Spaces:
Build error
Build error
Remove duplicate isco_ham
Browse files- isco_ham.py +0 -137
isco_ham.py
DELETED
@@ -1,137 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""ISCO-08 Hierarchical Accuracy Measure."""
|
15 |
-
|
16 |
-
import evaluate
|
17 |
-
import datasets
|
18 |
-
import ham
|
19 |
-
import isco
|
20 |
-
|
21 |
-
|
22 |
-
# TODO: Add BibTeX citation
|
23 |
-
_CITATION = """
|
24 |
-
@article{scikit-learn,
|
25 |
-
title={Scikit-learn: Machine Learning in {P}ython},
|
26 |
-
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
27 |
-
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
28 |
-
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
29 |
-
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
30 |
-
journal={Journal of Machine Learning Research},
|
31 |
-
volume={12},
|
32 |
-
pages={2825--2830},
|
33 |
-
year={2011}
|
34 |
-
}
|
35 |
-
"""
|
36 |
-
|
37 |
-
_DESCRIPTION = """
|
38 |
-
The ISCO-08 Hierarchical Accuracy Measure is an implementation of the measure described in [Functional Annotation of Genes Using Hierarchical Text Categorization](https://www.researchgate.net/publication/44046343_Functional_Annotation_of_Genes_Using_Hierarchical_Text_Categorization) (Kiritchenko, Svetlana and Famili, Fazel. 2005) and adapted for the ISCO-08 classification scheme by the International Labour Organization.
|
39 |
-
"""
|
40 |
-
|
41 |
-
_KWARGS_DESCRIPTION = """
|
42 |
-
Calculates hierarchical precision, hierarchical recall and hierarchical F1 given a list of reference codes and predicted codes from the ISCO-08 taxonomy by the International Labour Organization.
|
43 |
-
|
44 |
-
Args:
|
45 |
-
- references (List[str]): List of ISCO-08 reference codes. Each reference code should be a single token, 4-digit ISCO-08 code string.
|
46 |
-
- predictions (List[str]): List of machine predicted or human assigned ISCO-08 codes to score. Each prediction should be a single token, 4-digit ISCO-08 code string.
|
47 |
-
|
48 |
-
Returns:
|
49 |
-
- hierarchical_precision (`float` or `int`): Hierarchical precision score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy.
|
50 |
-
- hierarchical_recall: Hierarchical recall score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy.
|
51 |
-
- hierarchical_fmeasure: Hierarchical F1 score. Minimum possible value is 0. Maximum possible value is 1.0. A higher score means higher accuracy.
|
52 |
-
|
53 |
-
Examples:
|
54 |
-
Example 1
|
55 |
-
|
56 |
-
>>> hierarchical_accuracy_metric = evaluate.load("ham")
|
57 |
-
>>> results = ham.compute(reference=["1111", "1112", "1113", "1114"], predictions=["1111", "1113", "1120", "1211"])
|
58 |
-
>>> print(results)
|
59 |
-
{
|
60 |
-
'accuracy': 0.25,
|
61 |
-
'hierarchical_precision': 0.7142857142857143,
|
62 |
-
'hierarchical_recall': 0.5,
|
63 |
-
'hierarchical_fmeasure': 0.588235294117647
|
64 |
-
}
|
65 |
-
"""
|
66 |
-
|
67 |
-
# TODO: Define external resources urls if needed
|
68 |
-
ISCO_CSV_MIRROR_URL = (
|
69 |
-
"https://storage.googleapis.com/isco-public/tables/ISCO_structure.csv"
|
70 |
-
)
|
71 |
-
ILO_ISCO_CSV_URL = (
|
72 |
-
"https://www.ilo.org/ilostat-files/ISCO/newdocs-08-2021/ISCO-08/ISCO-08%20EN.csv"
|
73 |
-
)
|
74 |
-
|
75 |
-
|
76 |
-
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
77 |
-
class ISCO_Hierarchical_Accuracy(evaluate.Metric):
|
78 |
-
"""The ISCO-08 Hierarchical Accuracy Measure"""
|
79 |
-
|
80 |
-
def _info(self):
|
81 |
-
# TODO: Specifies the evaluate.EvaluationModuleInfo object
|
82 |
-
return evaluate.MetricInfo(
|
83 |
-
# This is the description that will appear on the modules page.
|
84 |
-
module_type="metric",
|
85 |
-
description=_DESCRIPTION,
|
86 |
-
citation=_CITATION,
|
87 |
-
inputs_description=_KWARGS_DESCRIPTION,
|
88 |
-
# This defines the format of each prediction and reference
|
89 |
-
features=datasets.Features(
|
90 |
-
{
|
91 |
-
"predictions": datasets.Value("string"),
|
92 |
-
"references": datasets.Value("string"),
|
93 |
-
}
|
94 |
-
),
|
95 |
-
# TODO: Homepage of the module for documentation
|
96 |
-
homepage="http://module.homepage",
|
97 |
-
# TODO: Additional links to the codebase or references
|
98 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
99 |
-
reference_urls=["http://path.to.reference.url/new_module"],
|
100 |
-
)
|
101 |
-
|
102 |
-
def _download_and_prepare(self, dl_manager):
|
103 |
-
"""Download external ISCO-08 csv file from the ILO website for creating the hierarchy dictionary."""
|
104 |
-
isco_csv = dl_manager.download_and_extract(ISCO_CSV_MIRROR_URL)
|
105 |
-
print(f"ISCO CSV file downloaded")
|
106 |
-
self.isco_hierarchy = isco.create_hierarchy_dict(isco_csv)
|
107 |
-
print("ISCO hierarchy dictionary created")
|
108 |
-
print(self.isco_hierarchy)
|
109 |
-
|
110 |
-
def _compute(self, predictions, references):
|
111 |
-
"""Returns the accuracy scores."""
|
112 |
-
# Convert the inputs to strings
|
113 |
-
predictions = [str(p) for p in predictions]
|
114 |
-
references = [str(r) for r in references]
|
115 |
-
|
116 |
-
# Calculate accuracy
|
117 |
-
accuracy = sum(i == j for i, j in zip(predictions, references)) / len(
|
118 |
-
predictions
|
119 |
-
)
|
120 |
-
print(f"Accuracy: {accuracy}")
|
121 |
-
|
122 |
-
# Calculate hierarchical precision, recall and f-measure
|
123 |
-
hierarchy = self.isco_hierarchy
|
124 |
-
hP, hR = ham.calculate_hierarchical_precision_recall(
|
125 |
-
references, predictions, hierarchy
|
126 |
-
)
|
127 |
-
hF = ham.hierarchical_f_measure(hP, hR)
|
128 |
-
print(
|
129 |
-
f"Hierarchical Precision: {hP}, Hierarchical Recall: {hR}, Hierarchical F-measure: {hF}"
|
130 |
-
)
|
131 |
-
|
132 |
-
return {
|
133 |
-
"accuracy": accuracy,
|
134 |
-
"hierarchical_precision": hP,
|
135 |
-
"hierarchical_recall": hR,
|
136 |
-
"hierarchical_fmeasure": hF,
|
137 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|