File size: 8,240 Bytes
b037807 a0b78f4 b037807 a0b78f4 9a88164 a0b78f4 3834e87 b037807 a0b78f4 b037807 a0b78f4 b037807 a0b78f4 b037807 a0b78f4 a8294c6 a0b78f4 64c5226 a0b78f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
from __future__ import annotations
import re
from collections import Counter, namedtuple
from typing import Iterable
from tqdm.auto import tqdm
from sage.evaluation.ruerrant_wrapper import classifier
from sage.evaluation.ruerrant_wrapper import merger
from errant.annotator import Annotator
from errant.commands.compare_m2 import process_edits
from errant.commands.compare_m2 import evaluate_edits
from errant.commands.compare_m2 import merge_dict
from errant.edit import Edit
import spacy
from spacy.tokenizer import Tokenizer
from spacy.util import compile_prefix_regex, compile_infix_regex, compile_suffix_regex
import evaluate
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
def update_spacy_tokenizer(nlp):
"""
Changes Spacy tokenizer to parse additional patterns.
"""
infix_re = compile_infix_regex(nlp.Defaults.infixes[:-1] + ["\]\("])
simple_url_re = re.compile(r'''^https?://''')
nlp.tokenizer = Tokenizer(
nlp.vocab,
prefix_search=compile_prefix_regex(nlp.Defaults.prefixes + ['\\\\\"']).search,
suffix_search=compile_suffix_regex(nlp.Defaults.suffixes + ['\\\\']).search,
infix_finditer=infix_re.finditer,
token_match=None,
url_match=simple_url_re.match
)
return nlp
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class RuErrant(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"sources": datasets.Value("string", id="sequence"),
"corrections": datasets.Value("string", id="sequence"),
"answers": datasets.Value("string", id="sequence"),
}
),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["https://github.com/ai-forever/sage"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
self.annotator = Annotator("ru",
nlp=update_spacy_tokenizer(spacy.load("ru_core_news_lg")),
merger=merger,
classifier=classifier)
def annotate_errors(self, orig: str, cor: str, merging: str = "rules") -> list[Edit]:
"""
Overrides `Annotator.annotate()` function to allow multiple errors per token.
This is nesessary to parse combined errors, e.g.:
["werd", "Word"] >>> Errors: ["SPELL", "CASE"]
The `classify()` method called inside is implemented in ruerrant_classifier.py
(also overrides the original classifier).
"""
alignment = self.annotator.align(orig, cor, False)
edits = self.annotator.merge(alignment, merging)
classified_edits = []
for edit in edits:
classified_edits.extend(self.annotator.classify(edit))
return sorted(classified_edits, key=lambda x: (x[0], x[2]))
def _compute(self, sources, corrections, answers):
"""
Evaluates iterables of sources, hyp and ref corrections with ERRANT metric.
Args:
sources (Iterable[str]): an iterable of source texts;
corrections (Iterable[str]): an iterable of gold corrections for the source texts;
answers (Iterable[str]): an iterable of evaluated corrections for the source texts;
Returns:
dict[str, tuple[float, ...]]: a dict mapping error categories to the corresponding
P, R, F1 metric values.
"""
best_dict = Counter({"tp": 0, "fp": 0, "fn": 0})
best_cats = {}
sents = zip(sources, corrections, answers)
for sent_id, sent in enumerate(sents):
src = self.annotator.parse(sent[0])
ref = self.annotator.parse(sent[1])
hyp = self.annotator.parse(sent[2])
# Align hyp and ref corrections and annotate errors
hyp_edits = self.annotate_errors(src, hyp)
ref_edits = self.annotate_errors(src, ref)
# Process the edits for detection/correction based on args
ProcessingArgs = namedtuple("ProcessingArgs",
["dt", "ds", "single", "multi", "filt", "cse"],
defaults=[False, False, False, False, [], True])
processing_args = ProcessingArgs()
hyp_dict = process_edits(hyp_edits, processing_args)
ref_dict = process_edits(ref_edits, processing_args)
# Evaluate edits and get best TP, FP, FN hyp+ref combo.
EvaluationArgs = namedtuple("EvaluationArgs",
["beta", "verbose"],
defaults=[1.0, False])
evaluation_args = EvaluationArgs()
count_dict, cat_dict = evaluate_edits(
hyp_dict, ref_dict, best_dict, sent_id, evaluation_args)
# Merge these dicts with best_dict and best_cats
best_dict += Counter(count_dict) # corpus-level TP, FP, FN
best_cats = merge_dict(best_cats, cat_dict) # corpus-level errortype-wise TP, FP, FN
cat_prf = {}
for cat, values in best_cats.items():
tp, fp, fn = values # fp - extra corrections, fn - missed corrections
p = float(tp) / (tp + fp) if tp + fp else 1.0
r = float(tp) / (tp + fn) if tp + fn else 1.0
f = (2 * p * r) / (p + r) if p + r else 0.0
cat_prf[cat] = (p, r, f)
for error_category in ["CASE", "PUNCT", "SPELL", "YO"]:
if error_category not in cat_prf:
cat_prf[error_category] = (1.0, 1.0, 1.0)
return cat_prf
|