Spaces:
Build error
Build error
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""ISCO-08 Hierarchical Accuracy Measure.""" | |
import evaluate | |
import datasets | |
import ham | |
import isco | |
# TODO: Add BibTeX citation | |
_CITATION = """ | |
@article{scikit-learn, | |
title={Scikit-learn: Machine Learning in {P}ython}, | |
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. | |
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. | |
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and | |
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, | |
journal={Journal of Machine Learning Research}, | |
volume={12}, | |
pages={2825--2830}, | |
year={2011} | |
} | |
""" | |
_DESCRIPTION = """ | |
The ISCO-08 Hierarchical Accuracy Measure is an implementation of the measure described in [Functional Annotation of Genes Using Hierarchical Text Categorization](https://www.researchgate.net/publication/44046343_Functional_Annotation_of_Genes_Using_Hierarchical_Text_Categorization) (Kiritchenko, Svetlana and Famili, Fazel. 2005) and adapted for the ISCO-08 classification scheme by the International Labour Organization. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Calculates hierarchical precision, hierarchical recall and hierarchical F1 given a list of reference codes and predicted codes from the ISCO-08 taxonomy by the International Labour Organization. | |
Args: | |
- references (List[str]): List of ISCO-08 reference codes. Each reference code should be a single token, 4-digit ISCO-08 code string. | |
- predictions (List[str]): List of machine predicted or human assigned ISCO-08 codes to score. Each prediction should be a single token, 4-digit ISCO-08 code string. | |
Returns: | |
- hierarchical_precision (`float` or `int`): Hierarchical precision score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy. | |
- hierarchical_recall: Hierarchical recall score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy. | |
- hierarchical_fmeasure: Hierarchical F1 score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy. | |
Examples: | |
Example 1 | |
>>> hierarchical_accuracy_metric = evaluate.load("ham") | |
>>> results = ham.compute(reference=["1111", "1112", "1113", "1114"], predictions=["1111", "1113", "1120", "1211"]) | |
>>> print(results) | |
{ | |
'accuracy': 0.25, | |
'hierarchical_precision': 0.7142857142857143, | |
'hierarchical_recall': 0.5, | |
'hierarchical_fmeasure': 0.588235294117647 | |
} | |
""" | |
# TODO: Define external resources urls if needed | |
ISCO_CSV_MIRROR_URL = ( | |
"https://storage.googleapis.com/isco-public/tables/ISCO_structure.csv" | |
) | |
ILO_ISCO_CSV_URL = ( | |
"https://www.ilo.org/ilostat-files/ISCO/newdocs-08-2021/ISCO-08/ISCO-08%20EN.csv" | |
) | |
class ISCO_Hierarchical_Accuracy(evaluate.Metric): | |
"""The ISCO-08 Hierarchical Accuracy Measure""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Value("string"), | |
"references": datasets.Value("string"), | |
} | |
), | |
# TODO: Homepage of the module for documentation | |
homepage="http://module.homepage", | |
# TODO: Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"], | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Download external ISCO-08 csv file from the ILO website for creating the hierarchy dictionary.""" | |
isco_csv = dl_manager.download_and_extract(ISCO_CSV_MIRROR_URL) | |
print(f"ISCO CSV file downloaded") | |
self.isco_hierarchy = isco.create_hierarchy_dict(isco_csv) | |
print("ISCO hierarchy dictionary created") | |
print(self.isco_hierarchy) | |
def _compute(self, predictions, references): | |
"""Returns the accuracy scores.""" | |
# Convert the inputs to strings | |
predictions = [str(p) for p in predictions] | |
references = [str(r) for r in references] | |
# Calculate accuracy | |
accuracy = sum(i == j for i, j in zip(predictions, references)) / len( | |
predictions | |
) | |
print(f"Accuracy: {accuracy}") | |
# Calculate hierarchical precision, recall and f-measure | |
hierarchy = self.isco_hierarchy | |
hP, hR = ham.calculate_hierarchical_precision_recall( | |
references, predictions, hierarchy | |
) | |
hF = ham.hierarchical_f_measure(hP, hR) | |
print( | |
f"Hierarchical Precision: {hP}, Hierarchical Recall: {hR}, Hierarchical F-measure: {hF}" | |
) | |
return { | |
"accuracy": accuracy, | |
"hierarchical_precision": hP, | |
"hierarchical_recall": hR, | |
"hierarchical_fmeasure": hF, | |
} | |