Spaces:
Sleeping
Sleeping
File size: 2,352 Bytes
8f92739 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
from peft import get_peft_model, LoraConfig
# Define the same LoRA configuration used during fine-tuning
lora_config = LoraConfig(
r=8, # Low-rank parameter
lora_alpha=32, # Scaling parameter
lora_dropout=0.1, # Dropout rate
target_modules=["q", "v"], # The attention layers to apply LoRA to
bias="none"
)
# Load the model and tokenizer from Hugging Face's hub
model = get_peft_model(T5ForConditionalGeneration.from_pretrained("google/flan-t5-large"), lora_config)
tokenizer = T5Tokenizer.from_pretrained("danrdoran/flan-t5-simplified-squad")
# Streamlit app UI
st.title("AI English Tutor")
st.write("Ask me a question, and I will help you!")
# Sidebar for user to control model generation parameters
st.sidebar.title("Model Parameters")
temperature = st.sidebar.slider("Temperature", 0.1, 1.5, 1.0, 0.1) # Default 1.0
top_p = st.sidebar.slider("Top-p (Nucleus Sampling)", 0.0, 1.0, 0.9, 0.05) # Default 0.9
top_k = st.sidebar.slider("Top-k", 0, 100, 50, 1) # Default 50
# Disable sampling when using beam search
do_sample = st.sidebar.checkbox("Enable Random Sampling", value=False)
# Input field for the student
student_question = st.text_input("Ask your question!")
# Generate and display response using the model's generate() function
if student_question:
# Prepare the input for the model
input_text = f"You are a tutor. Explain the answer to this question to a young student: '{student_question}'"
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=256) # Reduced max_length to 256
# Generate response
generated_ids = model.generate(
inputs['input_ids'],
#max_length=75,
#min_length=20,
temperature=temperature,
top_p=top_p,
top_k=top_k,
do_sample=True, # Disable sampling, using beam search
#num_beams=2, # Use beam search
no_repeat_ngram_size=3, # Prevent repeating phrases of 3 words or more
length_penalty=1.0, # Discourage overly long responses
early_stopping=False # Stops when it finds a sufficiently good output
)
# Decode the generated response
response = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
st.write("Tutor's Answer:", response) |