danielcd99 commited on
Commit
1b8bd99
1 Parent(s): 1b96396

Added a Model file

Browse files
Files changed (2) hide show
  1. Model.py +27 -0
  2. app.py +1 -25
Model.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+ # Neural Network
5
+ class LeNet(nn.Module):
6
+ def __init__(self):
7
+ super(LeNet, self).__init__()
8
+
9
+ self.convs = nn.Sequential(
10
+ nn.Conv2d(in_channels=1, out_channels=4, kernel_size=(5, 5)),
11
+ nn.Tanh(),
12
+ nn.AvgPool2d(2, 2),
13
+
14
+ nn.Conv2d(in_channels=4, out_channels=12, kernel_size=(5, 5)),
15
+ nn.Tanh(),
16
+ nn.AvgPool2d(2, 2)
17
+ )
18
+
19
+ self.linear = nn.Sequential(
20
+ nn.Linear(4*4*12,10)
21
+ )
22
+
23
+ def forward(self, x):
24
+ x = self.convs(x)
25
+ x = torch.flatten(x, 1)
26
+
27
+ return self.linear(x)
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import gradio as gr
2
  import torch
3
- from torch import nn
4
 
5
  labels = ['Zero','Um','Dois','Três','Quatro','Cinco','Seis','Sete','Oito', 'Nove']
6
 
@@ -13,30 +13,6 @@ else:
13
  print("CPU")
14
 
15
 
16
- # Neural Network
17
- class LeNet(nn.Module):
18
- def __init__(self):
19
- super(LeNet, self).__init__()
20
-
21
- self.convs = nn.Sequential(
22
- nn.Conv2d(in_channels=1, out_channels=4, kernel_size=(5, 5)),
23
- nn.Tanh(),
24
- nn.AvgPool2d(2, 2),
25
-
26
- nn.Conv2d(in_channels=4, out_channels=12, kernel_size=(5, 5)),
27
- nn.Tanh(),
28
- nn.AvgPool2d(2, 2)
29
- )
30
-
31
- self.linear = nn.Sequential(
32
- nn.Linear(4*4*12,10)
33
- )
34
-
35
- def forward(self, x):
36
- x = self.convs(x)
37
- x = torch.flatten(x, 1)
38
-
39
- return self.linear(x)
40
 
41
  # Loading model
42
  model = LeNet().to(device)
 
1
  import gradio as gr
2
  import torch
3
+ from Model import LeNet
4
 
5
  labels = ['Zero','Um','Dois','Três','Quatro','Cinco','Seis','Sete','Oito', 'Nove']
6
 
 
13
  print("CPU")
14
 
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  # Loading model
18
  model = LeNet().to(device)