Spaces:
Running
Running
File size: 1,060 Bytes
14536de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import streamlit as st
import pandas as pd
from preprocess_data import preprocess_text,get_stopwords
from datasets import load_dataset
dataset = load_dataset('danielcd99/imdb')
dataframes = {}
for split in dataset.keys():
# Convert the dataset split to a pandas DataFrame
df = dataset[split].to_pandas()
dataframes[split] = df
TITLE_TEXT = f"IMDB reviews"
DESCRIPTION_TEXT = f"Esta é uma aplicação para o trabalho de NLP. Utilizamos a base de dados de reviews do IMDb com 50.000 comentários entre positivos e negativos (a base está balanceada). Por meio desta interface é possível visualizar como os exemplos da nossa base de teste foram classificados com um BERT treinado para esta task."
st.title(TITLE_TEXT)
st.write(DESCRIPTION_TEXT)
if st.button('Encontre exemplos!'):
df = df.sample(5)
get_stopwords()
df['preprocessed_review'] = df['review'].copy()
df['preprocessed_review'] = df['preprocessed_review'].apply(preprocess_text)
cols = ['review','preprocessed_review','sentiment']
st.table(df[cols])
|