encode(self, x):
|
22 |
-
return x
|
23 |
-
|
24 |
-
|
25 |
-
class ClassEmbedder(nn.Module):
|
26 |
-
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
27 |
-
super().__init__()
|
28 |
-
self.key = key
|
29 |
-
self.embedding = nn.Embedding(n_classes, embed_dim)
|
30 |
-
|
31 |
-
def forward(self, batch, key=None):
|
32 |
-
if key is None:
|
33 |
-
key = self.key
|
34 |
-
# this is for use in crossattn
|
35 |
-
c = batch[key][:, None]
|
36 |
-
c = self.embedding(c)
|
37 |
-
return c
|
38 |
-
|
39 |
-
|
40 |
-
class TransformerEmbedder(AbstractEncoder):
|
41 |
-
"""Some transformer encoder layers"""
|
42 |
-
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
43 |
-
super().__init__()
|
44 |
-
self.device = device
|
45 |
-
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
46 |
-
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
47 |
-
|
48 |
-
def forward(self, tokens):
|
49 |
-
tokens = tokens.to(self.device) # meh
|
50 |
-
z = self.transformer(tokens, return_embeddings=True)
|
51 |
-
return z
|
52 |
-
|
53 |
-
def encode(self, x):
|
54 |
-
return self(x)
|
55 |
-
|
56 |
-
|
57 |
-
class BERTTokenizer(AbstractEncoder):
|
58 |
-
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
59 |
-
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
60 |
-
super().__init__()
|
61 |
-
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
62 |
-
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
63 |
-
self.device = device
|
64 |
-
self.vq_interface = vq_interface
|
65 |
-
self.max_length = max_length
|
66 |
-
|
67 |
-
def forward(self, text):
|
68 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
69 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
70 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
71 |
-
return tokens
|
72 |
-
|
73 |
-
@torch.no_grad()
|
74 |
-
def encode(self, text):
|
75 |
-
tokens = self(text)
|
76 |
-
if not self.vq_interface:
|
77 |
-
return tokens
|
78 |
-
return None, None, [None, None, tokens]
|
79 |
-
|
80 |
-
def decode(self, text):
|
81 |
-
return text
|
82 |
-
|
83 |
-
|
84 |
-
class BERTEmbedder(AbstractEncoder):
|
85 |
-
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
86 |
-
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
87 |
-
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
88 |
-
super().__init__()
|
89 |
-
self.use_tknz_fn = use_tokenizer
|
90 |
-
if self.use_tknz_fn:
|
91 |
-
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
92 |
-
self.device = device
|
93 |
-
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
94 |
-
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
95 |
-
emb_dropout=embedding_dropout)
|
96 |
-
|
97 |
-
def forward(self, text):
|
98 |
-
if self.use_tknz_fn:
|
99 |
-
tokens = self.tknz_fn(text)#.to(self.device)
|
100 |
-
else:
|
101 |
-
tokens = text
|
102 |
-
z = self.transformer(tokens, return_embeddings=True)
|
103 |
-
return z
|
104 |
-
|
105 |
-
def encode(self, text):
|
106 |
-
# output of length 77
|
107 |
-
return self(text)
|
108 |
-
|
109 |
-
|
110 |
-
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
111 |
-
|
112 |
-
def disabled_train(self, mode=True):
|
113 |
-
"""Overwrite model.train with this function to make sure train/eval mode
|
114 |
-
does not change anymore."""
|
115 |
-
return self
|
116 |
-
|
117 |
-
|
118 |
-
class FrozenT5Embedder(AbstractEncoder):
|
119 |
-
"""Uses the T5 transformer encoder for text"""
|
120 |
-
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
121 |
-
super().__init__()
|
122 |
-
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
123 |
-
self.transformer = T5EncoderModel.from_pretrained(version)
|
124 |
-
self.device = device
|
125 |
-
self.max_length = max_length # TODO: typical value?
|
126 |
-
self.freeze()
|
127 |
-
|
128 |
-
def freeze(self):
|
129 |
-
self.transformer = self.transformer.eval()
|
130 |
-
#self.train = disabled_train
|
131 |
-
for param in self.parameters():
|
132 |
-
param.requires_grad = False
|
133 |
-
|
134 |
-
def forward(self, text):
|
135 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
136 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
137 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
138 |
-
outputs = self.transformer(input_ids=tokens)
|
139 |
-
|
140 |
-
z = outputs.last_hidden_state
|
141 |
-
return z
|
142 |
-
|
143 |
-
def encode(self, text):
|
144 |
-
return self(text)
|
145 |
-
|
146 |
-
from ldm.thirdp.psp.id_loss import IDFeatures
|
147 |
-
import kornia.augmentation as K
|
148 |
-
|
149 |
-
class FrozenFaceEncoder(AbstractEncoder):
|
150 |
-
def __init__(self, model_path, augment=False):
|
151 |
-
super().__init__()
|
152 |
-
self.loss_fn = IDFeatures(model_path)
|
153 |
-
# face encoder is frozen
|
154 |
-
for p in self.loss_fn.parameters():
|
155 |
-
p.requires_grad = False
|
156 |
-
# Mapper is trainable
|
157 |
-
self.mapper = torch.nn.Linear(512, 768)
|
158 |
-
p = 0.25
|
159 |
-
if augment:
|
160 |
-
self.augment = K.AugmentationSequential(
|
161 |
-
K.RandomHorizontalFlip(p=0.5),
|
162 |
-
K.RandomEqualize(p=p),
|
163 |
-
K.RandomPlanckianJitter(p=p),
|
164 |
-
K.RandomPlasmaBrightness(p=p),
|
165 |
-
K.RandomPlasmaContrast(p=p),
|
166 |
-
K.ColorJiggle(0.02, 0.2, 0.2, p=p),
|
167 |
-
)
|
168 |
-
else:
|
169 |
-
self.augment = False
|
170 |
-
|
171 |
-
def forward(self, img):
|
172 |
-
if isinstance(img, list):
|
173 |
-
# Uncondition
|
174 |
-
return torch.zeros((1, 1, 768), device=self.mapper.weight.device)
|
175 |
-
|
176 |
-
if self.augment is not None:
|
177 |
-
# Transforms require 0-1
|
178 |
-
img = self.augment((img + 1)/2)
|
179 |
-
img = 2*img - 1
|
180 |
-
|
181 |
-
feat = self.loss_fn(img, crop=True)
|
182 |
-
feat = self.mapper(feat.unsqueeze(1))
|
183 |
-
return feat
|
184 |
-
|
185 |
-
def encode(self, img):
|
186 |
-
return self(img)
|
187 |
-
|
188 |
-
class FrozenCLIPEmbedder(AbstractEncoder):
|
189 |
-
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
190 |
-
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
|
191 |
-
super().__init__()
|
192 |
-
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
193 |
-
self.transformer = CLIPTextModel.from_pretrained(version)
|
194 |
-
self.device = device
|
195 |
-
self.max_length = max_length # TODO: typical value?
|
196 |
-
self.freeze()
|
197 |
-
|
198 |
-
def freeze(self):
|
199 |
-
self.transformer = self.transformer.eval()
|
200 |
-
#self.train = disabled_train
|
201 |
-
for param in self.parameters():
|
202 |
-
param.requires_grad = False
|
203 |
-
|
204 |
-
def forward(self, text):
|
205 |
-
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
206 |
-
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
207 |
-
tokens = batch_encoding["input_ids"].to(self.device)
|
208 |
-
outputs = self.transformer(input_ids=tokens)
|
209 |
-
|
210 |
-
z = outputs.last_hidden_state
|
211 |
-
return z
|
212 |
-
|
213 |
-
def encode(self, text):
|
214 |
-
return self(text)
|
215 |
-
|
216 |
-
import torch.nn.functional as F
|
217 |
-
from transformers import CLIPVisionModel
|
218 |
-
class ClipImageProjector(AbstractEncoder):
|
219 |
-
"""
|
220 |
-
Uses the CLIP image encoder.
|
221 |
-
"""
|
222 |
-
def __init__(self, version="openai/clip-vit-large-patch14", max_length=77): # clip-vit-base-patch32
|
223 |
-
super().__init__()
|
224 |
-
self.model = CLIPVisionModel.from_pretrained(version)
|
225 |
-
self.model.train()
|
226 |
-
self.max_length = max_length # TODO: typical value?
|
227 |
-
self.antialias = True
|
228 |
-
self.mapper = torch.nn.Linear(1024, 768)
|
229 |
-
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
230 |
-
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
231 |
-
null_cond = self.get_null_cond(version, max_length)
|
232 |
-
self.register_buffer('null_cond', null_cond)
|
233 |
-
|
234 |
-
@torch.no_grad()
|
235 |
-
def get_null_cond(self, version, max_length):
|
236 |
-
device = self.mean.device
|
237 |
-
embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length)
|
238 |
-
null_cond = embedder([""])
|
239 |
-
return null_cond
|
240 |
-
|
241 |
-
def preprocess(self, x):
|
242 |
-
# Expects inputs in the range -1, 1
|
243 |
-
x = kornia.geometry.resize(x, (224, 224),
|
244 |
-
interpolation='bicubic',align_corners=True,
|
245 |
-
antialias=self.antialias)
|
246 |
-
x = (x + 1.) / 2.
|
247 |
-
# renormalize according to clip
|
248 |
-
x = kornia.enhance.normalize(x, self.mean, self.std)
|
249 |
-
return x
|
250 |
-
|
251 |
-
def forward(self, x):
|
252 |
-
if isinstance(x, list):
|
253 |
-
return self.null_cond
|
254 |
-
# x is assumed to be in range [-1,1]
|
255 |
-
x = self.preprocess(x)
|
256 |
-
outputs = self.model(pixel_values=x)
|
257 |
-
last_hidden_state = outputs.last_hidden_state
|
258 |
-
last_hidden_state = self.mapper(last_hidden_state)
|
259 |
-
return F.pad(last_hidden_state, [0,0, 0,self.max_length-last_hidden_state.shape[1], 0,0])
|
260 |
-
|
261 |
-
def encode(self, im):
|
262 |
-
return self(im)
|
263 |
-
|
264 |
-
class ProjectedFrozenCLIPEmbedder(AbstractEncoder):
|
265 |
-
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
|
266 |
-
super().__init__()
|
267 |
-
self.embedder = FrozenCLIPEmbedder(version=version, device=device, max_length=max_length)
|
268 |
-
self.projection = torch.nn.Linear(768, 768)
|
269 |
-
|
270 |
-
def forward(self, text):
|
271 |
-
z = self.embedder(text)
|
272 |
-
return self.projection(z)
|
273 |
-
|
274 |
-
def encode(self, text):
|
275 |
-
return self(text)
|
276 |
-
|
277 |
-
class FrozenCLIPImageEmbedder(AbstractEncoder):
|
278 |
-
"""
|
279 |
-
Uses the CLIP image encoder.
|
280 |
-
Not actually frozen... If you want that set cond_stage_trainable=False in cfg
|
281 |
-
"""
|
282 |
-
def __init__(
|
283 |
-
self,
|
284 |
-
model='ViT-L/14',
|
285 |
-
jit=False,
|
286 |
-
device='cpu',
|
287 |
-
antialias=False,
|
288 |
-
):
|
289 |
-
super().__init__()
|
290 |
-
self.model, _ = clip.load(name=model, device=device, jit=jit)
|
291 |
-
# We don't use the text part so delete it
|
292 |
-
del self.model.transformer
|
293 |
-
self.antialias = antialias
|
294 |
-
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
|
295 |
-
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
|
296 |
-
|
297 |
-
def preprocess(self, x):
|
298 |
-
# Expects inputs in the range -1, 1
|
299 |
-
x = kornia.geometry.resize(x, (224, 224),
|
300 |
-
interpolation='bicubic',align_corners=True,
|
301 |
-
antialias=self.antialias)
|
302 |
-
x = (x + 1.) / 2.
|
303 |
-
# renormalize according to clip
|
304 |
-
x = kornia.enhance.normalize(x, self.mean, self.std)
|
305 |
-
return x
|
306 |
-
|
307 |
-
def forward(self, x):
|
308 |
-
# x is assumed to be in range [-1,1]
|
309 |
-
if isinstance(x, list):
|
310 |
-
# [""] denotes condition dropout for ucg
|
311 |
-
device = self.model.visual.conv1.weight.device
|
312 |
-
return torch.zeros(1, 768, device=device)
|
313 |
-
return self.model.encode_image(self.preprocess(x)).float()
|
314 |
-
|
315 |
-
def encode(self, im):
|
316 |
-
return self(im).unsqueeze(1)
|
317 |
-
|
318 |
-
class SpatialRescaler(nn.Module):
|
319 |
-
def __init__(self,
|
320 |
-
n_stages=1,
|
321 |
-
method='bilinear',
|
322 |
-
multiplier=0.5,
|
323 |
-
in_channels=3,
|
324 |
-
out_channels=None,
|
325 |
-
bias=False):
|
326 |
-
super().__init__()
|
327 |
-
self.n_stages = n_stages
|
328 |
-
assert self.n_stages >= 0
|
329 |
-
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
330 |
-
self.multiplier = multiplier
|
331 |
-
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
332 |
-
self.remap_output = out_channels is not None
|
333 |
-
if self.remap_output:
|
334 |
-
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
335 |
-
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
336 |
-
|
337 |
-
def forward(self,x):
|
338 |
-
for stage in range(self.n_stages):
|
339 |
-
x = self.interpolator(x, scale_factor=self.multiplier)
|
340 |
-
|
341 |
-
|
342 |
-
if self.remap_output:
|
343 |
-
x = self.channel_mapper(x)
|
344 |
-
return x
|
345 |
-
|
346 |
-
def encode(self, x):
|
347 |
-
return self(x)
|
348 |
-
|
349 |
-
|
350 |
-
from ldm.util import instantiate_from_config
|
351 |
-
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
352 |
-
|
353 |
-
|
354 |
-
class LowScaleEncoder(nn.Module):
|
355 |
-
def __init__(self, model_config, linear_start, linear_end, timesteps=1000, max_noise_level=250, output_size=64,
|
356 |
-
scale_factor=1.0):
|
357 |
-
super().__init__()
|
358 |
-
self.max_noise_level = max_noise_level
|
359 |
-
self.model = instantiate_from_config(model_config)
|
360 |
-
self.augmentation_schedule = self.register_schedule(timesteps=timesteps, linear_start=linear_start,
|
361 |
-
linear_end=linear_end)
|
362 |
-
self.out_size = output_size
|
363 |
-
self.scale_factor = scale_factor
|
364 |
-
|
365 |
-
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
366 |
-
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
367 |
-
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
368 |
-
cosine_s=cosine_s)
|
369 |
-
alphas = 1. - betas
|
370 |
-
alphas_cumprod = np.cumprod(alphas, axis=0)
|
371 |
-
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
372 |
-
|
373 |
-
timesteps, = betas.shape
|
374 |
-
self.num_timesteps = int(timesteps)
|
375 |
-
self.linear_start = linear_start
|
376 |
-
self.linear_end = linear_end
|
377 |
-
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
378 |
-
|
379 |
-
to_torch = partial(torch.tensor, dtype=torch.float32)
|
380 |
-
|
381 |
-
self.register_buffer('betas', to_torch(betas))
|
382 |
-
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
383 |
-
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
384 |
-
|
385 |
-
# calculations for diffusion q(x_t | x_{t-1}) and others
|
386 |
-
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
387 |
-
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
388 |
-
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
389 |
-
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
390 |
-
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
391 |
-
|
392 |
-
def q_sample(self, x_start, t, noise=None):
|
393 |
-
noise = default(noise, lambda: torch.randn_like(x_start))
|
394 |
-
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
395 |
-
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
396 |
-
|
397 |
-
def forward(self, x):
|
398 |
-
z = self.model.encode(x).sample()
|
399 |
-
z = z * self.scale_factor
|
400 |
-
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
401 |
-
z = self.q_sample(z, noise_level)
|
402 |
-
if self.out_size is not None:
|
403 |
-
z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest") # TODO: experiment with mode
|
404 |
-
# z = z.repeat_interleave(2, -2).repeat_interleave(2, -1)
|
405 |
-
return z, noise_level
|
406 |
-
|
407 |
-
def decode(self, z):
|
408 |
-
z = z / self.scale_factor
|
409 |
-
return self.model.decode(z)
|
410 |
-
|
411 |
-
|
412 |
-
if __name__ == "__main__":
|
413 |
-
from ldm.util import count_params
|
414 |
-
sentences = ["a hedgehog drinking a whiskey", "der mond ist aufgegangen", "Ein Satz mit vielen Sonderzeichen: äöü ß ?! : 'xx-y/@s'"]
|
415 |
-
model = FrozenT5Embedder(version="google/t5-v1_1-xl").cuda()
|
416 |
-
count_params(model, True)
|
417 |
-
z = model(sentences)
|
418 |
-
print(z.shape)
|
419 |
-
|
420 |
-
model = FrozenCLIPEmbedder().cuda()
|
421 |
-
count_params(model, True)
|
422 |
-
z = model(sentences)
|
423 |
-
print(z.shape)
|
424 |
-
|
425 |
-
print("done.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/evaluate/adm_evaluator.py
DELETED
@@ -1,676 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import io
|
3 |
-
import os
|
4 |
-
import random
|
5 |
-
import warnings
|
6 |
-
import zipfile
|
7 |
-
from abc import ABC, abstractmethod
|
8 |
-
from contextlib import contextmanager
|
9 |
-
from functools import partial
|
10 |
-
from multiprocessing import cpu_count
|
11 |
-
from multiprocessing.pool import ThreadPool
|
12 |
-
from typing import Iterable, Optional, Tuple
|
13 |
-
import yaml
|
14 |
-
|
15 |
-
import numpy as np
|
16 |
-
import requests
|
17 |
-
import tensorflow.compat.v1 as tf
|
18 |
-
from scipy import linalg
|
19 |
-
from tqdm.auto import tqdm
|
20 |
-
|
21 |
-
INCEPTION_V3_URL = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb"
|
22 |
-
INCEPTION_V3_PATH = "classify_image_graph_def.pb"
|
23 |
-
|
24 |
-
FID_POOL_NAME = "pool_3:0"
|
25 |
-
FID_SPATIAL_NAME = "mixed_6/conv:0"
|
26 |
-
|
27 |
-
REQUIREMENTS = f"This script has the following requirements: \n" \
|
28 |
-
'tensorflow-gpu>=2.0' + "\n" + 'scipy' + "\n" + "requests" + "\n" + "tqdm"
|
29 |
-
|
30 |
-
|
31 |
-
def main():
|
32 |
-
parser = argparse.ArgumentParser()
|
33 |
-
parser.add_argument("--ref_batch", help="path to reference batch npz file")
|
34 |
-
parser.add_argument("--sample_batch", help="path to sample batch npz file")
|
35 |
-
args = parser.parse_args()
|
36 |
-
|
37 |
-
config = tf.ConfigProto(
|
38 |
-
allow_soft_placement=True # allows DecodeJpeg to run on CPU in Inception graph
|
39 |
-
)
|
40 |
-
config.gpu_options.allow_growth = True
|
41 |
-
evaluator = Evaluator(tf.Session(config=config))
|
42 |
-
|
43 |
-
print("warming up TensorFlow...")
|
44 |
-
# This will cause TF to print a bunch of verbose stuff now rather
|
45 |
-
# than after the next print(), to help prevent confusion.
|
46 |
-
evaluator.warmup()
|
47 |
-
|
48 |
-
print("computing reference batch activations...")
|
49 |
-
ref_acts = evaluator.read_activations(args.ref_batch)
|
50 |
-
print("computing/reading reference batch statistics...")
|
51 |
-
ref_stats, ref_stats_spatial = evaluator.read_statistics(args.ref_batch, ref_acts)
|
52 |
-
|
53 |
-
print("computing sample batch activations...")
|
54 |
-
sample_acts = evaluator.read_activations(args.sample_batch)
|
55 |
-
print("computing/reading sample batch statistics...")
|
56 |
-
sample_stats, sample_stats_spatial = evaluator.read_statistics(args.sample_batch, sample_acts)
|
57 |
-
|
58 |
-
print("Computing evaluations...")
|
59 |
-
is_ = evaluator.compute_inception_score(sample_acts[0])
|
60 |
-
print("Inception Score:", is_)
|
61 |
-
fid = sample_stats.frechet_distance(ref_stats)
|
62 |
-
print("FID:", fid)
|
63 |
-
sfid = sample_stats_spatial.frechet_distance(ref_stats_spatial)
|
64 |
-
print("sFID:", sfid)
|
65 |
-
prec, recall = evaluator.compute_prec_recall(ref_acts[0], sample_acts[0])
|
66 |
-
print("Precision:", prec)
|
67 |
-
print("Recall:", recall)
|
68 |
-
|
69 |
-
savepath = '/'.join(args.sample_batch.split('/')[:-1])
|
70 |
-
results_file = os.path.join(savepath,'evaluation_metrics.yaml')
|
71 |
-
print(f'Saving evaluation results to "{results_file}"')
|
72 |
-
|
73 |
-
results = {
|
74 |
-
'IS': is_,
|
75 |
-
'FID': fid,
|
76 |
-
'sFID': sfid,
|
77 |
-
'Precision:':prec,
|
78 |
-
'Recall': recall
|
79 |
-
}
|
80 |
-
|
81 |
-
with open(results_file, 'w') as f:
|
82 |
-
yaml.dump(results, f, default_flow_style=False)
|
83 |
-
|
84 |
-
class InvalidFIDException(Exception):
|
85 |
-
pass
|
86 |
-
|
87 |
-
|
88 |
-
class FIDStatistics:
|
89 |
-
def __init__(self, mu: np.ndarray, sigma: np.ndarray):
|
90 |
-
self.mu = mu
|
91 |
-
self.sigma = sigma
|
92 |
-
|
93 |
-
def frechet_distance(self, other, eps=1e-6):
|
94 |
-
"""
|
95 |
-
Compute the Frechet distance between two sets of statistics.
|
96 |
-
"""
|
97 |
-
# https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L132
|
98 |
-
mu1, sigma1 = self.mu, self.sigma
|
99 |
-
mu2, sigma2 = other.mu, other.sigma
|
100 |
-
|
101 |
-
mu1 = np.atleast_1d(mu1)
|
102 |
-
mu2 = np.atleast_1d(mu2)
|
103 |
-
|
104 |
-
sigma1 = np.atleast_2d(sigma1)
|
105 |
-
sigma2 = np.atleast_2d(sigma2)
|
106 |
-
|
107 |
-
assert (
|
108 |
-
mu1.shape == mu2.shape
|
109 |
-
), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}"
|
110 |
-
assert (
|
111 |
-
sigma1.shape == sigma2.shape
|
112 |
-
), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}"
|
113 |
-
|
114 |
-
diff = mu1 - mu2
|
115 |
-
|
116 |
-
# product might be almost singular
|
117 |
-
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
|
118 |
-
if not np.isfinite(covmean).all():
|
119 |
-
msg = (
|
120 |
-
"fid calculation produces singular product; adding %s to diagonal of cov estimates"
|
121 |
-
% eps
|
122 |
-
)
|
123 |
-
warnings.warn(msg)
|
124 |
-
offset = np.eye(sigma1.shape[0]) * eps
|
125 |
-
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
|
126 |
-
|
127 |
-
# numerical error might give slight imaginary component
|
128 |
-
if np.iscomplexobj(covmean):
|
129 |
-
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
|
130 |
-
m = np.max(np.abs(covmean.imag))
|
131 |
-
raise ValueError("Imaginary component {}".format(m))
|
132 |
-
covmean = covmean.real
|
133 |
-
|
134 |
-
tr_covmean = np.trace(covmean)
|
135 |
-
|
136 |
-
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
|
137 |
-
|
138 |
-
|
139 |
-
class Evaluator:
|
140 |
-
def __init__(
|
141 |
-
self,
|
142 |
-
session,
|
143 |
-
batch_size=64,
|
144 |
-
softmax_batch_size=512,
|
145 |
-
):
|
146 |
-
self.sess = session
|
147 |
-
self.batch_size = batch_size
|
148 |
-
self.softmax_batch_size = softmax_batch_size
|
149 |
-
self.manifold_estimator = ManifoldEstimator(session)
|
150 |
-
with self.sess.graph.as_default():
|
151 |
-
self.image_input = tf.placeholder(tf.float32, shape=[None, None, None, 3])
|
152 |
-
self.softmax_input = tf.placeholder(tf.float32, shape=[None, 2048])
|
153 |
-
self.pool_features, self.spatial_features = _create_feature_graph(self.image_input)
|
154 |
-
self.softmax = _create_softmax_graph(self.softmax_input)
|
155 |
-
|
156 |
-
def warmup(self):
|
157 |
-
self.compute_activations(np.zeros([1, 8, 64, 64, 3]))
|
158 |
-
|
159 |
-
def read_activations(self, npz_path: str) -> Tuple[np.ndarray, np.ndarray]:
|
160 |
-
with open_npz_array(npz_path, "arr_0") as reader:
|
161 |
-
return self.compute_activations(reader.read_batches(self.batch_size))
|
162 |
-
|
163 |
-
def compute_activations(self, batches: Iterable[np.ndarray],silent=False) -> Tuple[np.ndarray, np.ndarray]:
|
164 |
-
"""
|
165 |
-
Compute image features for downstream evals.
|
166 |
-
|
167 |
-
:param batches: a iterator over NHWC numpy arrays in [0, 255].
|
168 |
-
:return: a tuple of numpy arrays of shape [N x X], where X is a feature
|
169 |
-
dimension. The tuple is (pool_3, spatial).
|
170 |
-
"""
|
171 |
-
preds = []
|
172 |
-
spatial_preds = []
|
173 |
-
it = batches if silent else tqdm(batches)
|
174 |
-
for batch in it:
|
175 |
-
batch = batch.astype(np.float32)
|
176 |
-
pred, spatial_pred = self.sess.run(
|
177 |
-
[self.pool_features, self.spatial_features], {self.image_input: batch}
|
178 |
-
)
|
179 |
-
preds.append(pred.reshape([pred.shape[0], -1]))
|
180 |
-
spatial_preds.append(spatial_pred.reshape([spatial_pred.shape[0], -1]))
|
181 |
-
return (
|
182 |
-
np.concatenate(preds, axis=0),
|
183 |
-
np.concatenate(spatial_preds, axis=0),
|
184 |
-
)
|
185 |
-
|
186 |
-
def read_statistics(
|
187 |
-
self, npz_path: str, activations: Tuple[np.ndarray, np.ndarray]
|
188 |
-
) -> Tuple[FIDStatistics, FIDStatistics]:
|
189 |
-
obj = np.load(npz_path)
|
190 |
-
if "mu" in list(obj.keys()):
|
191 |
-
return FIDStatistics(obj["mu"], obj["sigma"]), FIDStatistics(
|
192 |
-
obj["mu_s"], obj["sigma_s"]
|
193 |
-
)
|
194 |
-
return tuple(self.compute_statistics(x) for x in activations)
|
195 |
-
|
196 |
-
def compute_statistics(self, activations: np.ndarray) -> FIDStatistics:
|
197 |
-
mu = np.mean(activations, axis=0)
|
198 |
-
sigma = np.cov(activations, rowvar=False)
|
199 |
-
return FIDStatistics(mu, sigma)
|
200 |
-
|
201 |
-
def compute_inception_score(self, activations: np.ndarray, split_size: int = 5000) -> float:
|
202 |
-
softmax_out = []
|
203 |
-
for i in range(0, len(activations), self.softmax_batch_size):
|
204 |
-
acts = activations[i : i + self.softmax_batch_size]
|
205 |
-
softmax_out.append(self.sess.run(self.softmax, feed_dict={self.softmax_input: acts}))
|
206 |
-
preds = np.concatenate(softmax_out, axis=0)
|
207 |
-
# https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46
|
208 |
-
scores = []
|
209 |
-
for i in range(0, len(preds), split_size):
|
210 |
-
part = preds[i : i + split_size]
|
211 |
-
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
|
212 |
-
kl = np.mean(np.sum(kl, 1))
|
213 |
-
scores.append(np.exp(kl))
|
214 |
-
return float(np.mean(scores))
|
215 |
-
|
216 |
-
def compute_prec_recall(
|
217 |
-
self, activations_ref: np.ndarray, activations_sample: np.ndarray
|
218 |
-
) -> Tuple[float, float]:
|
219 |
-
radii_1 = self.manifold_estimator.manifold_radii(activations_ref)
|
220 |
-
radii_2 = self.manifold_estimator.manifold_radii(activations_sample)
|
221 |
-
pr = self.manifold_estimator.evaluate_pr(
|
222 |
-
activations_ref, radii_1, activations_sample, radii_2
|
223 |
-
)
|
224 |
-
return (float(pr[0][0]), float(pr[1][0]))
|
225 |
-
|
226 |
-
|
227 |
-
class ManifoldEstimator:
|
228 |
-
"""
|
229 |
-
A helper for comparing manifolds of feature vectors.
|
230 |
-
|
231 |
-
Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L57
|
232 |
-
"""
|
233 |
-
|
234 |
-
def __init__(
|
235 |
-
self,
|
236 |
-
session,
|
237 |
-
row_batch_size=10000,
|
238 |
-
col_batch_size=10000,
|
239 |
-
nhood_sizes=(3,),
|
240 |
-
clamp_to_percentile=None,
|
241 |
-
eps=1e-5,
|
242 |
-
):
|
243 |
-
"""
|
244 |
-
Estimate the manifold of given feature vectors.
|
245 |
-
|
246 |
-
:param session: the TensorFlow session.
|
247 |
-
:param row_batch_size: row batch size to compute pairwise distances
|
248 |
-
(parameter to trade-off between memory usage and performance).
|
249 |
-
:param col_batch_size: column batch size to compute pairwise distances.
|
250 |
-
:param nhood_sizes: number of neighbors used to estimate the manifold.
|
251 |
-
:param clamp_to_percentile: prune hyperspheres that have radius larger than
|
252 |
-
the given percentile.
|
253 |
-
:param eps: small number for numerical stability.
|
254 |
-
"""
|
255 |
-
self.distance_block = DistanceBlock(session)
|
256 |
-
self.row_batch_size = row_batch_size
|
257 |
-
self.col_batch_size = col_batch_size
|
258 |
-
self.nhood_sizes = nhood_sizes
|
259 |
-
self.num_nhoods = len(nhood_sizes)
|
260 |
-
self.clamp_to_percentile = clamp_to_percentile
|
261 |
-
self.eps = eps
|
262 |
-
|
263 |
-
def warmup(self):
|
264 |
-
feats, radii = (
|
265 |
-
np.zeros([1, 2048], dtype=np.float32),
|
266 |
-
np.zeros([1, 1], dtype=np.float32),
|
267 |
-
)
|
268 |
-
self.evaluate_pr(feats, radii, feats, radii)
|
269 |
-
|
270 |
-
def manifold_radii(self, features: np.ndarray) -> np.ndarray:
|
271 |
-
num_images = len(features)
|
272 |
-
|
273 |
-
# Estimate manifold of features by calculating distances to k-NN of each sample.
|
274 |
-
radii = np.zeros([num_images, self.num_nhoods], dtype=np.float32)
|
275 |
-
distance_batch = np.zeros([self.row_batch_size, num_images], dtype=np.float32)
|
276 |
-
seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32)
|
277 |
-
|
278 |
-
for begin1 in range(0, num_images, self.row_batch_size):
|
279 |
-
end1 = min(begin1 + self.row_batch_size, num_images)
|
280 |
-
row_batch = features[begin1:end1]
|
281 |
-
|
282 |
-
for begin2 in range(0, num_images, self.col_batch_size):
|
283 |
-
end2 = min(begin2 + self.col_batch_size, num_images)
|
284 |
-
col_batch = features[begin2:end2]
|
285 |
-
|
286 |
-
# Compute distances between batches.
|
287 |
-
distance_batch[
|
288 |
-
0 : end1 - begin1, begin2:end2
|
289 |
-
] = self.distance_block.pairwise_distances(row_batch, col_batch)
|
290 |
-
|
291 |
-
# Find the k-nearest neighbor from the current batch.
|
292 |
-
radii[begin1:end1, :] = np.concatenate(
|
293 |
-
[
|
294 |
-
x[:, self.nhood_sizes]
|
295 |
-
for x in _numpy_partition(distance_batch[0 : end1 - begin1, :], seq, axis=1)
|
296 |
-
],
|
297 |
-
axis=0,
|
298 |
-
)
|
299 |
-
|
300 |
-
if self.clamp_to_percentile is not None:
|
301 |
-
max_distances = np.percentile(radii, self.clamp_to_percentile, axis=0)
|
302 |
-
radii[radii > max_distances] = 0
|
303 |
-
return radii
|
304 |
-
|
305 |
-
def evaluate(self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray):
|
306 |
-
"""
|
307 |
-
Evaluate if new feature vectors are at the manifold.
|
308 |
-
"""
|
309 |
-
num_eval_images = eval_features.shape[0]
|
310 |
-
num_ref_images = radii.shape[0]
|
311 |
-
distance_batch = np.zeros([self.row_batch_size, num_ref_images], dtype=np.float32)
|
312 |
-
batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32)
|
313 |
-
max_realism_score = np.zeros([num_eval_images], dtype=np.float32)
|
314 |
-
nearest_indices = np.zeros([num_eval_images], dtype=np.int32)
|
315 |
-
|
316 |
-
for begin1 in range(0, num_eval_images, self.row_batch_size):
|
317 |
-
end1 = min(begin1 + self.row_batch_size, num_eval_images)
|
318 |
-
feature_batch = eval_features[begin1:end1]
|
319 |
-
|
320 |
-
for begin2 in range(0, num_ref_images, self.col_batch_size):
|
321 |
-
end2 = min(begin2 + self.col_batch_size, num_ref_images)
|
322 |
-
ref_batch = features[begin2:end2]
|
323 |
-
|
324 |
-
distance_batch[
|
325 |
-
0 : end1 - begin1, begin2:end2
|
326 |
-
] = self.distance_block.pairwise_distances(feature_batch, ref_batch)
|
327 |
-
|
328 |
-
# From the minibatch of new feature vectors, determine if they are in the estimated manifold.
|
329 |
-
# If a feature vector is inside a hypersphere of some reference sample, then
|
330 |
-
# the new sample lies at the estimated manifold.
|
331 |
-
# The radii of the hyperspheres are determined from distances of neighborhood size k.
|
332 |
-
samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii
|
333 |
-
batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype(np.int32)
|
334 |
-
|
335 |
-
max_realism_score[begin1:end1] = np.max(
|
336 |
-
radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1
|
337 |
-
)
|
338 |
-
nearest_indices[begin1:end1] = np.argmin(distance_batch[0 : end1 - begin1, :], axis=1)
|
339 |
-
|
340 |
-
return {
|
341 |
-
"fraction": float(np.mean(batch_predictions)),
|
342 |
-
"batch_predictions": batch_predictions,
|
343 |
-
"max_realisim_score": max_realism_score,
|
344 |
-
"nearest_indices": nearest_indices,
|
345 |
-
}
|
346 |
-
|
347 |
-
def evaluate_pr(
|
348 |
-
self,
|
349 |
-
features_1: np.ndarray,
|
350 |
-
radii_1: np.ndarray,
|
351 |
-
features_2: np.ndarray,
|
352 |
-
radii_2: np.ndarray,
|
353 |
-
) -> Tuple[np.ndarray, np.ndarray]:
|
354 |
-
"""
|
355 |
-
Evaluate precision and recall efficiently.
|
356 |
-
|
357 |
-
:param features_1: [N1 x D] feature vectors for reference batch.
|
358 |
-
:param radii_1: [N1 x K1] radii for reference vectors.
|
359 |
-
:param features_2: [N2 x D] feature vectors for the other batch.
|
360 |
-
:param radii_2: [N x K2] radii for other vectors.
|
361 |
-
:return: a tuple of arrays for (precision, recall):
|
362 |
-
- precision: an np.ndarray of length K1
|
363 |
-
- recall: an np.ndarray of length K2
|
364 |
-
"""
|
365 |
-
features_1_status = np.zeros([len(features_1), radii_2.shape[1]], dtype=np.bool)
|
366 |
-
features_2_status = np.zeros([len(features_2), radii_1.shape[1]], dtype=np.bool)
|
367 |
-
for begin_1 in range(0, len(features_1), self.row_batch_size):
|
368 |
-
end_1 = begin_1 + self.row_batch_size
|
369 |
-
batch_1 = features_1[begin_1:end_1]
|
370 |
-
for begin_2 in range(0, len(features_2), self.col_batch_size):
|
371 |
-
end_2 = begin_2 + self.col_batch_size
|
372 |
-
batch_2 = features_2[begin_2:end_2]
|
373 |
-
batch_1_in, batch_2_in = self.distance_block.less_thans(
|
374 |
-
batch_1, radii_1[begin_1:end_1], batch_2, radii_2[begin_2:end_2]
|
375 |
-
)
|
376 |
-
features_1_status[begin_1:end_1] |= batch_1_in
|
377 |
-
features_2_status[begin_2:end_2] |= batch_2_in
|
378 |
-
return (
|
379 |
-
np.mean(features_2_status.astype(np.float64), axis=0),
|
380 |
-
np.mean(features_1_status.astype(np.float64), axis=0),
|
381 |
-
)
|
382 |
-
|
383 |
-
|
384 |
-
class DistanceBlock:
|
385 |
-
"""
|
386 |
-
Calculate pairwise distances between vectors.
|
387 |
-
|
388 |
-
Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L34
|
389 |
-
"""
|
390 |
-
|
391 |
-
def __init__(self, session):
|
392 |
-
self.session = session
|
393 |
-
|
394 |
-
# Initialize TF graph to calculate pairwise distances.
|
395 |
-
with session.graph.as_default():
|
396 |
-
self._features_batch1 = tf.placeholder(tf.float32, shape=[None, None])
|
397 |
-
self._features_batch2 = tf.placeholder(tf.float32, shape=[None, None])
|
398 |
-
distance_block_16 = _batch_pairwise_distances(
|
399 |
-
tf.cast(self._features_batch1, tf.float16),
|
400 |
-
tf.cast(self._features_batch2, tf.float16),
|
401 |
-
)
|
402 |
-
self.distance_block = tf.cond(
|
403 |
-
tf.reduce_all(tf.math.is_finite(distance_block_16)),
|
404 |
-
lambda: tf.cast(distance_block_16, tf.float32),
|
405 |
-
lambda: _batch_pairwise_distances(self._features_batch1, self._features_batch2),
|
406 |
-
)
|
407 |
-
|
408 |
-
# Extra logic for less thans.
|
409 |
-
self._radii1 = tf.placeholder(tf.float32, shape=[None, None])
|
410 |
-
self._radii2 = tf.placeholder(tf.float32, shape=[None, None])
|
411 |
-
dist32 = tf.cast(self.distance_block, tf.float32)[..., None]
|
412 |
-
self._batch_1_in = tf.math.reduce_any(dist32 <= self._radii2, axis=1)
|
413 |
-
self._batch_2_in = tf.math.reduce_any(dist32 <= self._radii1[:, None], axis=0)
|
414 |
-
|
415 |
-
def pairwise_distances(self, U, V):
|
416 |
-
"""
|
417 |
-
Evaluate pairwise distances between two batches of feature vectors.
|
418 |
-
"""
|
419 |
-
return self.session.run(
|
420 |
-
self.distance_block,
|
421 |
-
feed_dict={self._features_batch1: U, self._features_batch2: V},
|
422 |
-
)
|
423 |
-
|
424 |
-
def less_thans(self, batch_1, radii_1, batch_2, radii_2):
|
425 |
-
return self.session.run(
|
426 |
-
[self._batch_1_in, self._batch_2_in],
|
427 |
-
feed_dict={
|
428 |
-
self._features_batch1: batch_1,
|
429 |
-
self._features_batch2: batch_2,
|
430 |
-
self._radii1: radii_1,
|
431 |
-
self._radii2: radii_2,
|
432 |
-
},
|
433 |
-
)
|
434 |
-
|
435 |
-
|
436 |
-
def _batch_pairwise_distances(U, V):
|
437 |
-
"""
|
438 |
-
Compute pairwise distances between two batches of feature vectors.
|
439 |
-
"""
|
440 |
-
with tf.variable_scope("pairwise_dist_block"):
|
441 |
-
# Squared norms of each row in U and V.
|
442 |
-
norm_u = tf.reduce_sum(tf.square(U), 1)
|
443 |
-
norm_v = tf.reduce_sum(tf.square(V), 1)
|
444 |
-
|
445 |
-
# norm_u as a column and norm_v as a row vectors.
|
446 |
-
norm_u = tf.reshape(norm_u, [-1, 1])
|
447 |
-
norm_v = tf.reshape(norm_v, [1, -1])
|
448 |
-
|
449 |
-
# Pairwise squared Euclidean distances.
|
450 |
-
D = tf.maximum(norm_u - 2 * tf.matmul(U, V, False, True) + norm_v, 0.0)
|
451 |
-
|
452 |
-
return D
|
453 |
-
|
454 |
-
|
455 |
-
class NpzArrayReader(ABC):
|
456 |
-
@abstractmethod
|
457 |
-
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
|
458 |
-
pass
|
459 |
-
|
460 |
-
@abstractmethod
|
461 |
-
def remaining(self) -> int:
|
462 |
-
pass
|
463 |
-
|
464 |
-
def read_batches(self, batch_size: int) -> Iterable[np.ndarray]:
|
465 |
-
def gen_fn():
|
466 |
-
while True:
|
467 |
-
batch = self.read_batch(batch_size)
|
468 |
-
if batch is None:
|
469 |
-
break
|
470 |
-
yield batch
|
471 |
-
|
472 |
-
rem = self.remaining()
|
473 |
-
num_batches = rem // batch_size + int(rem % batch_size != 0)
|
474 |
-
return BatchIterator(gen_fn, num_batches)
|
475 |
-
|
476 |
-
|
477 |
-
class BatchIterator:
|
478 |
-
def __init__(self, gen_fn, length):
|
479 |
-
self.gen_fn = gen_fn
|
480 |
-
self.length = length
|
481 |
-
|
482 |
-
def __len__(self):
|
483 |
-
return self.length
|
484 |
-
|
485 |
-
def __iter__(self):
|
486 |
-
return self.gen_fn()
|
487 |
-
|
488 |
-
|
489 |
-
class StreamingNpzArrayReader(NpzArrayReader):
|
490 |
-
def __init__(self, arr_f, shape, dtype):
|
491 |
-
self.arr_f = arr_f
|
492 |
-
self.shape = shape
|
493 |
-
self.dtype = dtype
|
494 |
-
self.idx = 0
|
495 |
-
|
496 |
-
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
|
497 |
-
if self.idx >= self.shape[0]:
|
498 |
-
return None
|
499 |
-
|
500 |
-
bs = min(batch_size, self.shape[0] - self.idx)
|
501 |
-
self.idx += bs
|
502 |
-
|
503 |
-
if self.dtype.itemsize == 0:
|
504 |
-
return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype)
|
505 |
-
|
506 |
-
read_count = bs * np.prod(self.shape[1:])
|
507 |
-
read_size = int(read_count * self.dtype.itemsize)
|
508 |
-
data = _read_bytes(self.arr_f, read_size, "array data")
|
509 |
-
return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]])
|
510 |
-
|
511 |
-
def remaining(self) -> int:
|
512 |
-
return max(0, self.shape[0] - self.idx)
|
513 |
-
|
514 |
-
|
515 |
-
class MemoryNpzArrayReader(NpzArrayReader):
|
516 |
-
def __init__(self, arr):
|
517 |
-
self.arr = arr
|
518 |
-
self.idx = 0
|
519 |
-
|
520 |
-
@classmethod
|
521 |
-
def load(cls, path: str, arr_name: str):
|
522 |
-
with open(path, "rb") as f:
|
523 |
-
arr = np.load(f)[arr_name]
|
524 |
-
return cls(arr)
|
525 |
-
|
526 |
-
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
|
527 |
-
if self.idx >= self.arr.shape[0]:
|
528 |
-
return None
|
529 |
-
|
530 |
-
res = self.arr[self.idx : self.idx + batch_size]
|
531 |
-
self.idx += batch_size
|
532 |
-
return res
|
533 |
-
|
534 |
-
def remaining(self) -> int:
|
535 |
-
return max(0, self.arr.shape[0] - self.idx)
|
536 |
-
|
537 |
-
|
538 |
-
@contextmanager
|
539 |
-
def open_npz_array(path: str, arr_name: str) -> NpzArrayReader:
|
540 |
-
with _open_npy_file(path, arr_name) as arr_f:
|
541 |
-
version = np.lib.format.read_magic(arr_f)
|
542 |
-
if version == (1, 0):
|
543 |
-
header = np.lib.format.read_array_header_1_0(arr_f)
|
544 |
-
elif version == (2, 0):
|
545 |
-
header = np.lib.format.read_array_header_2_0(arr_f)
|
546 |
-
else:
|
547 |
-
yield MemoryNpzArrayReader.load(path, arr_name)
|
548 |
-
return
|
549 |
-
shape, fortran, dtype = header
|
550 |
-
if fortran or dtype.hasobject:
|
551 |
-
yield MemoryNpzArrayReader.load(path, arr_name)
|
552 |
-
else:
|
553 |
-
yield StreamingNpzArrayReader(arr_f, shape, dtype)
|
554 |
-
|
555 |
-
|
556 |
-
def _read_bytes(fp, size, error_template="ran out of data"):
|
557 |
-
"""
|
558 |
-
Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886
|
559 |
-
|
560 |
-
Read from file-like object until size bytes are read.
|
561 |
-
Raises ValueError if not EOF is encountered before size bytes are read.
|
562 |
-
Non-blocking objects only supported if they derive from io objects.
|
563 |
-
Required as e.g. ZipExtFile in python 2.6 can return less data than
|
564 |
-
requested.
|
565 |
-
"""
|
566 |
-
data = bytes()
|
567 |
-
while True:
|
568 |
-
# io files (default in python3) return None or raise on
|
569 |
-
# would-block, python2 file will truncate, probably nothing can be
|
570 |
-
# done about that. note that regular files can't be non-blocking
|
571 |
-
try:
|
572 |
-
r = fp.read(size - len(data))
|
573 |
-
data += r
|
574 |
-
if len(r) == 0 or len(data) == size:
|
575 |
-
break
|
576 |
-
except io.BlockingIOError:
|
577 |
-
pass
|
578 |
-
if len(data) != size:
|
579 |
-
msg = "EOF: reading %s, expected %d bytes got %d"
|
580 |
-
raise ValueError(msg % (error_template, size, len(data)))
|
581 |
-
else:
|
582 |
-
return data
|
583 |
-
|
584 |
-
|
585 |
-
@contextmanager
|
586 |
-
def _open_npy_file(path: str, arr_name: str):
|
587 |
-
with open(path, "rb") as f:
|
588 |
-
with zipfile.ZipFile(f, "r") as zip_f:
|
589 |
-
if f"{arr_name}.npy" not in zip_f.namelist():
|
590 |
-
raise ValueError(f"missing {arr_name} in npz file")
|
591 |
-
with zip_f.open(f"{arr_name}.npy", "r") as arr_f:
|
592 |
-
yield arr_f
|
593 |
-
|
594 |
-
|
595 |
-
def _download_inception_model():
|
596 |
-
if os.path.exists(INCEPTION_V3_PATH):
|
597 |
-
return
|
598 |
-
print("downloading InceptionV3 model...")
|
599 |
-
with requests.get(INCEPTION_V3_URL, stream=True) as r:
|
600 |
-
r.raise_for_status()
|
601 |
-
tmp_path = INCEPTION_V3_PATH + ".tmp"
|
602 |
-
with open(tmp_path, "wb") as f:
|
603 |
-
for chunk in tqdm(r.iter_content(chunk_size=8192)):
|
604 |
-
f.write(chunk)
|
605 |
-
os.rename(tmp_path, INCEPTION_V3_PATH)
|
606 |
-
|
607 |
-
|
608 |
-
def _create_feature_graph(input_batch):
|
609 |
-
_download_inception_model()
|
610 |
-
prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
|
611 |
-
with open(INCEPTION_V3_PATH, "rb") as f:
|
612 |
-
graph_def = tf.GraphDef()
|
613 |
-
graph_def.ParseFromString(f.read())
|
614 |
-
pool3, spatial = tf.import_graph_def(
|
615 |
-
graph_def,
|
616 |
-
input_map={f"ExpandDims:0": input_batch},
|
617 |
-
return_elements=[FID_POOL_NAME, FID_SPATIAL_NAME],
|
618 |
-
name=prefix,
|
619 |
-
)
|
620 |
-
_update_shapes(pool3)
|
621 |
-
spatial = spatial[..., :7]
|
622 |
-
return pool3, spatial
|
623 |
-
|
624 |
-
|
625 |
-
def _create_softmax_graph(input_batch):
|
626 |
-
_download_inception_model()
|
627 |
-
prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
|
628 |
-
with open(INCEPTION_V3_PATH, "rb") as f:
|
629 |
-
graph_def = tf.GraphDef()
|
630 |
-
graph_def.ParseFromString(f.read())
|
631 |
-
(matmul,) = tf.import_graph_def(
|
632 |
-
graph_def, return_elements=[f"softmax/logits/MatMul"], name=prefix
|
633 |
-
)
|
634 |
-
w = matmul.inputs[1]
|
635 |
-
logits = tf.matmul(input_batch, w)
|
636 |
-
return tf.nn.softmax(logits)
|
637 |
-
|
638 |
-
|
639 |
-
def _update_shapes(pool3):
|
640 |
-
# https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L50-L63
|
641 |
-
ops = pool3.graph.get_operations()
|
642 |
-
for op in ops:
|
643 |
-
for o in op.outputs:
|
644 |
-
shape = o.get_shape()
|
645 |
-
if shape._dims is not None: # pylint: disable=protected-access
|
646 |
-
# shape = [s.value for s in shape] TF 1.x
|
647 |
-
shape = [s for s in shape] # TF 2.x
|
648 |
-
new_shape = []
|
649 |
-
for j, s in enumerate(shape):
|
650 |
-
if s == 1 and j == 0:
|
651 |
-
new_shape.append(None)
|
652 |
-
else:
|
653 |
-
new_shape.append(s)
|
654 |
-
o.__dict__["_shape_val"] = tf.TensorShape(new_shape)
|
655 |
-
return pool3
|
656 |
-
|
657 |
-
|
658 |
-
def _numpy_partition(arr, kth, **kwargs):
|
659 |
-
num_workers = min(cpu_count(), len(arr))
|
660 |
-
chunk_size = len(arr) // num_workers
|
661 |
-
extra = len(arr) % num_workers
|
662 |
-
|
663 |
-
start_idx = 0
|
664 |
-
batches = []
|
665 |
-
for i in range(num_workers):
|
666 |
-
size = chunk_size + (1 if i < extra else 0)
|
667 |
-
batches.append(arr[start_idx : start_idx + size])
|
668 |
-
start_idx += size
|
669 |
-
|
670 |
-
with ThreadPool(num_workers) as pool:
|
671 |
-
return list(pool.map(partial(np.partition, kth=kth, **kwargs), batches))
|
672 |
-
|
673 |
-
|
674 |
-
if __name__ == "__main__":
|
675 |
-
print(REQUIREMENTS)
|
676 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/evaluate/evaluate_perceptualsim.py
DELETED
@@ -1,630 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import glob
|
3 |
-
import os
|
4 |
-
from tqdm import tqdm
|
5 |
-
from collections import namedtuple
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import torch
|
9 |
-
import torchvision.transforms as transforms
|
10 |
-
from torchvision import models
|
11 |
-
from PIL import Image
|
12 |
-
|
13 |
-
from ldm.modules.evaluate.ssim import ssim
|
14 |
-
|
15 |
-
|
16 |
-
transform = transforms.Compose([transforms.ToTensor()])
|
17 |
-
|
18 |
-
def normalize_tensor(in_feat, eps=1e-10):
|
19 |
-
norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1)).view(
|
20 |
-
in_feat.size()[0], 1, in_feat.size()[2], in_feat.size()[3]
|
21 |
-
)
|
22 |
-
return in_feat / (norm_factor.expand_as(in_feat) + eps)
|
23 |
-
|
24 |
-
|
25 |
-
def cos_sim(in0, in1):
|
26 |
-
in0_norm = normalize_tensor(in0)
|
27 |
-
in1_norm = normalize_tensor(in1)
|
28 |
-
N = in0.size()[0]
|
29 |
-
X = in0.size()[2]
|
30 |
-
Y = in0.size()[3]
|
31 |
-
|
32 |
-
return torch.mean(
|
33 |
-
torch.mean(
|
34 |
-
torch.sum(in0_norm * in1_norm, dim=1).view(N, 1, X, Y), dim=2
|
35 |
-
).view(N, 1, 1, Y),
|
36 |
-
dim=3,
|
37 |
-
).view(N)
|
38 |
-
|
39 |
-
|
40 |
-
class squeezenet(torch.nn.Module):
|
41 |
-
def __init__(self, requires_grad=False, pretrained=True):
|
42 |
-
super(squeezenet, self).__init__()
|
43 |
-
pretrained_features = models.squeezenet1_1(
|
44 |
-
pretrained=pretrained
|
45 |
-
).features
|
46 |
-
self.slice1 = torch.nn.Sequential()
|
47 |
-
self.slice2 = torch.nn.Sequential()
|
48 |
-
self.slice3 = torch.nn.Sequential()
|
49 |
-
self.slice4 = torch.nn.Sequential()
|
50 |
-
self.slice5 = torch.nn.Sequential()
|
51 |
-
self.slice6 = torch.nn.Sequential()
|
52 |
-
self.slice7 = torch.nn.Sequential()
|
53 |
-
self.N_slices = 7
|
54 |
-
for x in range(2):
|
55 |
-
self.slice1.add_module(str(x), pretrained_features[x])
|
56 |
-
for x in range(2, 5):
|
57 |
-
self.slice2.add_module(str(x), pretrained_features[x])
|
58 |
-
for x in range(5, 8):
|
59 |
-
self.slice3.add_module(str(x), pretrained_features[x])
|
60 |
-
for x in range(8, 10):
|
61 |
-
self.slice4.add_module(str(x), pretrained_features[x])
|
62 |
-
for x in range(10, 11):
|
63 |
-
self.slice5.add_module(str(x), pretrained_features[x])
|
64 |
-
for x in range(11, 12):
|
65 |
-
self.slice6.add_module(str(x), pretrained_features[x])
|
66 |
-
for x in range(12, 13):
|
67 |
-
self.slice7.add_module(str(x), pretrained_features[x])
|
68 |
-
if not requires_grad:
|
69 |
-
for param in self.parameters():
|
70 |
-
param.requires_grad = False
|
71 |
-
|
72 |
-
def forward(self, X):
|
73 |
-
h = self.slice1(X)
|
74 |
-
h_relu1 = h
|
75 |
-
h = self.slice2(h)
|
76 |
-
h_relu2 = h
|
77 |
-
h = self.slice3(h)
|
78 |
-
h_relu3 = h
|
79 |
-
h = self.slice4(h)
|
80 |
-
h_relu4 = h
|
81 |
-
h = self.slice5(h)
|
82 |
-
h_relu5 = h
|
83 |
-
h = self.slice6(h)
|
84 |
-
h_relu6 = h
|
85 |
-
h = self.slice7(h)
|
86 |
-
h_relu7 = h
|
87 |
-
vgg_outputs = namedtuple(
|
88 |
-
"SqueezeOutputs",
|
89 |
-
["relu1", "relu2", "relu3", "relu4", "relu5", "relu6", "relu7"],
|
90 |
-
)
|
91 |
-
out = vgg_outputs(
|
92 |
-
h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7
|
93 |
-
)
|
94 |
-
|
95 |
-
return out
|
96 |
-
|
97 |
-
|
98 |
-
class alexnet(torch.nn.Module):
|
99 |
-
def __init__(self, requires_grad=False, pretrained=True):
|
100 |
-
super(alexnet, self).__init__()
|
101 |
-
alexnet_pretrained_features = models.alexnet(
|
102 |
-
pretrained=pretrained
|
103 |
-
).features
|
104 |
-
self.slice1 = torch.nn.Sequential()
|
105 |
-
self.slice2 = torch.nn.Sequential()
|
106 |
-
self.slice3 = torch.nn.Sequential()
|
107 |
-
self.slice4 = torch.nn.Sequential()
|
108 |
-
self.slice5 = torch.nn.Sequential()
|
109 |
-
self.N_slices = 5
|
110 |
-
for x in range(2):
|
111 |
-
self.slice1.add_module(str(x), alexnet_pretrained_features[x])
|
112 |
-
for x in range(2, 5):
|
113 |
-
self.slice2.add_module(str(x), alexnet_pretrained_features[x])
|
114 |
-
for x in range(5, 8):
|
115 |
-
self.slice3.add_module(str(x), alexnet_pretrained_features[x])
|
116 |
-
for x in range(8, 10):
|
117 |
-
self.slice4.add_module(str(x), alexnet_pretrained_features[x])
|
118 |
-
for x in range(10, 12):
|
119 |
-
self.slice5.add_module(str(x), alexnet_pretrained_features[x])
|
120 |
-
if not requires_grad:
|
121 |
-
for param in self.parameters():
|
122 |
-
param.requires_grad = False
|
123 |
-
|
124 |
-
def forward(self, X):
|
125 |
-
h = self.slice1(X)
|
126 |
-
h_relu1 = h
|
127 |
-
h = self.slice2(h)
|
128 |
-
h_relu2 = h
|
129 |
-
h = self.slice3(h)
|
130 |
-
h_relu3 = h
|
131 |
-
h = self.slice4(h)
|
132 |
-
h_relu4 = h
|
133 |
-
h = self.slice5(h)
|
134 |
-
h_relu5 = h
|
135 |
-
alexnet_outputs = namedtuple(
|
136 |
-
"AlexnetOutputs", ["relu1", "relu2", "relu3", "relu4", "relu5"]
|
137 |
-
)
|
138 |
-
out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5)
|
139 |
-
|
140 |
-
return out
|
141 |
-
|
142 |
-
|
143 |
-
class vgg16(torch.nn.Module):
|
144 |
-
def __init__(self, requires_grad=False, pretrained=True):
|
145 |
-
super(vgg16, self).__init__()
|
146 |
-
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features
|
147 |
-
self.slice1 = torch.nn.Sequential()
|
148 |
-
self.slice2 = torch.nn.Sequential()
|
149 |
-
self.slice3 = torch.nn.Sequential()
|
150 |
-
self.slice4 = torch.nn.Sequential()
|
151 |
-
self.slice5 = torch.nn.Sequential()
|
152 |
-
self.N_slices = 5
|
153 |
-
for x in range(4):
|
154 |
-
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
155 |
-
for x in range(4, 9):
|
156 |
-
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
157 |
-
for x in range(9, 16):
|
158 |
-
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
159 |
-
for x in range(16, 23):
|
160 |
-
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
161 |
-
for x in range(23, 30):
|
162 |
-
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
163 |
-
if not requires_grad:
|
164 |
-
for param in self.parameters():
|
165 |
-
param.requires_grad = False
|
166 |
-
|
167 |
-
def forward(self, X):
|
168 |
-
h = self.slice1(X)
|
169 |
-
h_relu1_2 = h
|
170 |
-
h = self.slice2(h)
|
171 |
-
h_relu2_2 = h
|
172 |
-
h = self.slice3(h)
|
173 |
-
h_relu3_3 = h
|
174 |
-
h = self.slice4(h)
|
175 |
-
h_relu4_3 = h
|
176 |
-
h = self.slice5(h)
|
177 |
-
h_relu5_3 = h
|
178 |
-
vgg_outputs = namedtuple(
|
179 |
-
"VggOutputs",
|
180 |
-
["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"],
|
181 |
-
)
|
182 |
-
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
|
183 |
-
|
184 |
-
return out
|
185 |
-
|
186 |
-
|
187 |
-
class resnet(torch.nn.Module):
|
188 |
-
def __init__(self, requires_grad=False, pretrained=True, num=18):
|
189 |
-
super(resnet, self).__init__()
|
190 |
-
if num == 18:
|
191 |
-
self.net = models.resnet18(pretrained=pretrained)
|
192 |
-
elif num == 34:
|
193 |
-
self.net = models.resnet34(pretrained=pretrained)
|
194 |
-
elif num == 50:
|
195 |
-
self.net = models.resnet50(pretrained=pretrained)
|
196 |
-
elif num == 101:
|
197 |
-
self.net = models.resnet101(pretrained=pretrained)
|
198 |
-
elif num == 152:
|
199 |
-
self.net = models.resnet152(pretrained=pretrained)
|
200 |
-
self.N_slices = 5
|
201 |
-
|
202 |
-
self.conv1 = self.net.conv1
|
203 |
-
self.bn1 = self.net.bn1
|
204 |
-
self.relu = self.net.relu
|
205 |
-
self.maxpool = self.net.maxpool
|
206 |
-
self.layer1 = self.net.layer1
|
207 |
-
self.layer2 = self.net.layer2
|
208 |
-
self.layer3 = self.net.layer3
|
209 |
-
self.layer4 = self.net.layer4
|
210 |
-
|
211 |
-
def forward(self, X):
|
212 |
-
h = self.conv1(X)
|
213 |
-
h = self.bn1(h)
|
214 |
-
h = self.relu(h)
|
215 |
-
h_relu1 = h
|
216 |
-
h = self.maxpool(h)
|
217 |
-
h = self.layer1(h)
|
218 |
-
h_conv2 = h
|
219 |
-
h = self.layer2(h)
|
220 |
-
h_conv3 = h
|
221 |
-
h = self.layer3(h)
|
222 |
-
h_conv4 = h
|
223 |
-
h = self.layer4(h)
|
224 |
-
h_conv5 = h
|
225 |
-
|
226 |
-
outputs = namedtuple(
|
227 |
-
"Outputs", ["relu1", "conv2", "conv3", "conv4", "conv5"]
|
228 |
-
)
|
229 |
-
out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5)
|
230 |
-
|
231 |
-
return out
|
232 |
-
|
233 |
-
# Off-the-shelf deep network
|
234 |
-
class PNet(torch.nn.Module):
|
235 |
-
"""Pre-trained network with all channels equally weighted by default"""
|
236 |
-
|
237 |
-
def __init__(self, pnet_type="vgg", pnet_rand=False, use_gpu=True):
|
238 |
-
super(PNet, self).__init__()
|
239 |
-
|
240 |
-
self.use_gpu = use_gpu
|
241 |
-
|
242 |
-
self.pnet_type = pnet_type
|
243 |
-
self.pnet_rand = pnet_rand
|
244 |
-
|
245 |
-
self.shift = torch.Tensor([-0.030, -0.088, -0.188]).view(1, 3, 1, 1)
|
246 |
-
self.scale = torch.Tensor([0.458, 0.448, 0.450]).view(1, 3, 1, 1)
|
247 |
-
|
248 |
-
if self.pnet_type in ["vgg", "vgg16"]:
|
249 |
-
self.net = vgg16(pretrained=not self.pnet_rand, requires_grad=False)
|
250 |
-
elif self.pnet_type == "alex":
|
251 |
-
self.net = alexnet(
|
252 |
-
pretrained=not self.pnet_rand, requires_grad=False
|
253 |
-
)
|
254 |
-
elif self.pnet_type[:-2] == "resnet":
|
255 |
-
self.net = resnet(
|
256 |
-
pretrained=not self.pnet_rand,
|
257 |
-
requires_grad=False,
|
258 |
-
num=int(self.pnet_type[-2:]),
|
259 |
-
)
|
260 |
-
elif self.pnet_type == "squeeze":
|
261 |
-
self.net = squeezenet(
|
262 |
-
pretrained=not self.pnet_rand, requires_grad=False
|
263 |
-
)
|
264 |
-
|
265 |
-
self.L = self.net.N_slices
|
266 |
-
|
267 |
-
if use_gpu:
|
268 |
-
self.net.cuda()
|
269 |
-
self.shift = self.shift.cuda()
|
270 |
-
self.scale = self.scale.cuda()
|
271 |
-
|
272 |
-
def forward(self, in0, in1, retPerLayer=False):
|
273 |
-
in0_sc = (in0 - self.shift.expand_as(in0)) / self.scale.expand_as(in0)
|
274 |
-
in1_sc = (in1 - self.shift.expand_as(in0)) / self.scale.expand_as(in0)
|
275 |
-
|
276 |
-
outs0 = self.net.forward(in0_sc)
|
277 |
-
outs1 = self.net.forward(in1_sc)
|
278 |
-
|
279 |
-
if retPerLayer:
|
280 |
-
all_scores = []
|
281 |
-
for (kk, out0) in enumerate(outs0):
|
282 |
-
cur_score = 1.0 - cos_sim(outs0[kk], outs1[kk])
|
283 |
-
if kk == 0:
|
284 |
-
val = 1.0 * cur_score
|
285 |
-
else:
|
286 |
-
val = val + cur_score
|
287 |
-
if retPerLayer:
|
288 |
-
all_scores += [cur_score]
|
289 |
-
|
290 |
-
if retPerLayer:
|
291 |
-
return (val, all_scores)
|
292 |
-
else:
|
293 |
-
return val
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
# The SSIM metric
|
299 |
-
def ssim_metric(img1, img2, mask=None):
|
300 |
-
return ssim(img1, img2, mask=mask, size_average=False)
|
301 |
-
|
302 |
-
|
303 |
-
# The PSNR metric
|
304 |
-
def psnr(img1, img2, mask=None,reshape=False):
|
305 |
-
b = img1.size(0)
|
306 |
-
if not (mask is None):
|
307 |
-
b = img1.size(0)
|
308 |
-
mse_err = (img1 - img2).pow(2) * mask
|
309 |
-
if reshape:
|
310 |
-
mse_err = mse_err.reshape(b, -1).sum(dim=1) / (
|
311 |
-
3 * mask.reshape(b, -1).sum(dim=1).clamp(min=1)
|
312 |
-
)
|
313 |
-
else:
|
314 |
-
mse_err = mse_err.view(b, -1).sum(dim=1) / (
|
315 |
-
3 * mask.view(b, -1).sum(dim=1).clamp(min=1)
|
316 |
-
)
|
317 |
-
else:
|
318 |
-
if reshape:
|
319 |
-
mse_err = (img1 - img2).pow(2).reshape(b, -1).mean(dim=1)
|
320 |
-
else:
|
321 |
-
mse_err = (img1 - img2).pow(2).view(b, -1).mean(dim=1)
|
322 |
-
|
323 |
-
psnr = 10 * (1 / mse_err).log10()
|
324 |
-
return psnr
|
325 |
-
|
326 |
-
|
327 |
-
# The perceptual similarity metric
|
328 |
-
def perceptual_sim(img1, img2, vgg16):
|
329 |
-
# First extract features
|
330 |
-
dist = vgg16(img1 * 2 - 1, img2 * 2 - 1)
|
331 |
-
|
332 |
-
return dist
|
333 |
-
|
334 |
-
def load_img(img_name, size=None):
|
335 |
-
try:
|
336 |
-
img = Image.open(img_name)
|
337 |
-
|
338 |
-
if type(size) == int:
|
339 |
-
img = img.resize((size, size))
|
340 |
-
elif size is not None:
|
341 |
-
img = img.resize((size[1], size[0]))
|
342 |
-
|
343 |
-
img = transform(img).cuda()
|
344 |
-
img = img.unsqueeze(0)
|
345 |
-
except Exception as e:
|
346 |
-
print("Failed at loading %s " % img_name)
|
347 |
-
print(e)
|
348 |
-
img = torch.zeros(1, 3, 256, 256).cuda()
|
349 |
-
raise
|
350 |
-
return img
|
351 |
-
|
352 |
-
|
353 |
-
def compute_perceptual_similarity(folder, pred_img, tgt_img, take_every_other):
|
354 |
-
|
355 |
-
# Load VGG16 for feature similarity
|
356 |
-
vgg16 = PNet().to("cuda")
|
357 |
-
vgg16.eval()
|
358 |
-
vgg16.cuda()
|
359 |
-
|
360 |
-
values_percsim = []
|
361 |
-
values_ssim = []
|
362 |
-
values_psnr = []
|
363 |
-
folders = os.listdir(folder)
|
364 |
-
for i, f in tqdm(enumerate(sorted(folders))):
|
365 |
-
pred_imgs = glob.glob(folder + f + "/" + pred_img)
|
366 |
-
tgt_imgs = glob.glob(folder + f + "/" + tgt_img)
|
367 |
-
assert len(tgt_imgs) == 1
|
368 |
-
|
369 |
-
perc_sim = 10000
|
370 |
-
ssim_sim = -10
|
371 |
-
psnr_sim = -10
|
372 |
-
for p_img in pred_imgs:
|
373 |
-
t_img = load_img(tgt_imgs[0])
|
374 |
-
p_img = load_img(p_img, size=t_img.shape[2:])
|
375 |
-
t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
|
376 |
-
perc_sim = min(perc_sim, t_perc_sim)
|
377 |
-
|
378 |
-
ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item())
|
379 |
-
psnr_sim = max(psnr_sim, psnr(p_img, t_img).item())
|
380 |
-
|
381 |
-
values_percsim += [perc_sim]
|
382 |
-
values_ssim += [ssim_sim]
|
383 |
-
values_psnr += [psnr_sim]
|
384 |
-
|
385 |
-
if take_every_other:
|
386 |
-
n_valuespercsim = []
|
387 |
-
n_valuesssim = []
|
388 |
-
n_valuespsnr = []
|
389 |
-
for i in range(0, len(values_percsim) // 2):
|
390 |
-
n_valuespercsim += [
|
391 |
-
min(values_percsim[2 * i], values_percsim[2 * i + 1])
|
392 |
-
]
|
393 |
-
n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
|
394 |
-
n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
|
395 |
-
|
396 |
-
values_percsim = n_valuespercsim
|
397 |
-
values_ssim = n_valuesssim
|
398 |
-
values_psnr = n_valuespsnr
|
399 |
-
|
400 |
-
avg_percsim = np.mean(np.array(values_percsim))
|
401 |
-
std_percsim = np.std(np.array(values_percsim))
|
402 |
-
|
403 |
-
avg_psnr = np.mean(np.array(values_psnr))
|
404 |
-
std_psnr = np.std(np.array(values_psnr))
|
405 |
-
|
406 |
-
avg_ssim = np.mean(np.array(values_ssim))
|
407 |
-
std_ssim = np.std(np.array(values_ssim))
|
408 |
-
|
409 |
-
return {
|
410 |
-
"Perceptual similarity": (avg_percsim, std_percsim),
|
411 |
-
"PSNR": (avg_psnr, std_psnr),
|
412 |
-
"SSIM": (avg_ssim, std_ssim),
|
413 |
-
}
|
414 |
-
|
415 |
-
|
416 |
-
def compute_perceptual_similarity_from_list(pred_imgs_list, tgt_imgs_list,
|
417 |
-
take_every_other,
|
418 |
-
simple_format=True):
|
419 |
-
|
420 |
-
# Load VGG16 for feature similarity
|
421 |
-
vgg16 = PNet().to("cuda")
|
422 |
-
vgg16.eval()
|
423 |
-
vgg16.cuda()
|
424 |
-
|
425 |
-
values_percsim = []
|
426 |
-
values_ssim = []
|
427 |
-
values_psnr = []
|
428 |
-
equal_count = 0
|
429 |
-
ambig_count = 0
|
430 |
-
for i, tgt_img in enumerate(tqdm(tgt_imgs_list)):
|
431 |
-
pred_imgs = pred_imgs_list[i]
|
432 |
-
tgt_imgs = [tgt_img]
|
433 |
-
assert len(tgt_imgs) == 1
|
434 |
-
|
435 |
-
if type(pred_imgs) != list:
|
436 |
-
pred_imgs = [pred_imgs]
|
437 |
-
|
438 |
-
perc_sim = 10000
|
439 |
-
ssim_sim = -10
|
440 |
-
psnr_sim = -10
|
441 |
-
assert len(pred_imgs)>0
|
442 |
-
for p_img in pred_imgs:
|
443 |
-
t_img = load_img(tgt_imgs[0])
|
444 |
-
p_img = load_img(p_img, size=t_img.shape[2:])
|
445 |
-
t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
|
446 |
-
perc_sim = min(perc_sim, t_perc_sim)
|
447 |
-
|
448 |
-
ssim_sim = max(ssim_sim, ssim_metric(p_img, t_img).item())
|
449 |
-
psnr_sim = max(psnr_sim, psnr(p_img, t_img).item())
|
450 |
-
|
451 |
-
values_percsim += [perc_sim]
|
452 |
-
values_ssim += [ssim_sim]
|
453 |
-
if psnr_sim != np.float("inf"):
|
454 |
-
values_psnr += [psnr_sim]
|
455 |
-
else:
|
456 |
-
if torch.allclose(p_img, t_img):
|
457 |
-
equal_count += 1
|
458 |
-
print("{} equal src and wrp images.".format(equal_count))
|
459 |
-
else:
|
460 |
-
ambig_count += 1
|
461 |
-
print("{} ambiguous src and wrp images.".format(ambig_count))
|
462 |
-
|
463 |
-
if take_every_other:
|
464 |
-
n_valuespercsim = []
|
465 |
-
n_valuesssim = []
|
466 |
-
n_valuespsnr = []
|
467 |
-
for i in range(0, len(values_percsim) // 2):
|
468 |
-
n_valuespercsim += [
|
469 |
-
min(values_percsim[2 * i], values_percsim[2 * i + 1])
|
470 |
-
]
|
471 |
-
n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
|
472 |
-
n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
|
473 |
-
|
474 |
-
values_percsim = n_valuespercsim
|
475 |
-
values_ssim = n_valuesssim
|
476 |
-
values_psnr = n_valuespsnr
|
477 |
-
|
478 |
-
avg_percsim = np.mean(np.array(values_percsim))
|
479 |
-
std_percsim = np.std(np.array(values_percsim))
|
480 |
-
|
481 |
-
avg_psnr = np.mean(np.array(values_psnr))
|
482 |
-
std_psnr = np.std(np.array(values_psnr))
|
483 |
-
|
484 |
-
avg_ssim = np.mean(np.array(values_ssim))
|
485 |
-
std_ssim = np.std(np.array(values_ssim))
|
486 |
-
|
487 |
-
if simple_format:
|
488 |
-
# just to make yaml formatting readable
|
489 |
-
return {
|
490 |
-
"Perceptual similarity": [float(avg_percsim), float(std_percsim)],
|
491 |
-
"PSNR": [float(avg_psnr), float(std_psnr)],
|
492 |
-
"SSIM": [float(avg_ssim), float(std_ssim)],
|
493 |
-
}
|
494 |
-
else:
|
495 |
-
return {
|
496 |
-
"Perceptual similarity": (avg_percsim, std_percsim),
|
497 |
-
"PSNR": (avg_psnr, std_psnr),
|
498 |
-
"SSIM": (avg_ssim, std_ssim),
|
499 |
-
}
|
500 |
-
|
501 |
-
|
502 |
-
def compute_perceptual_similarity_from_list_topk(pred_imgs_list, tgt_imgs_list,
|
503 |
-
take_every_other, resize=False):
|
504 |
-
|
505 |
-
# Load VGG16 for feature similarity
|
506 |
-
vgg16 = PNet().to("cuda")
|
507 |
-
vgg16.eval()
|
508 |
-
vgg16.cuda()
|
509 |
-
|
510 |
-
values_percsim = []
|
511 |
-
values_ssim = []
|
512 |
-
values_psnr = []
|
513 |
-
individual_percsim = []
|
514 |
-
individual_ssim = []
|
515 |
-
individual_psnr = []
|
516 |
-
for i, tgt_img in enumerate(tqdm(tgt_imgs_list)):
|
517 |
-
pred_imgs = pred_imgs_list[i]
|
518 |
-
tgt_imgs = [tgt_img]
|
519 |
-
assert len(tgt_imgs) == 1
|
520 |
-
|
521 |
-
if type(pred_imgs) != list:
|
522 |
-
assert False
|
523 |
-
pred_imgs = [pred_imgs]
|
524 |
-
|
525 |
-
perc_sim = 10000
|
526 |
-
ssim_sim = -10
|
527 |
-
psnr_sim = -10
|
528 |
-
sample_percsim = list()
|
529 |
-
sample_ssim = list()
|
530 |
-
sample_psnr = list()
|
531 |
-
for p_img in pred_imgs:
|
532 |
-
if resize:
|
533 |
-
t_img = load_img(tgt_imgs[0], size=(256,256))
|
534 |
-
else:
|
535 |
-
t_img = load_img(tgt_imgs[0])
|
536 |
-
p_img = load_img(p_img, size=t_img.shape[2:])
|
537 |
-
|
538 |
-
t_perc_sim = perceptual_sim(p_img, t_img, vgg16).item()
|
539 |
-
sample_percsim.append(t_perc_sim)
|
540 |
-
perc_sim = min(perc_sim, t_perc_sim)
|
541 |
-
|
542 |
-
t_ssim = ssim_metric(p_img, t_img).item()
|
543 |
-
sample_ssim.append(t_ssim)
|
544 |
-
ssim_sim = max(ssim_sim, t_ssim)
|
545 |
-
|
546 |
-
t_psnr = psnr(p_img, t_img).item()
|
547 |
-
sample_psnr.append(t_psnr)
|
548 |
-
psnr_sim = max(psnr_sim, t_psnr)
|
549 |
-
|
550 |
-
values_percsim += [perc_sim]
|
551 |
-
values_ssim += [ssim_sim]
|
552 |
-
values_psnr += [psnr_sim]
|
553 |
-
individual_percsim.append(sample_percsim)
|
554 |
-
individual_ssim.append(sample_ssim)
|
555 |
-
individual_psnr.append(sample_psnr)
|
556 |
-
|
557 |
-
if take_every_other:
|
558 |
-
assert False, "Do this later, after specifying topk to get proper results"
|
559 |
-
n_valuespercsim = []
|
560 |
-
n_valuesssim = []
|
561 |
-
n_valuespsnr = []
|
562 |
-
for i in range(0, len(values_percsim) // 2):
|
563 |
-
n_valuespercsim += [
|
564 |
-
min(values_percsim[2 * i], values_percsim[2 * i + 1])
|
565 |
-
]
|
566 |
-
n_valuespsnr += [max(values_psnr[2 * i], values_psnr[2 * i + 1])]
|
567 |
-
n_valuesssim += [max(values_ssim[2 * i], values_ssim[2 * i + 1])]
|
568 |
-
|
569 |
-
values_percsim = n_valuespercsim
|
570 |
-
values_ssim = n_valuesssim
|
571 |
-
values_psnr = n_valuespsnr
|
572 |
-
|
573 |
-
avg_percsim = np.mean(np.array(values_percsim))
|
574 |
-
std_percsim = np.std(np.array(values_percsim))
|
575 |
-
|
576 |
-
avg_psnr = np.mean(np.array(values_psnr))
|
577 |
-
std_psnr = np.std(np.array(values_psnr))
|
578 |
-
|
579 |
-
avg_ssim = np.mean(np.array(values_ssim))
|
580 |
-
std_ssim = np.std(np.array(values_ssim))
|
581 |
-
|
582 |
-
individual_percsim = np.array(individual_percsim)
|
583 |
-
individual_psnr = np.array(individual_psnr)
|
584 |
-
individual_ssim = np.array(individual_ssim)
|
585 |
-
|
586 |
-
return {
|
587 |
-
"avg_of_best": {
|
588 |
-
"Perceptual similarity": [float(avg_percsim), float(std_percsim)],
|
589 |
-
"PSNR": [float(avg_psnr), float(std_psnr)],
|
590 |
-
"SSIM": [float(avg_ssim), float(std_ssim)],
|
591 |
-
},
|
592 |
-
"individual": {
|
593 |
-
"PSIM": individual_percsim,
|
594 |
-
"PSNR": individual_psnr,
|
595 |
-
"SSIM": individual_ssim,
|
596 |
-
}
|
597 |
-
}
|
598 |
-
|
599 |
-
|
600 |
-
if __name__ == "__main__":
|
601 |
-
args = argparse.ArgumentParser()
|
602 |
-
args.add_argument("--folder", type=str, default="")
|
603 |
-
args.add_argument("--pred_image", type=str, default="")
|
604 |
-
args.add_argument("--target_image", type=str, default="")
|
605 |
-
args.add_argument("--take_every_other", action="store_true", default=False)
|
606 |
-
args.add_argument("--output_file", type=str, default="")
|
607 |
-
|
608 |
-
opts = args.parse_args()
|
609 |
-
|
610 |
-
folder = opts.folder
|
611 |
-
pred_img = opts.pred_image
|
612 |
-
tgt_img = opts.target_image
|
613 |
-
|
614 |
-
results = compute_perceptual_similarity(
|
615 |
-
folder, pred_img, tgt_img, opts.take_every_other
|
616 |
-
)
|
617 |
-
|
618 |
-
f = open(opts.output_file, 'w')
|
619 |
-
for key in results:
|
620 |
-
print("%s for %s: \n" % (key, opts.folder))
|
621 |
-
print(
|
622 |
-
"\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])
|
623 |
-
)
|
624 |
-
|
625 |
-
f.write("%s for %s: \n" % (key, opts.folder))
|
626 |
-
f.write(
|
627 |
-
"\t {:0.4f} | {:0.4f} \n".format(results[key][0], results[key][1])
|
628 |
-
)
|
629 |
-
|
630 |
-
f.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/evaluate/frechet_video_distance.py
DELETED
@@ -1,147 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 The Google Research Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python2, python3
|
17 |
-
"""Minimal Reference implementation for the Frechet Video Distance (FVD).
|
18 |
-
|
19 |
-
FVD is a metric for the quality of video generation models. It is inspired by
|
20 |
-
the FID (Frechet Inception Distance) used for images, but uses a different
|
21 |
-
embedding to be better suitable for videos.
|
22 |
-
"""
|
23 |
-
|
24 |
-
from __future__ import absolute_import
|
25 |
-
from __future__ import division
|
26 |
-
from __future__ import print_function
|
27 |
-
|
28 |
-
|
29 |
-
import six
|
30 |
-
import tensorflow.compat.v1 as tf
|
31 |
-
import tensorflow_gan as tfgan
|
32 |
-
import tensorflow_hub as hub
|
33 |
-
|
34 |
-
|
35 |
-
def preprocess(videos, target_resolution):
|
36 |
-
"""Runs some preprocessing on the videos for I3D model.
|
37 |
-
|
38 |
-
Args:
|
39 |
-
videos: <T>[batch_size, num_frames, height, width, depth] The videos to be
|
40 |
-
preprocessed. We don't care about the specific dtype of the videos, it can
|
41 |
-
be anything that tf.image.resize_bilinear accepts. Values are expected to
|
42 |
-
be in the range 0-255.
|
43 |
-
target_resolution: (width, height): target video resolution
|
44 |
-
|
45 |
-
Returns:
|
46 |
-
videos: <float32>[batch_size, num_frames, height, width, depth]
|
47 |
-
"""
|
48 |
-
videos_shape = list(videos.shape)
|
49 |
-
all_frames = tf.reshape(videos, [-1] + videos_shape[-3:])
|
50 |
-
resized_videos = tf.image.resize_bilinear(all_frames, size=target_resolution)
|
51 |
-
target_shape = [videos_shape[0], -1] + list(target_resolution) + [3]
|
52 |
-
output_videos = tf.reshape(resized_videos, target_shape)
|
53 |
-
scaled_videos = 2. * tf.cast(output_videos, tf.float32) / 255. - 1
|
54 |
-
return scaled_videos
|
55 |
-
|
56 |
-
|
57 |
-
def _is_in_graph(tensor_name):
|
58 |
-
"""Checks whether a given tensor does exists in the graph."""
|
59 |
-
try:
|
60 |
-
tf.get_default_graph().get_tensor_by_name(tensor_name)
|
61 |
-
except KeyError:
|
62 |
-
return False
|
63 |
-
return True
|
64 |
-
|
65 |
-
|
66 |
-
def create_id3_embedding(videos,warmup=False,batch_size=16):
|
67 |
-
"""Embeds the given videos using the Inflated 3D Convolution ne twork.
|
68 |
-
|
69 |
-
Downloads the graph of the I3D from tf.hub and adds it to the graph on the
|
70 |
-
first call.
|
71 |
-
|
72 |
-
Args:
|
73 |
-
videos: <float32>[batch_size, num_frames, height=224, width=224, depth=3].
|
74 |
-
Expected range is [-1, 1].
|
75 |
-
|
76 |
-
Returns:
|
77 |
-
embedding: <float32>[batch_size, embedding_size]. embedding_size depends
|
78 |
-
on the model used.
|
79 |
-
|
80 |
-
Raises:
|
81 |
-
ValueError: when a provided embedding_layer is not supported.
|
82 |
-
"""
|
83 |
-
|
84 |
-
# batch_size = 16
|
85 |
-
module_spec = "https://tfhub.dev/deepmind/i3d-kinetics-400/1"
|
86 |
-
|
87 |
-
|
88 |
-
# Making sure that we import the graph separately for
|
89 |
-
# each different input video tensor.
|
90 |
-
module_name = "fvd_kinetics-400_id3_module_" + six.ensure_str(
|
91 |
-
videos.name).replace(":", "_")
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
assert_ops = [
|
96 |
-
tf.Assert(
|
97 |
-
tf.reduce_max(videos) <= 1.001,
|
98 |
-
["max value in frame is > 1", videos]),
|
99 |
-
tf.Assert(
|
100 |
-
tf.reduce_min(videos) >= -1.001,
|
101 |
-
["min value in frame is < -1", videos]),
|
102 |
-
tf.assert_equal(
|
103 |
-
tf.shape(videos)[0],
|
104 |
-
batch_size, ["invalid frame batch size: ",
|
105 |
-
tf.shape(videos)],
|
106 |
-
summarize=6),
|
107 |
-
]
|
108 |
-
with tf.control_dependencies(assert_ops):
|
109 |
-
videos = tf.identity(videos)
|
110 |
-
|
111 |
-
module_scope = "%s_apply_default/" % module_name
|
112 |
-
|
113 |
-
# To check whether the module has already been loaded into the graph, we look
|
114 |
-
# for a given tensor name. If this tensor name exists, we assume the function
|
115 |
-
# has been called before and the graph was imported. Otherwise we import it.
|
116 |
-
# Note: in theory, the tensor could exist, but have wrong shapes.
|
117 |
-
# This will happen if create_id3_embedding is called with a frames_placehoder
|
118 |
-
# of wrong size/batch size, because even though that will throw a tf.Assert
|
119 |
-
# on graph-execution time, it will insert the tensor (with wrong shape) into
|
120 |
-
# the graph. This is why we need the following assert.
|
121 |
-
if warmup:
|
122 |
-
video_batch_size = int(videos.shape[0])
|
123 |
-
assert video_batch_size in [batch_size, -1, None], f"Invalid batch size {video_batch_size}"
|
124 |
-
tensor_name = module_scope + "RGB/inception_i3d/Mean:0"
|
125 |
-
if not _is_in_graph(tensor_name):
|
126 |
-
i3d_model = hub.Module(module_spec, name=module_name)
|
127 |
-
i3d_model(videos)
|
128 |
-
|
129 |
-
# gets the kinetics-i3d-400-logits layer
|
130 |
-
tensor_name = module_scope + "RGB/inception_i3d/Mean:0"
|
131 |
-
tensor = tf.get_default_graph().get_tensor_by_name(tensor_name)
|
132 |
-
return tensor
|
133 |
-
|
134 |
-
|
135 |
-
def calculate_fvd(real_activations,
|
136 |
-
generated_activations):
|
137 |
-
"""Returns a list of ops that compute metrics as funcs of activations.
|
138 |
-
|
139 |
-
Args:
|
140 |
-
real_activations: <float32>[num_samples, embedding_size]
|
141 |
-
generated_activations: <float32>[num_samples, embedding_size]
|
142 |
-
|
143 |
-
Returns:
|
144 |
-
A scalar that contains the requested FVD.
|
145 |
-
"""
|
146 |
-
return tfgan.eval.frechet_classifier_distance_from_activations(
|
147 |
-
real_activations, generated_activations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/evaluate/ssim.py
DELETED
@@ -1,124 +0,0 @@
|
|
1 |
-
# MIT Licence
|
2 |
-
|
3 |
-
# Methods to predict the SSIM, taken from
|
4 |
-
# https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py
|
5 |
-
|
6 |
-
from math import exp
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn.functional as F
|
10 |
-
from torch.autograd import Variable
|
11 |
-
|
12 |
-
def gaussian(window_size, sigma):
|
13 |
-
gauss = torch.Tensor(
|
14 |
-
[
|
15 |
-
exp(-((x - window_size // 2) ** 2) / float(2 * sigma ** 2))
|
16 |
-
for x in range(window_size)
|
17 |
-
]
|
18 |
-
)
|
19 |
-
return gauss / gauss.sum()
|
20 |
-
|
21 |
-
|
22 |
-
def create_window(window_size, channel):
|
23 |
-
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
24 |
-
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
25 |
-
window = Variable(
|
26 |
-
_2D_window.expand(channel, 1, window_size, window_size).contiguous()
|
27 |
-
)
|
28 |
-
return window
|
29 |
-
|
30 |
-
|
31 |
-
def _ssim(
|
32 |
-
img1, img2, window, window_size, channel, mask=None, size_average=True
|
33 |
-
):
|
34 |
-
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
|
35 |
-
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
|
36 |
-
|
37 |
-
mu1_sq = mu1.pow(2)
|
38 |
-
mu2_sq = mu2.pow(2)
|
39 |
-
mu1_mu2 = mu1 * mu2
|
40 |
-
|
41 |
-
sigma1_sq = (
|
42 |
-
F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel)
|
43 |
-
- mu1_sq
|
44 |
-
)
|
45 |
-
sigma2_sq = (
|
46 |
-
F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel)
|
47 |
-
- mu2_sq
|
48 |
-
)
|
49 |
-
sigma12 = (
|
50 |
-
F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel)
|
51 |
-
- mu1_mu2
|
52 |
-
)
|
53 |
-
|
54 |
-
C1 = (0.01) ** 2
|
55 |
-
C2 = (0.03) ** 2
|
56 |
-
|
57 |
-
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / (
|
58 |
-
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)
|
59 |
-
)
|
60 |
-
|
61 |
-
if not (mask is None):
|
62 |
-
b = mask.size(0)
|
63 |
-
ssim_map = ssim_map.mean(dim=1, keepdim=True) * mask
|
64 |
-
ssim_map = ssim_map.view(b, -1).sum(dim=1) / mask.view(b, -1).sum(
|
65 |
-
dim=1
|
66 |
-
).clamp(min=1)
|
67 |
-
return ssim_map
|
68 |
-
|
69 |
-
import pdb
|
70 |
-
|
71 |
-
pdb.set_trace
|
72 |
-
|
73 |
-
if size_average:
|
74 |
-
return ssim_map.mean()
|
75 |
-
else:
|
76 |
-
return ssim_map.mean(1).mean(1).mean(1)
|
77 |
-
|
78 |
-
|
79 |
-
class SSIM(torch.nn.Module):
|
80 |
-
def __init__(self, window_size=11, size_average=True):
|
81 |
-
super(SSIM, self).__init__()
|
82 |
-
self.window_size = window_size
|
83 |
-
self.size_average = size_average
|
84 |
-
self.channel = 1
|
85 |
-
self.window = create_window(window_size, self.channel)
|
86 |
-
|
87 |
-
def forward(self, img1, img2, mask=None):
|
88 |
-
(_, channel, _, _) = img1.size()
|
89 |
-
|
90 |
-
if (
|
91 |
-
channel == self.channel
|
92 |
-
and self.window.data.type() == img1.data.type()
|
93 |
-
):
|
94 |
-
window = self.window
|
95 |
-
else:
|
96 |
-
window = create_window(self.window_size, channel)
|
97 |
-
|
98 |
-
if img1.is_cuda:
|
99 |
-
window = window.cuda(img1.get_device())
|
100 |
-
window = window.type_as(img1)
|
101 |
-
|
102 |
-
self.window = window
|
103 |
-
self.channel = channel
|
104 |
-
|
105 |
-
return _ssim(
|
106 |
-
img1,
|
107 |
-
img2,
|
108 |
-
window,
|
109 |
-
self.window_size,
|
110 |
-
channel,
|
111 |
-
mask,
|
112 |
-
self.size_average,
|
113 |
-
)
|
114 |
-
|
115 |
-
|
116 |
-
def ssim(img1, img2, window_size=11, mask=None, size_average=True):
|
117 |
-
(_, channel, _, _) = img1.size()
|
118 |
-
window = create_window(window_size, channel)
|
119 |
-
|
120 |
-
if img1.is_cuda:
|
121 |
-
window = window.cuda(img1.get_device())
|
122 |
-
window = window.type_as(img1)
|
123 |
-
|
124 |
-
return _ssim(img1, img2, window, window_size, channel, mask, size_average)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/evaluate/torch_frechet_video_distance.py
DELETED
@@ -1,294 +0,0 @@
|
|
1 |
-
# based on https://github.com/universome/fvd-comparison/blob/master/compare_models.py; huge thanks!
|
2 |
-
import os
|
3 |
-
import numpy as np
|
4 |
-
import io
|
5 |
-
import re
|
6 |
-
import requests
|
7 |
-
import html
|
8 |
-
import hashlib
|
9 |
-
import urllib
|
10 |
-
import urllib.request
|
11 |
-
import scipy.linalg
|
12 |
-
import multiprocessing as mp
|
13 |
-
import glob
|
14 |
-
|
15 |
-
|
16 |
-
from tqdm import tqdm
|
17 |
-
from typing import Any, List, Tuple, Union, Dict, Callable
|
18 |
-
|
19 |
-
from torchvision.io import read_video
|
20 |
-
import torch; torch.set_grad_enabled(False)
|
21 |
-
from einops import rearrange
|
22 |
-
|
23 |
-
from nitro.util import isvideo
|
24 |
-
|
25 |
-
def compute_frechet_distance(mu_sample,sigma_sample,mu_ref,sigma_ref) -> float:
|
26 |
-
print('Calculate frechet distance...')
|
27 |
-
m = np.square(mu_sample - mu_ref).sum()
|
28 |
-
s, _ = scipy.linalg.sqrtm(np.dot(sigma_sample, sigma_ref), disp=False) # pylint: disable=no-member
|
29 |
-
fid = np.real(m + np.trace(sigma_sample + sigma_ref - s * 2))
|
30 |
-
|
31 |
-
return float(fid)
|
32 |
-
|
33 |
-
|
34 |
-
def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
35 |
-
mu = feats.mean(axis=0) # [d]
|
36 |
-
sigma = np.cov(feats, rowvar=False) # [d, d]
|
37 |
-
|
38 |
-
return mu, sigma
|
39 |
-
|
40 |
-
|
41 |
-
def open_url(url: str, num_attempts: int = 10, verbose: bool = True, return_filename: bool = False) -> Any:
|
42 |
-
"""Download the given URL and return a binary-mode file object to access the data."""
|
43 |
-
assert num_attempts >= 1
|
44 |
-
|
45 |
-
# Doesn't look like an URL scheme so interpret it as a local filename.
|
46 |
-
if not re.match('^[a-z]+://', url):
|
47 |
-
return url if return_filename else open(url, "rb")
|
48 |
-
|
49 |
-
# Handle file URLs. This code handles unusual file:// patterns that
|
50 |
-
# arise on Windows:
|
51 |
-
#
|
52 |
-
# file:///c:/foo.txt
|
53 |
-
#
|
54 |
-
# which would translate to a local '/c:/foo.txt' filename that's
|
55 |
-
# invalid. Drop the forward slash for such pathnames.
|
56 |
-
#
|
57 |
-
# If you touch this code path, you should test it on both Linux and
|
58 |
-
# Windows.
|
59 |
-
#
|
60 |
-
# Some internet resources suggest using urllib.request.url2pathname() but
|
61 |
-
# but that converts forward slashes to backslashes and this causes
|
62 |
-
# its own set of problems.
|
63 |
-
if url.startswith('file://'):
|
64 |
-
filename = urllib.parse.urlparse(url).path
|
65 |
-
if re.match(r'^/[a-zA-Z]:', filename):
|
66 |
-
filename = filename[1:]
|
67 |
-
return filename if return_filename else open(filename, "rb")
|
68 |
-
|
69 |
-
url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
|
70 |
-
|
71 |
-
# Download.
|
72 |
-
url_name = None
|
73 |
-
url_data = None
|
74 |
-
with requests.Session() as session:
|
75 |
-
if verbose:
|
76 |
-
print("Downloading %s ..." % url, end="", flush=True)
|
77 |
-
for attempts_left in reversed(range(num_attempts)):
|
78 |
-
try:
|
79 |
-
with session.get(url) as res:
|
80 |
-
res.raise_for_status()
|
81 |
-
if len(res.content) == 0:
|
82 |
-
raise IOError("No data received")
|
83 |
-
|
84 |
-
if len(res.content) < 8192:
|
85 |
-
content_str = res.content.decode("utf-8")
|
86 |
-
if "download_warning" in res.headers.get("Set-Cookie", ""):
|
87 |
-
links = [html.unescape(link) for link in content_str.split('"') if "export=download" in link]
|
88 |
-
if len(links) == 1:
|
89 |
-
url = requests.compat.urljoin(url, links[0])
|
90 |
-
raise IOError("Google Drive virus checker nag")
|
91 |
-
if "Google Drive - Quota exceeded" in content_str:
|
92 |
-
raise IOError("Google Drive download quota exceeded -- please try again later")
|
93 |
-
|
94 |
-
match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
|
95 |
-
url_name = match[1] if match else url
|
96 |
-
url_data = res.content
|
97 |
-
if verbose:
|
98 |
-
print(" done")
|
99 |
-
break
|
100 |
-
except KeyboardInterrupt:
|
101 |
-
raise
|
102 |
-
except:
|
103 |
-
if not attempts_left:
|
104 |
-
if verbose:
|
105 |
-
print(" failed")
|
106 |
-
raise
|
107 |
-
if verbose:
|
108 |
-
print(".", end="", flush=True)
|
109 |
-
|
110 |
-
# Return data as file object.
|
111 |
-
assert not return_filename
|
112 |
-
return io.BytesIO(url_data)
|
113 |
-
|
114 |
-
def load_video(ip):
|
115 |
-
vid, *_ = read_video(ip)
|
116 |
-
vid = rearrange(vid, 't h w c -> t c h w').to(torch.uint8)
|
117 |
-
return vid
|
118 |
-
|
119 |
-
def get_data_from_str(input_str,nprc = None):
|
120 |
-
assert os.path.isdir(input_str), f'Specified input folder "{input_str}" is not a directory'
|
121 |
-
vid_filelist = glob.glob(os.path.join(input_str,'*.mp4'))
|
122 |
-
print(f'Found {len(vid_filelist)} videos in dir {input_str}')
|
123 |
-
|
124 |
-
if nprc is None:
|
125 |
-
try:
|
126 |
-
nprc = mp.cpu_count()
|
127 |
-
except NotImplementedError:
|
128 |
-
print('WARNING: cpu_count() not avlailable, using only 1 cpu for video loading')
|
129 |
-
nprc = 1
|
130 |
-
|
131 |
-
pool = mp.Pool(processes=nprc)
|
132 |
-
|
133 |
-
vids = []
|
134 |
-
for v in tqdm(pool.imap_unordered(load_video,vid_filelist),total=len(vid_filelist),desc='Loading videos...'):
|
135 |
-
vids.append(v)
|
136 |
-
|
137 |
-
|
138 |
-
vids = torch.stack(vids,dim=0).float()
|
139 |
-
|
140 |
-
return vids
|
141 |
-
|
142 |
-
def get_stats(stats):
|
143 |
-
assert os.path.isfile(stats) and stats.endswith('.npz'), f'no stats found under {stats}'
|
144 |
-
|
145 |
-
print(f'Using precomputed statistics under {stats}')
|
146 |
-
stats = np.load(stats)
|
147 |
-
stats = {key: stats[key] for key in stats.files}
|
148 |
-
|
149 |
-
return stats
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
@torch.no_grad()
|
155 |
-
def compute_fvd(ref_input, sample_input, bs=32,
|
156 |
-
ref_stats=None,
|
157 |
-
sample_stats=None,
|
158 |
-
nprc_load=None):
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
calc_stats = ref_stats is None or sample_stats is None
|
163 |
-
|
164 |
-
if calc_stats:
|
165 |
-
|
166 |
-
only_ref = sample_stats is not None
|
167 |
-
only_sample = ref_stats is not None
|
168 |
-
|
169 |
-
|
170 |
-
if isinstance(ref_input,str) and not only_sample:
|
171 |
-
ref_input = get_data_from_str(ref_input,nprc_load)
|
172 |
-
|
173 |
-
if isinstance(sample_input, str) and not only_ref:
|
174 |
-
sample_input = get_data_from_str(sample_input, nprc_load)
|
175 |
-
|
176 |
-
stats = compute_statistics(sample_input,ref_input,
|
177 |
-
device='cuda' if torch.cuda.is_available() else 'cpu',
|
178 |
-
bs=bs,
|
179 |
-
only_ref=only_ref,
|
180 |
-
only_sample=only_sample)
|
181 |
-
|
182 |
-
if only_ref:
|
183 |
-
stats.update(get_stats(sample_stats))
|
184 |
-
elif only_sample:
|
185 |
-
stats.update(get_stats(ref_stats))
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
else:
|
190 |
-
stats = get_stats(sample_stats)
|
191 |
-
stats.update(get_stats(ref_stats))
|
192 |
-
|
193 |
-
fvd = compute_frechet_distance(**stats)
|
194 |
-
|
195 |
-
return {'FVD' : fvd,}
|
196 |
-
|
197 |
-
|
198 |
-
@torch.no_grad()
|
199 |
-
def compute_statistics(videos_fake, videos_real, device: str='cuda', bs=32, only_ref=False,only_sample=False) -> Dict:
|
200 |
-
detector_url = 'https://www.dropbox.com/s/ge9e5ujwgetktms/i3d_torchscript.pt?dl=1'
|
201 |
-
detector_kwargs = dict(rescale=True, resize=True, return_features=True) # Return raw features before the softmax layer.
|
202 |
-
|
203 |
-
with open_url(detector_url, verbose=False) as f:
|
204 |
-
detector = torch.jit.load(f).eval().to(device)
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
assert not (only_sample and only_ref), 'only_ref and only_sample arguments are mutually exclusive'
|
209 |
-
|
210 |
-
ref_embed, sample_embed = [], []
|
211 |
-
|
212 |
-
info = f'Computing I3D activations for FVD score with batch size {bs}'
|
213 |
-
|
214 |
-
if only_ref:
|
215 |
-
|
216 |
-
if not isvideo(videos_real):
|
217 |
-
# if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
|
218 |
-
videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
|
219 |
-
print(videos_real.shape)
|
220 |
-
|
221 |
-
if videos_real.shape[0] % bs == 0:
|
222 |
-
n_secs = videos_real.shape[0] // bs
|
223 |
-
else:
|
224 |
-
n_secs = videos_real.shape[0] // bs + 1
|
225 |
-
|
226 |
-
videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
|
227 |
-
|
228 |
-
for ref_v in tqdm(videos_real, total=len(videos_real),desc=info):
|
229 |
-
|
230 |
-
feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
|
231 |
-
ref_embed.append(feats_ref)
|
232 |
-
|
233 |
-
elif only_sample:
|
234 |
-
|
235 |
-
if not isvideo(videos_fake):
|
236 |
-
# if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
|
237 |
-
videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
|
238 |
-
print(videos_fake.shape)
|
239 |
-
|
240 |
-
if videos_fake.shape[0] % bs == 0:
|
241 |
-
n_secs = videos_fake.shape[0] // bs
|
242 |
-
else:
|
243 |
-
n_secs = videos_fake.shape[0] // bs + 1
|
244 |
-
|
245 |
-
videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
|
246 |
-
|
247 |
-
for sample_v in tqdm(videos_fake, total=len(videos_real),desc=info):
|
248 |
-
feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
|
249 |
-
sample_embed.append(feats_sample)
|
250 |
-
|
251 |
-
|
252 |
-
else:
|
253 |
-
|
254 |
-
if not isvideo(videos_real):
|
255 |
-
# if not is video we assume to have numpy arrays pf shape (n_vids, t, h, w, c) in range [0,255]
|
256 |
-
videos_real = torch.from_numpy(videos_real).permute(0, 4, 1, 2, 3).float()
|
257 |
-
|
258 |
-
if not isvideo(videos_fake):
|
259 |
-
videos_fake = torch.from_numpy(videos_fake).permute(0, 4, 1, 2, 3).float()
|
260 |
-
|
261 |
-
if videos_fake.shape[0] % bs == 0:
|
262 |
-
n_secs = videos_fake.shape[0] // bs
|
263 |
-
else:
|
264 |
-
n_secs = videos_fake.shape[0] // bs + 1
|
265 |
-
|
266 |
-
videos_real = torch.tensor_split(videos_real, n_secs, dim=0)
|
267 |
-
videos_fake = torch.tensor_split(videos_fake, n_secs, dim=0)
|
268 |
-
|
269 |
-
for ref_v, sample_v in tqdm(zip(videos_real,videos_fake),total=len(videos_fake),desc=info):
|
270 |
-
# print(ref_v.shape)
|
271 |
-
# ref_v = torch.nn.functional.interpolate(ref_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
|
272 |
-
# sample_v = torch.nn.functional.interpolate(sample_v, size=(sample_v.shape[2], 256, 256), mode='trilinear', align_corners=False)
|
273 |
-
|
274 |
-
|
275 |
-
feats_sample = detector(sample_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
|
276 |
-
feats_ref = detector(ref_v.to(device).contiguous(), **detector_kwargs).cpu().numpy()
|
277 |
-
sample_embed.append(feats_sample)
|
278 |
-
ref_embed.append(feats_ref)
|
279 |
-
|
280 |
-
out = dict()
|
281 |
-
if len(sample_embed) > 0:
|
282 |
-
sample_embed = np.concatenate(sample_embed,axis=0)
|
283 |
-
mu_sample, sigma_sample = compute_stats(sample_embed)
|
284 |
-
out.update({'mu_sample': mu_sample,
|
285 |
-
'sigma_sample': sigma_sample})
|
286 |
-
|
287 |
-
if len(ref_embed) > 0:
|
288 |
-
ref_embed = np.concatenate(ref_embed,axis=0)
|
289 |
-
mu_ref, sigma_ref = compute_stats(ref_embed)
|
290 |
-
out.update({'mu_ref': mu_ref,
|
291 |
-
'sigma_ref': sigma_ref})
|
292 |
-
|
293 |
-
|
294 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/image_degradation/__init__.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
|
2 |
-
from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
|
|
|
|
|
|
stable_diffusion/ldm/modules/image_degradation/bsrgan.py
DELETED
@@ -1,730 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""
|
3 |
-
# --------------------------------------------
|
4 |
-
# Super-Resolution
|
5 |
-
# --------------------------------------------
|
6 |
-
#
|
7 |
-
# Kai Zhang (cskaizhang@gmail.com)
|
8 |
-
# https://github.com/cszn
|
9 |
-
# From 2019/03--2021/08
|
10 |
-
# --------------------------------------------
|
11 |
-
"""
|
12 |
-
|
13 |
-
import numpy as np
|
14 |
-
import cv2
|
15 |
-
import torch
|
16 |
-
|
17 |
-
from functools import partial
|
18 |
-
import random
|
19 |
-
from scipy import ndimage
|
20 |
-
import scipy
|
21 |
-
import scipy.stats as ss
|
22 |
-
from scipy.interpolate import interp2d
|
23 |
-
from scipy.linalg import orth
|
24 |
-
import albumentations
|
25 |
-
|
26 |
-
import ldm.modules.image_degradation.utils_image as util
|
27 |
-
|
28 |
-
|
29 |
-
def modcrop_np(img, sf):
|
30 |
-
'''
|
31 |
-
Args:
|
32 |
-
img: numpy image, WxH or WxHxC
|
33 |
-
sf: scale factor
|
34 |
-
Return:
|
35 |
-
cropped image
|
36 |
-
'''
|
37 |
-
w, h = img.shape[:2]
|
38 |
-
im = np.copy(img)
|
39 |
-
return im[:w - w % sf, :h - h % sf, ...]
|
40 |
-
|
41 |
-
|
42 |
-
"""
|
43 |
-
# --------------------------------------------
|
44 |
-
# anisotropic Gaussian kernels
|
45 |
-
# --------------------------------------------
|
46 |
-
"""
|
47 |
-
|
48 |
-
|
49 |
-
def analytic_kernel(k):
|
50 |
-
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
51 |
-
k_size = k.shape[0]
|
52 |
-
# Calculate the big kernels size
|
53 |
-
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
54 |
-
# Loop over the small kernel to fill the big one
|
55 |
-
for r in range(k_size):
|
56 |
-
for c in range(k_size):
|
57 |
-
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
58 |
-
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
59 |
-
crop = k_size // 2
|
60 |
-
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
61 |
-
# Normalize to 1
|
62 |
-
return cropped_big_k / cropped_big_k.sum()
|
63 |
-
|
64 |
-
|
65 |
-
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
66 |
-
""" generate an anisotropic Gaussian kernel
|
67 |
-
Args:
|
68 |
-
ksize : e.g., 15, kernel size
|
69 |
-
theta : [0, pi], rotation angle range
|
70 |
-
l1 : [0.1,50], scaling of eigenvalues
|
71 |
-
l2 : [0.1,l1], scaling of eigenvalues
|
72 |
-
If l1 = l2, will get an isotropic Gaussian kernel.
|
73 |
-
Returns:
|
74 |
-
k : kernel
|
75 |
-
"""
|
76 |
-
|
77 |
-
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
78 |
-
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
79 |
-
D = np.array([[l1, 0], [0, l2]])
|
80 |
-
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
81 |
-
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
82 |
-
|
83 |
-
return k
|
84 |
-
|
85 |
-
|
86 |
-
def gm_blur_kernel(mean, cov, size=15):
|
87 |
-
center = size / 2.0 + 0.5
|
88 |
-
k = np.zeros([size, size])
|
89 |
-
for y in range(size):
|
90 |
-
for x in range(size):
|
91 |
-
cy = y - center + 1
|
92 |
-
cx = x - center + 1
|
93 |
-
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
94 |
-
|
95 |
-
k = k / np.sum(k)
|
96 |
-
return k
|
97 |
-
|
98 |
-
|
99 |
-
def shift_pixel(x, sf, upper_left=True):
|
100 |
-
"""shift pixel for super-resolution with different scale factors
|
101 |
-
Args:
|
102 |
-
x: WxHxC or WxH
|
103 |
-
sf: scale factor
|
104 |
-
upper_left: shift direction
|
105 |
-
"""
|
106 |
-
h, w = x.shape[:2]
|
107 |
-
shift = (sf - 1) * 0.5
|
108 |
-
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
109 |
-
if upper_left:
|
110 |
-
x1 = xv + shift
|
111 |
-
y1 = yv + shift
|
112 |
-
else:
|
113 |
-
x1 = xv - shift
|
114 |
-
y1 = yv - shift
|
115 |
-
|
116 |
-
x1 = np.clip(x1, 0, w - 1)
|
117 |
-
y1 = np.clip(y1, 0, h - 1)
|
118 |
-
|
119 |
-
if x.ndim == 2:
|
120 |
-
x = interp2d(xv, yv, x)(x1, y1)
|
121 |
-
if x.ndim == 3:
|
122 |
-
for i in range(x.shape[-1]):
|
123 |
-
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
124 |
-
|
125 |
-
return x
|
126 |
-
|
127 |
-
|
128 |
-
def blur(x, k):
|
129 |
-
'''
|
130 |
-
x: image, NxcxHxW
|
131 |
-
k: kernel, Nx1xhxw
|
132 |
-
'''
|
133 |
-
n, c = x.shape[:2]
|
134 |
-
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
135 |
-
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
136 |
-
k = k.repeat(1, c, 1, 1)
|
137 |
-
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
138 |
-
x = x.view(1, -1, x.shape[2], x.shape[3])
|
139 |
-
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
140 |
-
x = x.view(n, c, x.shape[2], x.shape[3])
|
141 |
-
|
142 |
-
return x
|
143 |
-
|
144 |
-
|
145 |
-
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
146 |
-
""""
|
147 |
-
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
148 |
-
# Kai Zhang
|
149 |
-
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
150 |
-
# max_var = 2.5 * sf
|
151 |
-
"""
|
152 |
-
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
153 |
-
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
154 |
-
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
155 |
-
theta = np.random.rand() * np.pi # random theta
|
156 |
-
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
157 |
-
|
158 |
-
# Set COV matrix using Lambdas and Theta
|
159 |
-
LAMBDA = np.diag([lambda_1, lambda_2])
|
160 |
-
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
161 |
-
[np.sin(theta), np.cos(theta)]])
|
162 |
-
SIGMA = Q @ LAMBDA @ Q.T
|
163 |
-
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
164 |
-
|
165 |
-
# Set expectation position (shifting kernel for aligned image)
|
166 |
-
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
167 |
-
MU = MU[None, None, :, None]
|
168 |
-
|
169 |
-
# Create meshgrid for Gaussian
|
170 |
-
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
171 |
-
Z = np.stack([X, Y], 2)[:, :, :, None]
|
172 |
-
|
173 |
-
# Calcualte Gaussian for every pixel of the kernel
|
174 |
-
ZZ = Z - MU
|
175 |
-
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
176 |
-
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
177 |
-
|
178 |
-
# shift the kernel so it will be centered
|
179 |
-
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
180 |
-
|
181 |
-
# Normalize the kernel and return
|
182 |
-
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
183 |
-
kernel = raw_kernel / np.sum(raw_kernel)
|
184 |
-
return kernel
|
185 |
-
|
186 |
-
|
187 |
-
def fspecial_gaussian(hsize, sigma):
|
188 |
-
hsize = [hsize, hsize]
|
189 |
-
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
190 |
-
std = sigma
|
191 |
-
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
192 |
-
arg = -(x * x + y * y) / (2 * std * std)
|
193 |
-
h = np.exp(arg)
|
194 |
-
h[h < scipy.finfo(float).eps * h.max()] = 0
|
195 |
-
sumh = h.sum()
|
196 |
-
if sumh != 0:
|
197 |
-
h = h / sumh
|
198 |
-
return h
|
199 |
-
|
200 |
-
|
201 |
-
def fspecial_laplacian(alpha):
|
202 |
-
alpha = max([0, min([alpha, 1])])
|
203 |
-
h1 = alpha / (alpha + 1)
|
204 |
-
h2 = (1 - alpha) / (alpha + 1)
|
205 |
-
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
206 |
-
h = np.array(h)
|
207 |
-
return h
|
208 |
-
|
209 |
-
|
210 |
-
def fspecial(filter_type, *args, **kwargs):
|
211 |
-
'''
|
212 |
-
python code from:
|
213 |
-
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
214 |
-
'''
|
215 |
-
if filter_type == 'gaussian':
|
216 |
-
return fspecial_gaussian(*args, **kwargs)
|
217 |
-
if filter_type == 'laplacian':
|
218 |
-
return fspecial_laplacian(*args, **kwargs)
|
219 |
-
|
220 |
-
|
221 |
-
"""
|
222 |
-
# --------------------------------------------
|
223 |
-
# degradation models
|
224 |
-
# --------------------------------------------
|
225 |
-
"""
|
226 |
-
|
227 |
-
|
228 |
-
def bicubic_degradation(x, sf=3):
|
229 |
-
'''
|
230 |
-
Args:
|
231 |
-
x: HxWxC image, [0, 1]
|
232 |
-
sf: down-scale factor
|
233 |
-
Return:
|
234 |
-
bicubicly downsampled LR image
|
235 |
-
'''
|
236 |
-
x = util.imresize_np(x, scale=1 / sf)
|
237 |
-
return x
|
238 |
-
|
239 |
-
|
240 |
-
def srmd_degradation(x, k, sf=3):
|
241 |
-
''' blur + bicubic downsampling
|
242 |
-
Args:
|
243 |
-
x: HxWxC image, [0, 1]
|
244 |
-
k: hxw, double
|
245 |
-
sf: down-scale factor
|
246 |
-
Return:
|
247 |
-
downsampled LR image
|
248 |
-
Reference:
|
249 |
-
@inproceedings{zhang2018learning,
|
250 |
-
title={Learning a single convolutional super-resolution network for multiple degradations},
|
251 |
-
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
252 |
-
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
253 |
-
pages={3262--3271},
|
254 |
-
year={2018}
|
255 |
-
}
|
256 |
-
'''
|
257 |
-
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
258 |
-
x = bicubic_degradation(x, sf=sf)
|
259 |
-
return x
|
260 |
-
|
261 |
-
|
262 |
-
def dpsr_degradation(x, k, sf=3):
|
263 |
-
''' bicubic downsampling + blur
|
264 |
-
Args:
|
265 |
-
x: HxWxC image, [0, 1]
|
266 |
-
k: hxw, double
|
267 |
-
sf: down-scale factor
|
268 |
-
Return:
|
269 |
-
downsampled LR image
|
270 |
-
Reference:
|
271 |
-
@inproceedings{zhang2019deep,
|
272 |
-
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
273 |
-
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
274 |
-
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
275 |
-
pages={1671--1681},
|
276 |
-
year={2019}
|
277 |
-
}
|
278 |
-
'''
|
279 |
-
x = bicubic_degradation(x, sf=sf)
|
280 |
-
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
281 |
-
return x
|
282 |
-
|
283 |
-
|
284 |
-
def classical_degradation(x, k, sf=3):
|
285 |
-
''' blur + downsampling
|
286 |
-
Args:
|
287 |
-
x: HxWxC image, [0, 1]/[0, 255]
|
288 |
-
k: hxw, double
|
289 |
-
sf: down-scale factor
|
290 |
-
Return:
|
291 |
-
downsampled LR image
|
292 |
-
'''
|
293 |
-
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
294 |
-
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
295 |
-
st = 0
|
296 |
-
return x[st::sf, st::sf, ...]
|
297 |
-
|
298 |
-
|
299 |
-
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
300 |
-
"""USM sharpening. borrowed from real-ESRGAN
|
301 |
-
Input image: I; Blurry image: B.
|
302 |
-
1. K = I + weight * (I - B)
|
303 |
-
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
304 |
-
3. Blur mask:
|
305 |
-
4. Out = Mask * K + (1 - Mask) * I
|
306 |
-
Args:
|
307 |
-
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
308 |
-
weight (float): Sharp weight. Default: 1.
|
309 |
-
radius (float): Kernel size of Gaussian blur. Default: 50.
|
310 |
-
threshold (int):
|
311 |
-
"""
|
312 |
-
if radius % 2 == 0:
|
313 |
-
radius += 1
|
314 |
-
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
315 |
-
residual = img - blur
|
316 |
-
mask = np.abs(residual) * 255 > threshold
|
317 |
-
mask = mask.astype('float32')
|
318 |
-
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
319 |
-
|
320 |
-
K = img + weight * residual
|
321 |
-
K = np.clip(K, 0, 1)
|
322 |
-
return soft_mask * K + (1 - soft_mask) * img
|
323 |
-
|
324 |
-
|
325 |
-
def add_blur(img, sf=4):
|
326 |
-
wd2 = 4.0 + sf
|
327 |
-
wd = 2.0 + 0.2 * sf
|
328 |
-
if random.random() < 0.5:
|
329 |
-
l1 = wd2 * random.random()
|
330 |
-
l2 = wd2 * random.random()
|
331 |
-
k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
332 |
-
else:
|
333 |
-
k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
|
334 |
-
img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
335 |
-
|
336 |
-
return img
|
337 |
-
|
338 |
-
|
339 |
-
def add_resize(img, sf=4):
|
340 |
-
rnum = np.random.rand()
|
341 |
-
if rnum > 0.8: # up
|
342 |
-
sf1 = random.uniform(1, 2)
|
343 |
-
elif rnum < 0.7: # down
|
344 |
-
sf1 = random.uniform(0.5 / sf, 1)
|
345 |
-
else:
|
346 |
-
sf1 = 1.0
|
347 |
-
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
348 |
-
img = np.clip(img, 0.0, 1.0)
|
349 |
-
|
350 |
-
return img
|
351 |
-
|
352 |
-
|
353 |
-
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
354 |
-
# noise_level = random.randint(noise_level1, noise_level2)
|
355 |
-
# rnum = np.random.rand()
|
356 |
-
# if rnum > 0.6: # add color Gaussian noise
|
357 |
-
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
358 |
-
# elif rnum < 0.4: # add grayscale Gaussian noise
|
359 |
-
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
360 |
-
# else: # add noise
|
361 |
-
# L = noise_level2 / 255.
|
362 |
-
# D = np.diag(np.random.rand(3))
|
363 |
-
# U = orth(np.random.rand(3, 3))
|
364 |
-
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
365 |
-
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
366 |
-
# img = np.clip(img, 0.0, 1.0)
|
367 |
-
# return img
|
368 |
-
|
369 |
-
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
370 |
-
noise_level = random.randint(noise_level1, noise_level2)
|
371 |
-
rnum = np.random.rand()
|
372 |
-
if rnum > 0.6: # add color Gaussian noise
|
373 |
-
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
374 |
-
elif rnum < 0.4: # add grayscale Gaussian noise
|
375 |
-
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
376 |
-
else: # add noise
|
377 |
-
L = noise_level2 / 255.
|
378 |
-
D = np.diag(np.random.rand(3))
|
379 |
-
U = orth(np.random.rand(3, 3))
|
380 |
-
conv = np.dot(np.dot(np.transpose(U), D), U)
|
381 |
-
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
382 |
-
img = np.clip(img, 0.0, 1.0)
|
383 |
-
return img
|
384 |
-
|
385 |
-
|
386 |
-
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
387 |
-
noise_level = random.randint(noise_level1, noise_level2)
|
388 |
-
img = np.clip(img, 0.0, 1.0)
|
389 |
-
rnum = random.random()
|
390 |
-
if rnum > 0.6:
|
391 |
-
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
392 |
-
elif rnum < 0.4:
|
393 |
-
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
394 |
-
else:
|
395 |
-
L = noise_level2 / 255.
|
396 |
-
D = np.diag(np.random.rand(3))
|
397 |
-
U = orth(np.random.rand(3, 3))
|
398 |
-
conv = np.dot(np.dot(np.transpose(U), D), U)
|
399 |
-
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
400 |
-
img = np.clip(img, 0.0, 1.0)
|
401 |
-
return img
|
402 |
-
|
403 |
-
|
404 |
-
def add_Poisson_noise(img):
|
405 |
-
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
406 |
-
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
407 |
-
if random.random() < 0.5:
|
408 |
-
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
409 |
-
else:
|
410 |
-
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
411 |
-
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
412 |
-
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
413 |
-
img += noise_gray[:, :, np.newaxis]
|
414 |
-
img = np.clip(img, 0.0, 1.0)
|
415 |
-
return img
|
416 |
-
|
417 |
-
|
418 |
-
def add_JPEG_noise(img):
|
419 |
-
quality_factor = random.randint(30, 95)
|
420 |
-
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
421 |
-
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
422 |
-
img = cv2.imdecode(encimg, 1)
|
423 |
-
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
424 |
-
return img
|
425 |
-
|
426 |
-
|
427 |
-
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
428 |
-
h, w = lq.shape[:2]
|
429 |
-
rnd_h = random.randint(0, h - lq_patchsize)
|
430 |
-
rnd_w = random.randint(0, w - lq_patchsize)
|
431 |
-
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
432 |
-
|
433 |
-
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
434 |
-
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
435 |
-
return lq, hq
|
436 |
-
|
437 |
-
|
438 |
-
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
439 |
-
"""
|
440 |
-
This is the degradation model of BSRGAN from the paper
|
441 |
-
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
442 |
-
----------
|
443 |
-
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
444 |
-
sf: scale factor
|
445 |
-
isp_model: camera ISP model
|
446 |
-
Returns
|
447 |
-
-------
|
448 |
-
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
449 |
-
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
450 |
-
"""
|
451 |
-
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
452 |
-
sf_ori = sf
|
453 |
-
|
454 |
-
h1, w1 = img.shape[:2]
|
455 |
-
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
456 |
-
h, w = img.shape[:2]
|
457 |
-
|
458 |
-
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
459 |
-
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
460 |
-
|
461 |
-
hq = img.copy()
|
462 |
-
|
463 |
-
if sf == 4 and random.random() < scale2_prob: # downsample1
|
464 |
-
if np.random.rand() < 0.5:
|
465 |
-
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
466 |
-
interpolation=random.choice([1, 2, 3]))
|
467 |
-
else:
|
468 |
-
img = util.imresize_np(img, 1 / 2, True)
|
469 |
-
img = np.clip(img, 0.0, 1.0)
|
470 |
-
sf = 2
|
471 |
-
|
472 |
-
shuffle_order = random.sample(range(7), 7)
|
473 |
-
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
474 |
-
if idx1 > idx2: # keep downsample3 last
|
475 |
-
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
476 |
-
|
477 |
-
for i in shuffle_order:
|
478 |
-
|
479 |
-
if i == 0:
|
480 |
-
img = add_blur(img, sf=sf)
|
481 |
-
|
482 |
-
elif i == 1:
|
483 |
-
img = add_blur(img, sf=sf)
|
484 |
-
|
485 |
-
elif i == 2:
|
486 |
-
a, b = img.shape[1], img.shape[0]
|
487 |
-
# downsample2
|
488 |
-
if random.random() < 0.75:
|
489 |
-
sf1 = random.uniform(1, 2 * sf)
|
490 |
-
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
491 |
-
interpolation=random.choice([1, 2, 3]))
|
492 |
-
else:
|
493 |
-
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
494 |
-
k_shifted = shift_pixel(k, sf)
|
495 |
-
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
496 |
-
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
497 |
-
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
498 |
-
img = np.clip(img, 0.0, 1.0)
|
499 |
-
|
500 |
-
elif i == 3:
|
501 |
-
# downsample3
|
502 |
-
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
503 |
-
img = np.clip(img, 0.0, 1.0)
|
504 |
-
|
505 |
-
elif i == 4:
|
506 |
-
# add Gaussian noise
|
507 |
-
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
508 |
-
|
509 |
-
elif i == 5:
|
510 |
-
# add JPEG noise
|
511 |
-
if random.random() < jpeg_prob:
|
512 |
-
img = add_JPEG_noise(img)
|
513 |
-
|
514 |
-
elif i == 6:
|
515 |
-
# add processed camera sensor noise
|
516 |
-
if random.random() < isp_prob and isp_model is not None:
|
517 |
-
with torch.no_grad():
|
518 |
-
img, hq = isp_model.forward(img.copy(), hq)
|
519 |
-
|
520 |
-
# add final JPEG compression noise
|
521 |
-
img = add_JPEG_noise(img)
|
522 |
-
|
523 |
-
# random crop
|
524 |
-
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
525 |
-
|
526 |
-
return img, hq
|
527 |
-
|
528 |
-
|
529 |
-
# todo no isp_model?
|
530 |
-
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
531 |
-
"""
|
532 |
-
This is the degradation model of BSRGAN from the paper
|
533 |
-
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
534 |
-
----------
|
535 |
-
sf: scale factor
|
536 |
-
isp_model: camera ISP model
|
537 |
-
Returns
|
538 |
-
-------
|
539 |
-
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
540 |
-
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
541 |
-
"""
|
542 |
-
image = util.uint2single(image)
|
543 |
-
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
544 |
-
sf_ori = sf
|
545 |
-
|
546 |
-
h1, w1 = image.shape[:2]
|
547 |
-
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
548 |
-
h, w = image.shape[:2]
|
549 |
-
|
550 |
-
hq = image.copy()
|
551 |
-
|
552 |
-
if sf == 4 and random.random() < scale2_prob: # downsample1
|
553 |
-
if np.random.rand() < 0.5:
|
554 |
-
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
555 |
-
interpolation=random.choice([1, 2, 3]))
|
556 |
-
else:
|
557 |
-
image = util.imresize_np(image, 1 / 2, True)
|
558 |
-
image = np.clip(image, 0.0, 1.0)
|
559 |
-
sf = 2
|
560 |
-
|
561 |
-
shuffle_order = random.sample(range(7), 7)
|
562 |
-
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
563 |
-
if idx1 > idx2: # keep downsample3 last
|
564 |
-
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
565 |
-
|
566 |
-
for i in shuffle_order:
|
567 |
-
|
568 |
-
if i == 0:
|
569 |
-
image = add_blur(image, sf=sf)
|
570 |
-
|
571 |
-
elif i == 1:
|
572 |
-
image = add_blur(image, sf=sf)
|
573 |
-
|
574 |
-
elif i == 2:
|
575 |
-
a, b = image.shape[1], image.shape[0]
|
576 |
-
# downsample2
|
577 |
-
if random.random() < 0.75:
|
578 |
-
sf1 = random.uniform(1, 2 * sf)
|
579 |
-
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
580 |
-
interpolation=random.choice([1, 2, 3]))
|
581 |
-
else:
|
582 |
-
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
583 |
-
k_shifted = shift_pixel(k, sf)
|
584 |
-
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
585 |
-
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
586 |
-
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
587 |
-
image = np.clip(image, 0.0, 1.0)
|
588 |
-
|
589 |
-
elif i == 3:
|
590 |
-
# downsample3
|
591 |
-
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
592 |
-
image = np.clip(image, 0.0, 1.0)
|
593 |
-
|
594 |
-
elif i == 4:
|
595 |
-
# add Gaussian noise
|
596 |
-
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
|
597 |
-
|
598 |
-
elif i == 5:
|
599 |
-
# add JPEG noise
|
600 |
-
if random.random() < jpeg_prob:
|
601 |
-
image = add_JPEG_noise(image)
|
602 |
-
|
603 |
-
# elif i == 6:
|
604 |
-
# # add processed camera sensor noise
|
605 |
-
# if random.random() < isp_prob and isp_model is not None:
|
606 |
-
# with torch.no_grad():
|
607 |
-
# img, hq = isp_model.forward(img.copy(), hq)
|
608 |
-
|
609 |
-
# add final JPEG compression noise
|
610 |
-
image = add_JPEG_noise(image)
|
611 |
-
image = util.single2uint(image)
|
612 |
-
example = {"image":image}
|
613 |
-
return example
|
614 |
-
|
615 |
-
|
616 |
-
# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
|
617 |
-
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
|
618 |
-
"""
|
619 |
-
This is an extended degradation model by combining
|
620 |
-
the degradation models of BSRGAN and Real-ESRGAN
|
621 |
-
----------
|
622 |
-
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
623 |
-
sf: scale factor
|
624 |
-
use_shuffle: the degradation shuffle
|
625 |
-
use_sharp: sharpening the img
|
626 |
-
Returns
|
627 |
-
-------
|
628 |
-
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
629 |
-
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
630 |
-
"""
|
631 |
-
|
632 |
-
h1, w1 = img.shape[:2]
|
633 |
-
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
634 |
-
h, w = img.shape[:2]
|
635 |
-
|
636 |
-
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
637 |
-
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
638 |
-
|
639 |
-
if use_sharp:
|
640 |
-
img = add_sharpening(img)
|
641 |
-
hq = img.copy()
|
642 |
-
|
643 |
-
if random.random() < shuffle_prob:
|
644 |
-
shuffle_order = random.sample(range(13), 13)
|
645 |
-
else:
|
646 |
-
shuffle_order = list(range(13))
|
647 |
-
# local shuffle for noise, JPEG is always the last one
|
648 |
-
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
|
649 |
-
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
|
650 |
-
|
651 |
-
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
|
652 |
-
|
653 |
-
for i in shuffle_order:
|
654 |
-
if i == 0:
|
655 |
-
img = add_blur(img, sf=sf)
|
656 |
-
elif i == 1:
|
657 |
-
img = add_resize(img, sf=sf)
|
658 |
-
elif i == 2:
|
659 |
-
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
660 |
-
elif i == 3:
|
661 |
-
if random.random() < poisson_prob:
|
662 |
-
img = add_Poisson_noise(img)
|
663 |
-
elif i == 4:
|
664 |
-
if random.random() < speckle_prob:
|
665 |
-
img = add_speckle_noise(img)
|
666 |
-
elif i == 5:
|
667 |
-
if random.random() < isp_prob and isp_model is not None:
|
668 |
-
with torch.no_grad():
|
669 |
-
img, hq = isp_model.forward(img.copy(), hq)
|
670 |
-
elif i == 6:
|
671 |
-
img = add_JPEG_noise(img)
|
672 |
-
elif i == 7:
|
673 |
-
img = add_blur(img, sf=sf)
|
674 |
-
elif i == 8:
|
675 |
-
img = add_resize(img, sf=sf)
|
676 |
-
elif i == 9:
|
677 |
-
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
|
678 |
-
elif i == 10:
|
679 |
-
if random.random() < poisson_prob:
|
680 |
-
img = add_Poisson_noise(img)
|
681 |
-
elif i == 11:
|
682 |
-
if random.random() < speckle_prob:
|
683 |
-
img = add_speckle_noise(img)
|
684 |
-
elif i == 12:
|
685 |
-
if random.random() < isp_prob and isp_model is not None:
|
686 |
-
with torch.no_grad():
|
687 |
-
img, hq = isp_model.forward(img.copy(), hq)
|
688 |
-
else:
|
689 |
-
print('check the shuffle!')
|
690 |
-
|
691 |
-
# resize to desired size
|
692 |
-
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
|
693 |
-
interpolation=random.choice([1, 2, 3]))
|
694 |
-
|
695 |
-
# add final JPEG compression noise
|
696 |
-
img = add_JPEG_noise(img)
|
697 |
-
|
698 |
-
# random crop
|
699 |
-
img, hq = random_crop(img, hq, sf, lq_patchsize)
|
700 |
-
|
701 |
-
return img, hq
|
702 |
-
|
703 |
-
|
704 |
-
if __name__ == '__main__':
|
705 |
-
print("hey")
|
706 |
-
img = util.imread_uint('utils/test.png', 3)
|
707 |
-
print(img)
|
708 |
-
img = util.uint2single(img)
|
709 |
-
print(img)
|
710 |
-
img = img[:448, :448]
|
711 |
-
h = img.shape[0] // 4
|
712 |
-
print("resizing to", h)
|
713 |
-
sf = 4
|
714 |
-
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
715 |
-
for i in range(20):
|
716 |
-
print(i)
|
717 |
-
img_lq = deg_fn(img)
|
718 |
-
print(img_lq)
|
719 |
-
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
|
720 |
-
print(img_lq.shape)
|
721 |
-
print("bicubic", img_lq_bicubic.shape)
|
722 |
-
print(img_hq.shape)
|
723 |
-
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
724 |
-
interpolation=0)
|
725 |
-
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
726 |
-
interpolation=0)
|
727 |
-
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
728 |
-
util.imsave(img_concat, str(i) + '.png')
|
729 |
-
|
730 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/image_degradation/bsrgan_light.py
DELETED
@@ -1,650 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
import numpy as np
|
3 |
-
import cv2
|
4 |
-
import torch
|
5 |
-
|
6 |
-
from functools import partial
|
7 |
-
import random
|
8 |
-
from scipy import ndimage
|
9 |
-
import scipy
|
10 |
-
import scipy.stats as ss
|
11 |
-
from scipy.interpolate import interp2d
|
12 |
-
from scipy.linalg import orth
|
13 |
-
import albumentations
|
14 |
-
|
15 |
-
import ldm.modules.image_degradation.utils_image as util
|
16 |
-
|
17 |
-
"""
|
18 |
-
# --------------------------------------------
|
19 |
-
# Super-Resolution
|
20 |
-
# --------------------------------------------
|
21 |
-
#
|
22 |
-
# Kai Zhang (cskaizhang@gmail.com)
|
23 |
-
# https://github.com/cszn
|
24 |
-
# From 2019/03--2021/08
|
25 |
-
# --------------------------------------------
|
26 |
-
"""
|
27 |
-
|
28 |
-
|
29 |
-
def modcrop_np(img, sf):
|
30 |
-
'''
|
31 |
-
Args:
|
32 |
-
img: numpy image, WxH or WxHxC
|
33 |
-
sf: scale factor
|
34 |
-
Return:
|
35 |
-
cropped image
|
36 |
-
'''
|
37 |
-
w, h = img.shape[:2]
|
38 |
-
im = np.copy(img)
|
39 |
-
return im[:w - w % sf, :h - h % sf, ...]
|
40 |
-
|
41 |
-
|
42 |
-
"""
|
43 |
-
# --------------------------------------------
|
44 |
-
# anisotropic Gaussian kernels
|
45 |
-
# --------------------------------------------
|
46 |
-
"""
|
47 |
-
|
48 |
-
|
49 |
-
def analytic_kernel(k):
|
50 |
-
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
|
51 |
-
k_size = k.shape[0]
|
52 |
-
# Calculate the big kernels size
|
53 |
-
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
|
54 |
-
# Loop over the small kernel to fill the big one
|
55 |
-
for r in range(k_size):
|
56 |
-
for c in range(k_size):
|
57 |
-
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
|
58 |
-
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
|
59 |
-
crop = k_size // 2
|
60 |
-
cropped_big_k = big_k[crop:-crop, crop:-crop]
|
61 |
-
# Normalize to 1
|
62 |
-
return cropped_big_k / cropped_big_k.sum()
|
63 |
-
|
64 |
-
|
65 |
-
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
|
66 |
-
""" generate an anisotropic Gaussian kernel
|
67 |
-
Args:
|
68 |
-
ksize : e.g., 15, kernel size
|
69 |
-
theta : [0, pi], rotation angle range
|
70 |
-
l1 : [0.1,50], scaling of eigenvalues
|
71 |
-
l2 : [0.1,l1], scaling of eigenvalues
|
72 |
-
If l1 = l2, will get an isotropic Gaussian kernel.
|
73 |
-
Returns:
|
74 |
-
k : kernel
|
75 |
-
"""
|
76 |
-
|
77 |
-
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
|
78 |
-
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
|
79 |
-
D = np.array([[l1, 0], [0, l2]])
|
80 |
-
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
|
81 |
-
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
|
82 |
-
|
83 |
-
return k
|
84 |
-
|
85 |
-
|
86 |
-
def gm_blur_kernel(mean, cov, size=15):
|
87 |
-
center = size / 2.0 + 0.5
|
88 |
-
k = np.zeros([size, size])
|
89 |
-
for y in range(size):
|
90 |
-
for x in range(size):
|
91 |
-
cy = y - center + 1
|
92 |
-
cx = x - center + 1
|
93 |
-
k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
|
94 |
-
|
95 |
-
k = k / np.sum(k)
|
96 |
-
return k
|
97 |
-
|
98 |
-
|
99 |
-
def shift_pixel(x, sf, upper_left=True):
|
100 |
-
"""shift pixel for super-resolution with different scale factors
|
101 |
-
Args:
|
102 |
-
x: WxHxC or WxH
|
103 |
-
sf: scale factor
|
104 |
-
upper_left: shift direction
|
105 |
-
"""
|
106 |
-
h, w = x.shape[:2]
|
107 |
-
shift = (sf - 1) * 0.5
|
108 |
-
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
|
109 |
-
if upper_left:
|
110 |
-
x1 = xv + shift
|
111 |
-
y1 = yv + shift
|
112 |
-
else:
|
113 |
-
x1 = xv - shift
|
114 |
-
y1 = yv - shift
|
115 |
-
|
116 |
-
x1 = np.clip(x1, 0, w - 1)
|
117 |
-
y1 = np.clip(y1, 0, h - 1)
|
118 |
-
|
119 |
-
if x.ndim == 2:
|
120 |
-
x = interp2d(xv, yv, x)(x1, y1)
|
121 |
-
if x.ndim == 3:
|
122 |
-
for i in range(x.shape[-1]):
|
123 |
-
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
|
124 |
-
|
125 |
-
return x
|
126 |
-
|
127 |
-
|
128 |
-
def blur(x, k):
|
129 |
-
'''
|
130 |
-
x: image, NxcxHxW
|
131 |
-
k: kernel, Nx1xhxw
|
132 |
-
'''
|
133 |
-
n, c = x.shape[:2]
|
134 |
-
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
|
135 |
-
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
|
136 |
-
k = k.repeat(1, c, 1, 1)
|
137 |
-
k = k.view(-1, 1, k.shape[2], k.shape[3])
|
138 |
-
x = x.view(1, -1, x.shape[2], x.shape[3])
|
139 |
-
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
|
140 |
-
x = x.view(n, c, x.shape[2], x.shape[3])
|
141 |
-
|
142 |
-
return x
|
143 |
-
|
144 |
-
|
145 |
-
def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
|
146 |
-
""""
|
147 |
-
# modified version of https://github.com/assafshocher/BlindSR_dataset_generator
|
148 |
-
# Kai Zhang
|
149 |
-
# min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
|
150 |
-
# max_var = 2.5 * sf
|
151 |
-
"""
|
152 |
-
# Set random eigen-vals (lambdas) and angle (theta) for COV matrix
|
153 |
-
lambda_1 = min_var + np.random.rand() * (max_var - min_var)
|
154 |
-
lambda_2 = min_var + np.random.rand() * (max_var - min_var)
|
155 |
-
theta = np.random.rand() * np.pi # random theta
|
156 |
-
noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
|
157 |
-
|
158 |
-
# Set COV matrix using Lambdas and Theta
|
159 |
-
LAMBDA = np.diag([lambda_1, lambda_2])
|
160 |
-
Q = np.array([[np.cos(theta), -np.sin(theta)],
|
161 |
-
[np.sin(theta), np.cos(theta)]])
|
162 |
-
SIGMA = Q @ LAMBDA @ Q.T
|
163 |
-
INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
|
164 |
-
|
165 |
-
# Set expectation position (shifting kernel for aligned image)
|
166 |
-
MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
|
167 |
-
MU = MU[None, None, :, None]
|
168 |
-
|
169 |
-
# Create meshgrid for Gaussian
|
170 |
-
[X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
|
171 |
-
Z = np.stack([X, Y], 2)[:, :, :, None]
|
172 |
-
|
173 |
-
# Calcualte Gaussian for every pixel of the kernel
|
174 |
-
ZZ = Z - MU
|
175 |
-
ZZ_t = ZZ.transpose(0, 1, 3, 2)
|
176 |
-
raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
|
177 |
-
|
178 |
-
# shift the kernel so it will be centered
|
179 |
-
# raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
|
180 |
-
|
181 |
-
# Normalize the kernel and return
|
182 |
-
# kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
|
183 |
-
kernel = raw_kernel / np.sum(raw_kernel)
|
184 |
-
return kernel
|
185 |
-
|
186 |
-
|
187 |
-
def fspecial_gaussian(hsize, sigma):
|
188 |
-
hsize = [hsize, hsize]
|
189 |
-
siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
|
190 |
-
std = sigma
|
191 |
-
[x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
|
192 |
-
arg = -(x * x + y * y) / (2 * std * std)
|
193 |
-
h = np.exp(arg)
|
194 |
-
h[h < scipy.finfo(float).eps * h.max()] = 0
|
195 |
-
sumh = h.sum()
|
196 |
-
if sumh != 0:
|
197 |
-
h = h / sumh
|
198 |
-
return h
|
199 |
-
|
200 |
-
|
201 |
-
def fspecial_laplacian(alpha):
|
202 |
-
alpha = max([0, min([alpha, 1])])
|
203 |
-
h1 = alpha / (alpha + 1)
|
204 |
-
h2 = (1 - alpha) / (alpha + 1)
|
205 |
-
h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
|
206 |
-
h = np.array(h)
|
207 |
-
return h
|
208 |
-
|
209 |
-
|
210 |
-
def fspecial(filter_type, *args, **kwargs):
|
211 |
-
'''
|
212 |
-
python code from:
|
213 |
-
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
|
214 |
-
'''
|
215 |
-
if filter_type == 'gaussian':
|
216 |
-
return fspecial_gaussian(*args, **kwargs)
|
217 |
-
if filter_type == 'laplacian':
|
218 |
-
return fspecial_laplacian(*args, **kwargs)
|
219 |
-
|
220 |
-
|
221 |
-
"""
|
222 |
-
# --------------------------------------------
|
223 |
-
# degradation models
|
224 |
-
# --------------------------------------------
|
225 |
-
"""
|
226 |
-
|
227 |
-
|
228 |
-
def bicubic_degradation(x, sf=3):
|
229 |
-
'''
|
230 |
-
Args:
|
231 |
-
x: HxWxC image, [0, 1]
|
232 |
-
sf: down-scale factor
|
233 |
-
Return:
|
234 |
-
bicubicly downsampled LR image
|
235 |
-
'''
|
236 |
-
x = util.imresize_np(x, scale=1 / sf)
|
237 |
-
return x
|
238 |
-
|
239 |
-
|
240 |
-
def srmd_degradation(x, k, sf=3):
|
241 |
-
''' blur + bicubic downsampling
|
242 |
-
Args:
|
243 |
-
x: HxWxC image, [0, 1]
|
244 |
-
k: hxw, double
|
245 |
-
sf: down-scale factor
|
246 |
-
Return:
|
247 |
-
downsampled LR image
|
248 |
-
Reference:
|
249 |
-
@inproceedings{zhang2018learning,
|
250 |
-
title={Learning a single convolutional super-resolution network for multiple degradations},
|
251 |
-
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
252 |
-
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
253 |
-
pages={3262--3271},
|
254 |
-
year={2018}
|
255 |
-
}
|
256 |
-
'''
|
257 |
-
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
|
258 |
-
x = bicubic_degradation(x, sf=sf)
|
259 |
-
return x
|
260 |
-
|
261 |
-
|
262 |
-
def dpsr_degradation(x, k, sf=3):
|
263 |
-
''' bicubic downsampling + blur
|
264 |
-
Args:
|
265 |
-
x: HxWxC image, [0, 1]
|
266 |
-
k: hxw, double
|
267 |
-
sf: down-scale factor
|
268 |
-
Return:
|
269 |
-
downsampled LR image
|
270 |
-
Reference:
|
271 |
-
@inproceedings{zhang2019deep,
|
272 |
-
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
|
273 |
-
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
|
274 |
-
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
|
275 |
-
pages={1671--1681},
|
276 |
-
year={2019}
|
277 |
-
}
|
278 |
-
'''
|
279 |
-
x = bicubic_degradation(x, sf=sf)
|
280 |
-
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
281 |
-
return x
|
282 |
-
|
283 |
-
|
284 |
-
def classical_degradation(x, k, sf=3):
|
285 |
-
''' blur + downsampling
|
286 |
-
Args:
|
287 |
-
x: HxWxC image, [0, 1]/[0, 255]
|
288 |
-
k: hxw, double
|
289 |
-
sf: down-scale factor
|
290 |
-
Return:
|
291 |
-
downsampled LR image
|
292 |
-
'''
|
293 |
-
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
|
294 |
-
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
|
295 |
-
st = 0
|
296 |
-
return x[st::sf, st::sf, ...]
|
297 |
-
|
298 |
-
|
299 |
-
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
|
300 |
-
"""USM sharpening. borrowed from real-ESRGAN
|
301 |
-
Input image: I; Blurry image: B.
|
302 |
-
1. K = I + weight * (I - B)
|
303 |
-
2. Mask = 1 if abs(I - B) > threshold, else: 0
|
304 |
-
3. Blur mask:
|
305 |
-
4. Out = Mask * K + (1 - Mask) * I
|
306 |
-
Args:
|
307 |
-
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
|
308 |
-
weight (float): Sharp weight. Default: 1.
|
309 |
-
radius (float): Kernel size of Gaussian blur. Default: 50.
|
310 |
-
threshold (int):
|
311 |
-
"""
|
312 |
-
if radius % 2 == 0:
|
313 |
-
radius += 1
|
314 |
-
blur = cv2.GaussianBlur(img, (radius, radius), 0)
|
315 |
-
residual = img - blur
|
316 |
-
mask = np.abs(residual) * 255 > threshold
|
317 |
-
mask = mask.astype('float32')
|
318 |
-
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
|
319 |
-
|
320 |
-
K = img + weight * residual
|
321 |
-
K = np.clip(K, 0, 1)
|
322 |
-
return soft_mask * K + (1 - soft_mask) * img
|
323 |
-
|
324 |
-
|
325 |
-
def add_blur(img, sf=4):
|
326 |
-
wd2 = 4.0 + sf
|
327 |
-
wd = 2.0 + 0.2 * sf
|
328 |
-
|
329 |
-
wd2 = wd2/4
|
330 |
-
wd = wd/4
|
331 |
-
|
332 |
-
if random.random() < 0.5:
|
333 |
-
l1 = wd2 * random.random()
|
334 |
-
l2 = wd2 * random.random()
|
335 |
-
k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
|
336 |
-
else:
|
337 |
-
k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
|
338 |
-
img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
|
339 |
-
|
340 |
-
return img
|
341 |
-
|
342 |
-
|
343 |
-
def add_resize(img, sf=4):
|
344 |
-
rnum = np.random.rand()
|
345 |
-
if rnum > 0.8: # up
|
346 |
-
sf1 = random.uniform(1, 2)
|
347 |
-
elif rnum < 0.7: # down
|
348 |
-
sf1 = random.uniform(0.5 / sf, 1)
|
349 |
-
else:
|
350 |
-
sf1 = 1.0
|
351 |
-
img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
|
352 |
-
img = np.clip(img, 0.0, 1.0)
|
353 |
-
|
354 |
-
return img
|
355 |
-
|
356 |
-
|
357 |
-
# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
358 |
-
# noise_level = random.randint(noise_level1, noise_level2)
|
359 |
-
# rnum = np.random.rand()
|
360 |
-
# if rnum > 0.6: # add color Gaussian noise
|
361 |
-
# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
362 |
-
# elif rnum < 0.4: # add grayscale Gaussian noise
|
363 |
-
# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
364 |
-
# else: # add noise
|
365 |
-
# L = noise_level2 / 255.
|
366 |
-
# D = np.diag(np.random.rand(3))
|
367 |
-
# U = orth(np.random.rand(3, 3))
|
368 |
-
# conv = np.dot(np.dot(np.transpose(U), D), U)
|
369 |
-
# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
370 |
-
# img = np.clip(img, 0.0, 1.0)
|
371 |
-
# return img
|
372 |
-
|
373 |
-
def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
|
374 |
-
noise_level = random.randint(noise_level1, noise_level2)
|
375 |
-
rnum = np.random.rand()
|
376 |
-
if rnum > 0.6: # add color Gaussian noise
|
377 |
-
img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
378 |
-
elif rnum < 0.4: # add grayscale Gaussian noise
|
379 |
-
img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
380 |
-
else: # add noise
|
381 |
-
L = noise_level2 / 255.
|
382 |
-
D = np.diag(np.random.rand(3))
|
383 |
-
U = orth(np.random.rand(3, 3))
|
384 |
-
conv = np.dot(np.dot(np.transpose(U), D), U)
|
385 |
-
img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
386 |
-
img = np.clip(img, 0.0, 1.0)
|
387 |
-
return img
|
388 |
-
|
389 |
-
|
390 |
-
def add_speckle_noise(img, noise_level1=2, noise_level2=25):
|
391 |
-
noise_level = random.randint(noise_level1, noise_level2)
|
392 |
-
img = np.clip(img, 0.0, 1.0)
|
393 |
-
rnum = random.random()
|
394 |
-
if rnum > 0.6:
|
395 |
-
img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
|
396 |
-
elif rnum < 0.4:
|
397 |
-
img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
|
398 |
-
else:
|
399 |
-
L = noise_level2 / 255.
|
400 |
-
D = np.diag(np.random.rand(3))
|
401 |
-
U = orth(np.random.rand(3, 3))
|
402 |
-
conv = np.dot(np.dot(np.transpose(U), D), U)
|
403 |
-
img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
|
404 |
-
img = np.clip(img, 0.0, 1.0)
|
405 |
-
return img
|
406 |
-
|
407 |
-
|
408 |
-
def add_Poisson_noise(img):
|
409 |
-
img = np.clip((img * 255.0).round(), 0, 255) / 255.
|
410 |
-
vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
|
411 |
-
if random.random() < 0.5:
|
412 |
-
img = np.random.poisson(img * vals).astype(np.float32) / vals
|
413 |
-
else:
|
414 |
-
img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
|
415 |
-
img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
|
416 |
-
noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
|
417 |
-
img += noise_gray[:, :, np.newaxis]
|
418 |
-
img = np.clip(img, 0.0, 1.0)
|
419 |
-
return img
|
420 |
-
|
421 |
-
|
422 |
-
def add_JPEG_noise(img):
|
423 |
-
quality_factor = random.randint(80, 95)
|
424 |
-
img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
|
425 |
-
result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
|
426 |
-
img = cv2.imdecode(encimg, 1)
|
427 |
-
img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
|
428 |
-
return img
|
429 |
-
|
430 |
-
|
431 |
-
def random_crop(lq, hq, sf=4, lq_patchsize=64):
|
432 |
-
h, w = lq.shape[:2]
|
433 |
-
rnd_h = random.randint(0, h - lq_patchsize)
|
434 |
-
rnd_w = random.randint(0, w - lq_patchsize)
|
435 |
-
lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
|
436 |
-
|
437 |
-
rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
|
438 |
-
hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
|
439 |
-
return lq, hq
|
440 |
-
|
441 |
-
|
442 |
-
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
|
443 |
-
"""
|
444 |
-
This is the degradation model of BSRGAN from the paper
|
445 |
-
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
446 |
-
----------
|
447 |
-
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
|
448 |
-
sf: scale factor
|
449 |
-
isp_model: camera ISP model
|
450 |
-
Returns
|
451 |
-
-------
|
452 |
-
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
453 |
-
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
454 |
-
"""
|
455 |
-
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
456 |
-
sf_ori = sf
|
457 |
-
|
458 |
-
h1, w1 = img.shape[:2]
|
459 |
-
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
460 |
-
h, w = img.shape[:2]
|
461 |
-
|
462 |
-
if h < lq_patchsize * sf or w < lq_patchsize * sf:
|
463 |
-
raise ValueError(f'img size ({h1}X{w1}) is too small!')
|
464 |
-
|
465 |
-
hq = img.copy()
|
466 |
-
|
467 |
-
if sf == 4 and random.random() < scale2_prob: # downsample1
|
468 |
-
if np.random.rand() < 0.5:
|
469 |
-
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
|
470 |
-
interpolation=random.choice([1, 2, 3]))
|
471 |
-
else:
|
472 |
-
img = util.imresize_np(img, 1 / 2, True)
|
473 |
-
img = np.clip(img, 0.0, 1.0)
|
474 |
-
sf = 2
|
475 |
-
|
476 |
-
shuffle_order = random.sample(range(7), 7)
|
477 |
-
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
478 |
-
if idx1 > idx2: # keep downsample3 last
|
479 |
-
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
480 |
-
|
481 |
-
for i in shuffle_order:
|
482 |
-
|
483 |
-
if i == 0:
|
484 |
-
img = add_blur(img, sf=sf)
|
485 |
-
|
486 |
-
elif i == 1:
|
487 |
-
img = add_blur(img, sf=sf)
|
488 |
-
|
489 |
-
elif i == 2:
|
490 |
-
a, b = img.shape[1], img.shape[0]
|
491 |
-
# downsample2
|
492 |
-
if random.random() < 0.75:
|
493 |
-
sf1 = random.uniform(1, 2 * sf)
|
494 |
-
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
|
495 |
-
interpolation=random.choice([1, 2, 3]))
|
496 |
-
else:
|
497 |
-
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
498 |
-
k_shifted = shift_pixel(k, sf)
|
499 |
-
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
500 |
-
img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
501 |
-
img = img[0::sf, 0::sf, ...] # nearest downsampling
|
502 |
-
img = np.clip(img, 0.0, 1.0)
|
503 |
-
|
504 |
-
elif i == 3:
|
505 |
-
# downsample3
|
506 |
-
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
507 |
-
img = np.clip(img, 0.0, 1.0)
|
508 |
-
|
509 |
-
elif i == 4:
|
510 |
-
# add Gaussian noise
|
511 |
-
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
|
512 |
-
|
513 |
-
elif i == 5:
|
514 |
-
# add JPEG noise
|
515 |
-
if random.random() < jpeg_prob:
|
516 |
-
img = add_JPEG_noise(img)
|
517 |
-
|
518 |
-
elif i == 6:
|
519 |
-
# add processed camera sensor noise
|
520 |
-
if random.random() < isp_prob and isp_model is not None:
|
521 |
-
with torch.no_grad():
|
522 |
-
img, hq = isp_model.forward(img.copy(), hq)
|
523 |
-
|
524 |
-
# add final JPEG compression noise
|
525 |
-
img = add_JPEG_noise(img)
|
526 |
-
|
527 |
-
# random crop
|
528 |
-
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
|
529 |
-
|
530 |
-
return img, hq
|
531 |
-
|
532 |
-
|
533 |
-
# todo no isp_model?
|
534 |
-
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
|
535 |
-
"""
|
536 |
-
This is the degradation model of BSRGAN from the paper
|
537 |
-
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
|
538 |
-
----------
|
539 |
-
sf: scale factor
|
540 |
-
isp_model: camera ISP model
|
541 |
-
Returns
|
542 |
-
-------
|
543 |
-
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
|
544 |
-
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
|
545 |
-
"""
|
546 |
-
image = util.uint2single(image)
|
547 |
-
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
|
548 |
-
sf_ori = sf
|
549 |
-
|
550 |
-
h1, w1 = image.shape[:2]
|
551 |
-
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
|
552 |
-
h, w = image.shape[:2]
|
553 |
-
|
554 |
-
hq = image.copy()
|
555 |
-
|
556 |
-
if sf == 4 and random.random() < scale2_prob: # downsample1
|
557 |
-
if np.random.rand() < 0.5:
|
558 |
-
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
|
559 |
-
interpolation=random.choice([1, 2, 3]))
|
560 |
-
else:
|
561 |
-
image = util.imresize_np(image, 1 / 2, True)
|
562 |
-
image = np.clip(image, 0.0, 1.0)
|
563 |
-
sf = 2
|
564 |
-
|
565 |
-
shuffle_order = random.sample(range(7), 7)
|
566 |
-
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
|
567 |
-
if idx1 > idx2: # keep downsample3 last
|
568 |
-
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
|
569 |
-
|
570 |
-
for i in shuffle_order:
|
571 |
-
|
572 |
-
if i == 0:
|
573 |
-
image = add_blur(image, sf=sf)
|
574 |
-
|
575 |
-
# elif i == 1:
|
576 |
-
# image = add_blur(image, sf=sf)
|
577 |
-
|
578 |
-
if i == 0:
|
579 |
-
pass
|
580 |
-
|
581 |
-
elif i == 2:
|
582 |
-
a, b = image.shape[1], image.shape[0]
|
583 |
-
# downsample2
|
584 |
-
if random.random() < 0.8:
|
585 |
-
sf1 = random.uniform(1, 2 * sf)
|
586 |
-
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
|
587 |
-
interpolation=random.choice([1, 2, 3]))
|
588 |
-
else:
|
589 |
-
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
|
590 |
-
k_shifted = shift_pixel(k, sf)
|
591 |
-
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
|
592 |
-
image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
|
593 |
-
image = image[0::sf, 0::sf, ...] # nearest downsampling
|
594 |
-
|
595 |
-
image = np.clip(image, 0.0, 1.0)
|
596 |
-
|
597 |
-
elif i == 3:
|
598 |
-
# downsample3
|
599 |
-
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
|
600 |
-
image = np.clip(image, 0.0, 1.0)
|
601 |
-
|
602 |
-
elif i == 4:
|
603 |
-
# add Gaussian noise
|
604 |
-
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
|
605 |
-
|
606 |
-
elif i == 5:
|
607 |
-
# add JPEG noise
|
608 |
-
if random.random() < jpeg_prob:
|
609 |
-
image = add_JPEG_noise(image)
|
610 |
-
#
|
611 |
-
# elif i == 6:
|
612 |
-
# # add processed camera sensor noise
|
613 |
-
# if random.random() < isp_prob and isp_model is not None:
|
614 |
-
# with torch.no_grad():
|
615 |
-
# img, hq = isp_model.forward(img.copy(), hq)
|
616 |
-
|
617 |
-
# add final JPEG compression noise
|
618 |
-
image = add_JPEG_noise(image)
|
619 |
-
image = util.single2uint(image)
|
620 |
-
example = {"image": image}
|
621 |
-
return example
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
if __name__ == '__main__':
|
627 |
-
print("hey")
|
628 |
-
img = util.imread_uint('utils/test.png', 3)
|
629 |
-
img = img[:448, :448]
|
630 |
-
h = img.shape[0] // 4
|
631 |
-
print("resizing to", h)
|
632 |
-
sf = 4
|
633 |
-
deg_fn = partial(degradation_bsrgan_variant, sf=sf)
|
634 |
-
for i in range(20):
|
635 |
-
print(i)
|
636 |
-
img_hq = img
|
637 |
-
img_lq = deg_fn(img)["image"]
|
638 |
-
img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
|
639 |
-
print(img_lq)
|
640 |
-
img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
|
641 |
-
print(img_lq.shape)
|
642 |
-
print("bicubic", img_lq_bicubic.shape)
|
643 |
-
print(img_hq.shape)
|
644 |
-
lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
645 |
-
interpolation=0)
|
646 |
-
lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
|
647 |
-
(int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
|
648 |
-
interpolation=0)
|
649 |
-
img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
|
650 |
-
util.imsave(img_concat, str(i) + '.png')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable_diffusion/ldm/modules/image_degradation/utils/test.png
DELETED
Binary file (441 kB)
|
|
stable_diffusion/ldm/modules/image_degradation/utils_image.py
DELETED
@@ -1,916 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import math
|
3 |
-
import random
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import cv2
|
7 |
-
from torchvision.utils import make_grid
|
8 |
-
from datetime import datetime
|
9 |
-
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
|
10 |
-
|
11 |
-
|
12 |
-
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
13 |
-
|
14 |
-
|
15 |
-
'''
|
16 |
-
# --------------------------------------------
|
17 |
-
# Kai Zhang (github: https://github.com/cszn)
|
18 |
-
# 03/Mar/2019
|
19 |
-
# --------------------------------------------
|
20 |
-
# https://github.com/twhui/SRGAN-pyTorch
|
21 |
-
# https://github.com/xinntao/BasicSR
|
22 |
-
# --------------------------------------------
|
23 |
-
'''
|
24 |
-
|
25 |
-
|
26 |
-
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
|
27 |
-
|
28 |
-
|
29 |
-
def is_image_file(filename):
|
30 |
-
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
31 |
-
|
32 |
-
|
33 |
-
def get_timestamp():
|
34 |
-
return datetime.now().strftime('%y%m%d-%H%M%S')
|
35 |
-
|
36 |
-
|
37 |
-
def imshow(x, title=None, cbar=False, figsize=None):
|
38 |
-
plt.figure(figsize=figsize)
|
39 |
-
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
|
40 |
-
if title:
|
41 |
-
plt.title(title)
|
42 |
-
if cbar:
|
43 |
-
plt.colorbar()
|
44 |
-
plt.show()
|
45 |
-
|
46 |
-
|
47 |
-
def surf(Z, cmap='rainbow', figsize=None):
|
48 |
-
plt.figure(figsize=figsize)
|
49 |
-
ax3 = plt.axes(projection='3d')
|
50 |
-
|
51 |
-
w, h = Z.shape[:2]
|
52 |
-
xx = np.arange(0,w,1)
|
53 |
-
yy = np.arange(0,h,1)
|
54 |
-
X, Y = np.meshgrid(xx, yy)
|
55 |
-
ax3.plot_surface(X,Y,Z,cmap=cmap)
|
56 |
-
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
|
57 |
-
plt.show()
|
58 |
-
|
59 |
-
|
60 |
-
'''
|
61 |
-
# --------------------------------------------
|
62 |
-
# get image pathes
|
63 |
-
# --------------------------------------------
|
64 |
-
'''
|
65 |
-
|
66 |
-
|
67 |
-
def get_image_paths(dataroot):
|
68 |
-
paths = None # return None if dataroot is None
|
69 |
-
if dataroot is not None:
|
70 |
-
paths = sorted(_get_paths_from_images(dataroot))
|
71 |
-
return paths
|
72 |
-
|
73 |
-
|
74 |
-
def _get_paths_from_images(path):
|
75 |
-
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
|
76 |
-
images = []
|
77 |
-
for dirpath, _, fnames in sorted(os.walk(path)):
|
78 |
-
for fname in sorted(fnames):
|
79 |
-
if is_image_file(fname):
|
80 |
-
img_path = os.path.join(dirpath, fname)
|
81 |
-
images.append(img_path)
|
82 |
-
assert images, '{:s} has no valid image file'.format(path)
|
83 |
-
return images
|
84 |
-
|
85 |
-
|
86 |
-
'''
|
87 |
-
# --------------------------------------------
|
88 |
-
# split large images into small images
|
89 |
-
# --------------------------------------------
|
90 |
-
'''
|
91 |
-
|
92 |
-
|
93 |
-
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
|
94 |
-
w, h = img.shape[:2]
|
95 |
-
patches = []
|
96 |
-
if w > p_max and h > p_max:
|
97 |
-
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
|
98 |
-
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
|
99 |
-
w1.append(w-p_size)
|
100 |
-
h1.append(h-p_size)
|
101 |
-
# print(w1)
|
102 |
-
# print(h1)
|
103 |
-
for i in w1:
|
104 |
-
for j in h1:
|
105 |
-
patches.append(img[i:i+p_size, j:j+p_size,:])
|
106 |
-
else:
|
107 |
-
patches.append(img)
|
108 |
-
|
109 |
-
return patches
|
110 |
-
|
111 |
-
|
112 |
-
def imssave(imgs, img_path):
|
113 |
-
"""
|
114 |
-
imgs: list, N images of size WxHxC
|
115 |
-
"""
|
116 |
-
img_name, ext = os.path.splitext(os.path.basename(img_path))
|
117 |
-
|
118 |
-
for i, img in enumerate(imgs):
|
119 |
-
if img.ndim == 3:
|
120 |
-
img = img[:, :, [2, 1, 0]]
|
121 |
-
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
|
122 |
-
cv2.imwrite(new_path, img)
|
123 |
-
|
124 |
-
|
125 |
-
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
|
126 |
-
"""
|
127 |
-
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
|
128 |
-
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
|
129 |
-
will be splitted.
|
130 |
-
Args:
|
131 |
-
original_dataroot:
|
132 |
-
taget_dataroot:
|
133 |
-
p_size: size of small images
|
134 |
-
p_overlap: patch size in training is a good choice
|
135 |
-
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
|
136 |
-
"""
|
137 |
-
paths = get_image_paths(original_dataroot)
|
138 |
-
for img_path in paths:
|
139 |
-
# img_name, ext = os.path.splitext(os.path.basename(img_path))
|
140 |
-
img = imread_uint(img_path, n_channels=n_channels)
|
141 |
-
patches = patches_from_image(img, p_size, p_overlap, p_max)
|
142 |
-
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
|
143 |
-
#if original_dataroot == taget_dataroot:
|
144 |
-
#del img_path
|
145 |
-
|
146 |
-
'''
|
147 |
-
# --------------------------------------------
|
148 |
-
# makedir
|
149 |
-
# --------------------------------------------
|
150 |
-
'''
|
151 |
-
|
152 |
-
|
153 |
-
def mkdir(path):
|
154 |
-
if not os.path.exists(path):
|
155 |
-
os.makedirs(path)
|
156 |
-
|
157 |
-
|
158 |
-
def mkdirs(paths):
|
159 |
-
if isinstance(paths, str):
|
160 |
-
mkdir(paths)
|
161 |
-
else:
|
162 |
-
for path in paths:
|
163 |
-
mkdir(path)
|
164 |
-
|
165 |
-
|
166 |
-
def mkdir_and_rename(path):
|
167 |
-
if os.path.exists(path):
|
168 |
-
new_name = path + '_archived_' + get_timestamp()
|
169 |
-
print('Path already exists. Rename it to [{:s}]'.format(new_name))
|
170 |
-
os.rename(path, new_name)
|
171 |
-
os.makedirs(path)
|
172 |
-
|
173 |
-
|
174 |
-
'''
|
175 |
-
# --------------------------------------------
|
176 |
-
# read image from path
|
177 |
-
# opencv is fast, but read BGR numpy image
|
178 |
-
# --------------------------------------------
|
179 |
-
'''
|
180 |
-
|
181 |
-
|
182 |
-
# --------------------------------------------
|
183 |
-
# get uint8 image of size HxWxn_channles (RGB)
|
184 |
-
# --------------------------------------------
|
185 |
-
def imread_uint(path, n_channels=3):
|
186 |
-
# input: path
|
187 |
-
# output: HxWx3(RGB or GGG), or HxWx1 (G)
|
188 |
-
if n_channels == 1:
|
189 |
-
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
|
190 |
-
img = np.expand_dims(img, axis=2) # HxWx1
|
191 |
-
elif n_channels == 3:
|
192 |
-
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
|
193 |
-
if img.ndim == 2:
|
194 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
|
195 |
-
else:
|
196 |
-
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
|
197 |
-
return img
|
198 |
-
|
199 |
-
|
200 |
-
# --------------------------------------------
|
201 |
-
# matlab's imwrite
|
202 |
-
# --------------------------------------------
|
203 |
-
def imsave(img, img_path):
|
204 |
-
img = np.squeeze(img)
|
205 |
-
if img.ndim == 3:
|
206 |
-
img = img[:, :, [2, 1, 0]]
|
207 |
-
cv2.imwrite(img_path, img)
|
208 |
-
|
209 |
-
def imwrite(img, img_path):
|
210 |
-
img = np.squeeze(img)
|
211 |
-
if img.ndim == 3:
|
212 |
-
img = img[:, :, [2, 1, 0]]
|
213 |
-
cv2.imwrite(img_path, img)
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
# --------------------------------------------
|
218 |
-
# get single image of size HxWxn_channles (BGR)
|
219 |
-
# --------------------------------------------
|
220 |
-
def read_img(path):
|
221 |
-
# read image by cv2
|
222 |
-
# return: Numpy float32, HWC, BGR, [0,1]
|
223 |
-
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
|
224 |
-
img = img.astype(np.float32) / 255.
|
225 |
-
if img.ndim == 2:
|
226 |
-
img = np.expand_dims(img, axis=2)
|
227 |
-
# some images have 4 channels
|
228 |
-
if img.shape[2] > 3:
|
229 |
-
img = img[:, :, :3]
|
230 |
-
return img
|
231 |
-
|
232 |
-
|
233 |
-
'''
|
234 |
-
# --------------------------------------------
|
235 |
-
# image format conversion
|
236 |
-
# --------------------------------------------
|
237 |
-
# numpy(single) <---> numpy(unit)
|
238 |
-
# numpy(single) <---> tensor
|
239 |
-
# numpy(unit) <---> tensor
|
240 |
-
# --------------------------------------------
|
241 |
-
'''
|
242 |
-
|
243 |
-
|
244 |
-
# --------------------------------------------
|
245 |
-
# numpy(single) [0, 1] <---> numpy(unit)
|
246 |
-
# --------------------------------------------
|
247 |
-
|
248 |
-
|
249 |
-
def uint2single(img):
|
250 |
-
|
251 |
-
return np.float32(img/255.)
|
252 |
-
|
253 |
-
|
254 |
-
def single2uint(img):
|
255 |
-
|
256 |
-
return np.uint8((img.clip(0, 1)*255.).round())
|
257 |
-
|
258 |
-
|
259 |
-
def uint162single(img):
|
260 |
-
|
261 |
-
return np.float32(img/65535.)
|
262 |
-
|
263 |
-
|
264 |
-
def single2uint16(img):
|
265 |
-
|
266 |
-
return np.uint16((img.clip(0, 1)*65535.).round())
|
267 |
-
|
268 |
-
|
269 |
-
# --------------------------------------------
|
270 |
-
# numpy(unit) (HxWxC or HxW) <---> tensor
|
271 |
-
# --------------------------------------------
|
272 |
-
|
273 |
-
|
274 |
-
# convert uint to 4-dimensional torch tensor
|
275 |
-
def uint2tensor4(img):
|
276 |
-
if img.ndim == 2:
|
277 |
-
img = np.expand_dims(img, axis=2)
|
278 |
-
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
|
279 |
-
|
280 |
-
|
281 |
-
# convert uint to 3-dimensional torch tensor
|
282 |
-
def uint2tensor3(img):
|
283 |
-
if img.ndim == 2:
|
284 |
-
img = np.expand_dims(img, axis=2)
|
285 |
-
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
|
286 |
-
|
287 |
-
|
288 |
-
# convert 2/3/4-dimensional torch tensor to uint
|
289 |
-
def tensor2uint(img):
|
290 |
-
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
|
291 |
-
if img.ndim == 3:
|
292 |
-
img = np.transpose(img, (1, 2, 0))
|
293 |
-
return np.uint8((img*255.0).round())
|
294 |
-
|
295 |
-
|
296 |
-
# --------------------------------------------
|
297 |
-
# numpy(single) (HxWxC) <---> tensor
|
298 |
-
# --------------------------------------------
|
299 |
-
|
300 |
-
|
301 |
-
# convert single (HxWxC) to 3-dimensional torch tensor
|
302 |
-
def single2tensor3(img):
|
303 |
-
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
|
304 |
-
|
305 |
-
|
306 |
-
# convert single (HxWxC) to 4-dimensional torch tensor
|
307 |
-
def single2tensor4(img):
|
308 |
-
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
|
309 |
-
|
310 |
-
|
311 |
-
# convert torch tensor to single
|
312 |
-
def tensor2single(img):
|
313 |
-
img = img.data.squeeze().float().cpu().numpy()
|
314 |
-
if img.ndim == 3:
|
315 |
-
img = np.transpose(img, (1, 2, 0))
|
316 |
-
|
317 |
-
return img
|
318 |
-
|
319 |
-
# convert torch tensor to single
|
320 |
-
def tensor2single3(img):
|
321 |
-
img = img.data.squeeze().float().cpu().numpy()
|
322 |
-
if img.ndim == 3:
|
323 |
-
img = np.transpose(img, (1, 2, 0))
|
324 |
-
elif img.ndim == 2:
|
325 |
-
img = np.expand_dims(img, axis=2)
|
326 |
-
return img
|
327 |
-
|
328 |
-
|
329 |
-
def single2tensor5(img):
|
330 |
-
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
|
331 |
-
|
332 |
-
|
333 |
-
def single32tensor5(img):
|
334 |
-
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
|
335 |
-
|
336 |
-
|
337 |
-
def single42tensor4(img):
|
338 |
-
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
|
339 |
-
|
340 |
-
|
341 |
-
# from skimage.io import imread, imsave
|
342 |
-
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
343 |
-
'''
|
344 |
-
Converts a torch Tensor into an image Numpy array of BGR channel order
|
345 |
-
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
346 |
-
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
347 |
-
'''
|
348 |
-
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
|
349 |
-
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
|
350 |
-
n_dim = tensor.dim()
|
351 |
-
if n_dim == 4:
|
352 |
-
n_img = len(tensor)
|
353 |
-
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
|
354 |
-
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
355 |
-
elif n_dim == 3:
|
356 |
-
img_np = tensor.numpy()
|
357 |
-
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
358 |
-
elif n_dim == 2:
|
359 |
-
img_np = tensor.numpy()
|
360 |
-
else:
|
361 |
-
raise TypeError(
|
362 |
-
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
363 |
-
if out_type == np.uint8:
|
364 |
-
img_np = (img_np * 255.0).round()
|
365 |
-
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
|
366 |
-
return img_np.astype(out_type)
|
367 |
-
|
368 |
-
|
369 |
-
'''
|
370 |
-
# --------------------------------------------
|
371 |
-
# Augmentation, flipe and/or rotate
|
372 |
-
# --------------------------------------------
|
373 |
-
# The following two are enough.
|
374 |
-
# (1) augmet_img: numpy image of WxHxC or WxH
|
375 |
-
# (2) augment_img_tensor4: tensor image 1xCxWxH
|
376 |
-
# --------------------------------------------
|
377 |
-
'''
|
378 |
-
|
379 |
-
|
380 |
-
def augment_img(img, mode=0):
|
381 |
-
'''Kai Zhang (github: https://github.com/cszn)
|
382 |
-
'''
|
383 |
-
if mode == 0:
|
384 |
-
return img
|
385 |
-
elif mode == 1:
|
386 |
-
return np.flipud(np.rot90(img))
|
387 |
-
elif mode == 2:
|
388 |
-
return np.flipud(img)
|
389 |
-
elif mode == 3:
|
390 |
-
return np.rot90(img, k=3)
|
391 |
-
elif mode == 4:
|
392 |
-
return np.flipud(np.rot90(img, k=2))
|
393 |
-
elif mode == 5:
|
394 |
-
return np.rot90(img)
|
395 |
-
elif mode == 6:
|
396 |
-
return np.rot90(img, k=2)
|
397 |
-
elif mode == 7:
|
398 |
-
return np.flipud(np.rot90(img, k=3))
|
399 |
-
|
400 |
-
|
401 |
-
def augment_img_tensor4(img, mode=0):
|
402 |
-
'''Kai Zhang (github: https://github.com/cszn)
|
403 |
-
'''
|
404 |
-
if mode == 0:
|
405 |
-
return img
|
406 |
-
elif mode == 1:
|
407 |
-
return img.rot90(1, [2, 3]).flip([2])
|
408 |
-
elif mode == 2:
|
409 |
-
return img.flip([2])
|
410 |
-
elif mode == 3:
|
411 |
-
return img.rot90(3, [2, 3])
|
412 |
-
elif mode == 4:
|
413 |
-
return img.rot90(2, [2, 3]).flip([2])
|
414 |
-
elif mode == 5:
|
415 |
-
return img.rot90(1, [2, 3])
|
416 |
-
elif mode == 6:
|
417 |
-
return img.rot90(2, [2, 3])
|
418 |
-
elif mode == 7:
|
419 |
-
return img.rot90(3, [2, 3]).flip([2])
|
420 |
-
|
421 |
-
|
422 |
-
def augment_img_tensor(img, mode=0):
|
423 |
-
'''Kai Zhang (github: https://github.com/cszn)
|
424 |
-
'''
|
425 |
-
img_size = img.size()
|
426 |
-
img_np = img.data.cpu().numpy()
|
427 |
-
if len(img_size) == 3:
|
428 |
-
img_np = np.transpose(img_np, (1, 2, 0))
|
429 |
-
elif len(img_size) == 4:
|
430 |
-
img_np = np.transpose(img_np, (2, 3, 1, 0))
|
431 |
-
img_np = augment_img(img_np, mode=mode)
|
432 |
-
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
|
433 |
-
if len(img_size) == 3:
|
434 |
-
img_tensor = img_tensor.permute(2, 0, 1)
|
435 |
-
elif len(img_size) == 4:
|
436 |
-
img_tensor = img_tensor.permute(3, 2, 0, 1)
|
437 |
-
|
438 |
-
return img_tensor.type_as(img)
|
439 |
-
|
440 |
-
|
441 |
-
def augment_img_np3(img, mode=0):
|
442 |
-
if mode == 0:
|
443 |
-
return img
|
444 |
-
elif mode == 1:
|
445 |
-
return img.transpose(1, 0, 2)
|
446 |
-
elif mode == 2:
|
447 |
-
return img[::-1, :, :]
|
448 |
-
elif mode == 3:
|
449 |
-
img = img[::-1, :, :]
|
450 |
-
img = img.transpose(1, 0, 2)
|
451 |
-
return img
|
452 |
-
elif mode == 4:
|
453 |
-
return img[:, ::-1, :]
|
454 |
-
elif mode == 5:
|
455 |
-
img = img[:, ::-1, :]
|
456 |
-
img = img.transpose(1, 0, 2)
|
457 |
-
return img
|
458 |
-
elif mode == 6:
|
459 |
-
img = img[:, ::-1, :]
|
460 |
-
img = img[::-1, :, :]
|
461 |
-
return img
|
462 |
-
elif mode == 7:
|
463 |
-
img = img[:, ::-1, :]
|
464 |
-
img = img[::-1, :, :]
|
465 |
-
img = img.transpose(1, 0, 2)
|
466 |
-
return img
|
467 |
-
|
468 |
-
|
469 |
-
def augment_imgs(img_list, hflip=True, rot=True):
|
470 |
-
# horizontal flip OR rotate
|
471 |
-
hflip = hflip and random.random() < 0.5
|
472 |
-
vflip = rot and random.random() < 0.5
|
473 |
-
rot90 = rot and random.random() < 0.5
|
474 |
-
|
475 |
-
def _augment(img):
|
476 |
-
if hflip:
|
477 |
-
img = img[:, ::-1, :]
|
478 |
-
if vflip:
|
479 |
-
img = img[::-1, :, :]
|
480 |
-
if rot90:
|
481 |
-
img = img.transpose(1, 0, 2)
|
482 |
-
return img
|
483 |
-
|
484 |
-
return [_augment(img) for img in img_list]
|
485 |
-
|
486 |
-
|
487 |
-
'''
|
488 |
-
# --------------------------------------------
|
489 |
-
# modcrop and shave
|
490 |
-
# --------------------------------------------
|
491 |
-
'''
|
492 |
-
|
493 |
-
|
494 |
-
def modcrop(img_in, scale):
|
495 |
-
# img_in: Numpy, HWC or HW
|
496 |
-
img = np.copy(img_in)
|
497 |
-
if img.ndim == 2:
|
498 |
-
H, W = img.shape
|
499 |
-
H_r, W_r = H % scale, W % scale
|
500 |
-
img = img[:H - H_r, :W - W_r]
|
501 |
-
elif img.ndim == 3:
|
502 |
-
H, W, C = img.shape
|
503 |
-
H_r, W_r = H % scale, W % scale
|
504 |
-
img = img[:H - H_r, :W - W_r, :]
|
505 |
-
else:
|
506 |
-
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
|
507 |
-
return img
|
508 |
-
|
509 |
-
|
510 |
-
def shave(img_in, border=0):
|
511 |
-
# img_in: Numpy, HWC or HW
|
512 |
-
img = np.copy(img_in)
|
513 |
-
h, w = img.shape[:2]
|
514 |
-
img = img[border:h-border, border:w-border]
|
515 |
-
return img
|
516 |
-
|
517 |
-
|
518 |
-
'''
|
519 |
-
# --------------------------------------------
|
520 |
-
# image processing process on numpy image
|
521 |
-
# channel_convert(in_c, tar_type, img_list):
|
522 |
-
# rgb2ycbcr(img, only_y=True):
|
523 |
-
# bgr2ycbcr(img, only_y=True):
|
524 |
-
# ycbcr2rgb(img):
|
525 |
-
# --------------------------------------------
|
526 |
-
'''
|
527 |
-
|
528 |
-
|
529 |
-
def rgb2ycbcr(img, only_y=True):
|
530 |
-
'''same as matlab rgb2ycbcr
|
531 |
-
only_y: only return Y channel
|
532 |
-
Input:
|
533 |
-
uint8, [0, 255]
|
534 |
-
float, [0, 1]
|
535 |
-
'''
|
536 |
-
in_img_type = img.dtype
|
537 |
-
img.astype(np.float32)
|
538 |
-
if in_img_type != np.uint8:
|
539 |
-
img *= 255.
|
540 |
-
# convert
|
541 |
-
if only_y:
|
542 |
-
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
|
543 |
-
else:
|
544 |
-
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
|
545 |
-
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
|
546 |
-
if in_img_type == np.uint8:
|
547 |
-
rlt = rlt.round()
|
548 |
-
else:
|
549 |
-
rlt /= 255.
|
550 |
-
return rlt.astype(in_img_type)
|
551 |
-
|
552 |
-
|
553 |
-
def ycbcr2rgb(img):
|
554 |
-
'''same as matlab ycbcr2rgb
|
555 |
-
Input:
|
556 |
-
uint8, [0, 255]
|
557 |
-
float, [0, 1]
|
558 |
-
'''
|
559 |
-
in_img_type = img.dtype
|
560 |
-
img.astype(np.float32)
|
561 |
-
if in_img_type != np.uint8:
|
562 |
-
img *= 255.
|
563 |
-
# convert
|
564 |
-
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
|
565 |
-
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
|
566 |
-
if in_img_type == np.uint8:
|
567 |
-
rlt = rlt.round()
|
568 |
-
else:
|
569 |
-
rlt /= 255.
|
570 |
-
return rlt.astype(in_img_type)
|
571 |
-
|
572 |
-
|
573 |
-
def bgr2ycbcr(img, only_y=True):
|
574 |
-
'''bgr version of rgb2ycbcr
|
575 |
-
only_y: only return Y channel
|
576 |
-
Input:
|
577 |
-
uint8, [0, 255]
|
578 |
-
float, [0, 1]
|
579 |
-
'''
|
580 |
-
in_img_type = img.dtype
|
581 |
-
img.astype(np.float32)
|
582 |
-
if in_img_type != np.uint8:
|
583 |
-
img *= 255.
|
584 |
-
# convert
|
585 |
-
if only_y:
|
586 |
-
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
|
587 |
-
else:
|
588 |
-
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
|
589 |
-
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
|
590 |
-
if in_img_type == np.uint8:
|
591 |
-
rlt = rlt.round()
|
592 |
-
else:
|
593 |
-
rlt /= 255.
|
594 |
-
return rlt.astype(in_img_type)
|
595 |
-
|
596 |
-
|
597 |
-
def channel_convert(in_c, tar_type, img_list):
|
598 |
-
# conversion among BGR, gray and y
|
599 |
-
if in_c == 3 and tar_type == 'gray': # BGR to gray
|
600 |
-
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
|
601 |
-
return [np.expand_dims(img, axis=2) for img in gray_list]
|
602 |
-
elif in_c == 3 and tar_type == 'y': # BGR to y
|
603 |
-
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
|
604 |
-
return [np.expand_dims(img, axis=2) for img in y_list]
|
605 |
-
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
|
606 |
-
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
|
607 |
-
else:
|
608 |
-
return img_list
|
609 |
-
|
610 |
-
|
611 |
-
'''
|
612 |
-
# --------------------------------------------
|
613 |
-
# metric, PSNR and SSIM
|
614 |
-
# --------------------------------------------
|
615 |
-
'''
|
616 |
-
|
617 |
-
|
618 |
-
# --------------------------------------------
|
619 |
-
# PSNR
|
620 |
-
# --------------------------------------------
|
621 |
-
def calculate_psnr(img1, img2, border=0):
|
622 |
-
# img1 and img2 have range [0, 255]
|
623 |
-
#img1 = img1.squeeze()
|
624 |
-
#img2 = img2.squeeze()
|
625 |
-
if not img1.shape == img2.shape:
|
626 |
-
raise ValueError('Input images must have the same dimensions.')
|
627 |
-
h, w = img1.shape[:2]
|
628 |
-
img1 = img1[border:h-border, border:w-border]
|
629 |
-
img2 = img2[border:h-border, border:w-border]
|
630 |
-
|
631 |
-
img1 = img1.astype(np.float64)
|
632 |
-
img2 = img2.astype(np.float64)
|
633 |
-
mse = np.mean((img1 - img2)**2)
|
634 |
-
if mse == 0:
|
635 |
-
return float('inf')
|
636 |
-
return 20 * math.log10(255.0 / math.sqrt(mse))
|
637 |
-
|
638 |
-
|
639 |
-
# --------------------------------------------
|
640 |
-
# SSIM
|
641 |
-
# --------------------------------------------
|
642 |
-
def calculate_ssim(img1, img2, border=0):
|
643 |
-
'''calculate SSIM
|
644 |
-
the same outputs as MATLAB's
|
645 |
-
img1, img2: [0, 255]
|
646 |
-
'''
|
647 |
-
#img1 = img1.squeeze()
|
648 |
-
#img2 = img2.squeeze()
|
649 |
-
if not img1.shape == img2.shape:
|
650 |
-
raise ValueError('Input images must have the same dimensions.')
|
651 |
-
h, w = img1.shape[:2]
|
652 |
-
img1 = img1[border:h-border, border:w-border]
|
653 |
-
img2 = img2[border:h-border, border:w-border]
|
654 |
-
|
655 |
-
if img1.ndim == 2:
|
656 |
-
return ssim(img1, img2)
|
657 |
-
elif img1.ndim == 3:
|
658 |
-
if img1.shape[2] == 3:
|
659 |
-
ssims = []
|
660 |
-
for i in range(3):
|
661 |
-
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
|
662 |
-
return np.array(ssims).mean()
|
663 |
-
elif img1.shape[2] == 1:
|
664 |
-
return ssim(np.squeeze(img1), np.squeeze(img2))
|
665 |
-
else:
|
666 |
-
raise ValueError('Wrong input image dimensions.')
|
667 |
-
|
668 |
-
|
669 |
-
def ssim(img1, img2):
|
670 |
-
C1 = (0.01 * 255)**2
|
671 |
-
C2 = (0.03 * 255)**2
|
672 |
-
|
673 |
-
img1 = img1.astype(np.float64)
|
674 |
-
img2 = img2.astype(np.float64)
|
675 |
-
kernel = cv2.getGaussianKernel(11, 1.5)
|
676 |
-
window = np.outer(kernel, kernel.transpose())
|
677 |
-
|
678 |
-
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
679 |
-
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
680 |
-
mu1_sq = mu1**2
|
681 |
-
mu2_sq = mu2**2
|
682 |
-
mu1_mu2 = mu1 * mu2
|
683 |
-
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
684 |
-
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
685 |
-
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
686 |
-
|
687 |
-
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
688 |
-
(sigma1_sq + sigma2_sq + C2))
|
689 |
-
return ssim_map.mean()
|
690 |
-
|
691 |
-
|
692 |
-
'''
|
693 |
-
# --------------------------------------------
|
694 |
-
# matlab's bicubic imresize (numpy and torch) [0, 1]
|
695 |
-
# --------------------------------------------
|
696 |
-
'''
|
697 |
-
|
698 |
-
|
699 |
-
# matlab 'imresize' function, now only support 'bicubic'
|
700 |
-
def cubic(x):
|
701 |
-
absx = torch.abs(x)
|
702 |
-
absx2 = absx**2
|
703 |
-
absx3 = absx**3
|
704 |
-
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
|
705 |
-
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
|
706 |
-
|
707 |
-
|
708 |
-
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
|
709 |
-
if (scale < 1) and (antialiasing):
|
710 |
-
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
|
711 |
-
kernel_width = kernel_width / scale
|
712 |
-
|
713 |
-
# Output-space coordinates
|
714 |
-
x = torch.linspace(1, out_length, out_length)
|
715 |
-
|
716 |
-
# Input-space coordinates. Calculate the inverse mapping such that 0.5
|
717 |
-
# in output space maps to 0.5 in input space, and 0.5+scale in output
|
718 |
-
# space maps to 1.5 in input space.
|
719 |
-
u = x / scale + 0.5 * (1 - 1 / scale)
|
720 |
-
|
721 |
-
# What is the left-most pixel that can be involved in the computation?
|
722 |
-
left = torch.floor(u - kernel_width / 2)
|
723 |
-
|
724 |
-
# What is the maximum number of pixels that can be involved in the
|
725 |
-
# computation? Note: it's OK to use an extra pixel here; if the
|
726 |
-
# corresponding weights are all zero, it will be eliminated at the end
|
727 |
-
# of this function.
|
728 |
-
P = math.ceil(kernel_width) + 2
|
729 |
-
|
730 |
-
# The indices of the input pixels involved in computing the k-th output
|
731 |
-
# pixel are in row k of the indices matrix.
|
732 |
-
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
|
733 |
-
1, P).expand(out_length, P)
|
734 |
-
|
735 |
-
# The weights used to compute the k-th output pixel are in row k of the
|
736 |
-
# weights matrix.
|
737 |
-
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
|
738 |
-
# apply cubic kernel
|
739 |
-
if (scale < 1) and (antialiasing):
|
740 |
-
weights = scale * cubic(distance_to_center * scale)
|
741 |
-
else:
|
742 |
-
weights = cubic(distance_to_center)
|
743 |
-
# Normalize the weights matrix so that each row sums to 1.
|
744 |
-
weights_sum = torch.sum(weights, 1).view(out_length, 1)
|
745 |
-
weights = weights / weights_sum.expand(out_length, P)
|
746 |
-
|
747 |
-
# If a column in weights is all zero, get rid of it. only consider the first and last column.
|
748 |
-
weights_zero_tmp = torch.sum((weights == 0), 0)
|
749 |
-
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
|
750 |
-
indices = indices.narrow(1, 1, P - 2)
|
751 |
-
weights = weights.narrow(1, 1, P - 2)
|
752 |
-
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
|
753 |
-
indices = indices.narrow(1, 0, P - 2)
|
754 |
-
weights = weights.narrow(1, 0, P - 2)
|
755 |
-
weights = weights.contiguous()
|
756 |
-
indices = indices.contiguous()
|
757 |
-
sym_len_s = -indices.min() + 1
|
758 |
-
sym_len_e = indices.max() - in_length
|
759 |
-
indices = indices + sym_len_s - 1
|
760 |
-
return weights, indices, int(sym_len_s), int(sym_len_e)
|
761 |
-
|
762 |
-
|
763 |
-
# --------------------------------------------
|
764 |
-
# imresize for tensor image [0, 1]
|
765 |
-
# --------------------------------------------
|
766 |
-
def imresize(img, scale, antialiasing=True):
|
767 |
-
# Now the scale should be the same for H and W
|
768 |
-
# input: img: pytorch tensor, CHW or HW [0,1]
|
769 |
-
# output: CHW or HW [0,1] w/o round
|
770 |
-
need_squeeze = True if img.dim() == 2 else False
|
771 |
-
if need_squeeze:
|
772 |
-
img.unsqueeze_(0)
|
773 |
-
in_C, in_H, in_W = img.size()
|
774 |
-
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
775 |
-
kernel_width = 4
|
776 |
-
kernel = 'cubic'
|
777 |
-
|
778 |
-
# Return the desired dimension order for performing the resize. The
|
779 |
-
# strategy is to perform the resize first along the dimension with the
|
780 |
-
# smallest scale factor.
|
781 |
-
# Now we do not support this.
|
782 |
-
|
783 |
-
# get weights and indices
|
784 |
-
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
785 |
-
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
786 |
-
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
787 |
-
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
788 |
-
# process H dimension
|
789 |
-
# symmetric copying
|
790 |
-
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
|
791 |
-
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
|
792 |
-
|
793 |
-
sym_patch = img[:, :sym_len_Hs, :]
|
794 |
-
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
795 |
-
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
796 |
-
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
|
797 |
-
|
798 |
-
sym_patch = img[:, -sym_len_He:, :]
|
799 |
-
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
800 |
-
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
801 |
-
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
802 |
-
|
803 |
-
out_1 = torch.FloatTensor(in_C, out_H, in_W)
|
804 |
-
kernel_width = weights_H.size(1)
|
805 |
-
for i in range(out_H):
|
806 |
-
idx = int(indices_H[i][0])
|
807 |
-
for j in range(out_C):
|
808 |
-
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
|
809 |
-
|
810 |
-
# process W dimension
|
811 |
-
# symmetric copying
|
812 |
-
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
|
813 |
-
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
|
814 |
-
|
815 |
-
sym_patch = out_1[:, :, :sym_len_Ws]
|
816 |
-
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
817 |
-
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
818 |
-
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
|
819 |
-
|
820 |
-
sym_patch = out_1[:, :, -sym_len_We:]
|
821 |
-
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
|
822 |
-
sym_patch_inv = sym_patch.index_select(2, inv_idx)
|
823 |
-
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
824 |
-
|
825 |
-
out_2 = torch.FloatTensor(in_C, out_H, out_W)
|
826 |
-
kernel_width = weights_W.size(1)
|
827 |
-
for i in range(out_W):
|
828 |
-
idx = int(indices_W[i][0])
|
829 |
-
for j in range(out_C):
|
830 |
-
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
|
831 |
-
if need_squeeze:
|
832 |
-
out_2.squeeze_()
|
833 |
-
return out_2
|
834 |
-
|
835 |
-
|
836 |
-
# --------------------------------------------
|
837 |
-
# imresize for numpy image [0, 1]
|
838 |
-
# --------------------------------------------
|
839 |
-
def imresize_np(img, scale, antialiasing=True):
|
840 |
-
# Now the scale should be the same for H and W
|
841 |
-
# input: img: Numpy, HWC or HW [0,1]
|
842 |
-
# output: HWC or HW [0,1] w/o round
|
843 |
-
img = torch.from_numpy(img)
|
844 |
-
need_squeeze = True if img.dim() == 2 else False
|
845 |
-
if need_squeeze:
|
846 |
-
img.unsqueeze_(2)
|
847 |
-
|
848 |
-
in_H, in_W, in_C = img.size()
|
849 |
-
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
|
850 |
-
kernel_width = 4
|
851 |
-
kernel = 'cubic'
|
852 |
-
|
853 |
-
# Return the desired dimension order for performing the resize. The
|
854 |
-
# strategy is to perform the resize first along the dimension with the
|
855 |
-
# smallest scale factor.
|
856 |
-
# Now we do not support this.
|
857 |
-
|
858 |
-
# get weights and indices
|
859 |
-
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
|
860 |
-
in_H, out_H, scale, kernel, kernel_width, antialiasing)
|
861 |
-
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
|
862 |
-
in_W, out_W, scale, kernel, kernel_width, antialiasing)
|
863 |
-
# process H dimension
|
864 |
-
# symmetric copying
|
865 |
-
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
|
866 |
-
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
|
867 |
-
|
868 |
-
sym_patch = img[:sym_len_Hs, :, :]
|
869 |
-
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
870 |
-
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
871 |
-
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
|
872 |
-
|
873 |
-
sym_patch = img[-sym_len_He:, :, :]
|
874 |
-
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
|
875 |
-
sym_patch_inv = sym_patch.index_select(0, inv_idx)
|
876 |
-
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
|
877 |
-
|
878 |
-
out_1 = torch.FloatTensor(out_H, in_W, in_C)
|
879 |
-
kernel_width = weights_H.size(1)
|
880 |
-
for i in range(out_H):
|
881 |
-
idx = int(indices_H[i][0])
|
882 |
-
for j in range(out_C):
|
883 |
-
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
|
884 |
-
|
885 |
-
# process W dimension
|
886 |
-
# symmetric copying
|
887 |
-
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
|
888 |
-
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
|
889 |
-
|
890 |
-
sym_patch = out_1[:, :sym_len_Ws, :]
|
891 |
-
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
892 |
-
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
893 |
-
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
|
894 |
-
|
895 |
-
sym_patch = out_1[:, -sym_len_We:, :]
|
896 |
-
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
|
897 |
-
sym_patch_inv = sym_patch.index_select(1, inv_idx)
|
898 |
-
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
|
899 |
-
|
900 |
-
out_2 = torch.FloatTensor(out_H, out_W, in_C)
|
901 |
-
kernel_width = weights_W.size(1)
|
902 |
-
for i in range(out_W):
|
903 |
-
idx = int(indices_W[i][0])
|
904 |
-
for j in range(out_C):
|
905 |
-
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
|
906 |
-
if need_squeeze:
|
907 |
-
out_2.squeeze_()
|
908 |
-
|
909 |
-
return out_2.numpy()
|
910 |
-
|
911 |
-
|
912 |
-
if __name__ == '__main__':
|
913 |
-
print('---')
|
914 |
-
# img = imread_uint('test.bmp', 3)
|
915 |
-
# img = uint2single(img)
|
916 |
-
# img_bicubic = imresize_np(img, 1/4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|