Spaces:
Runtime error
Runtime error
from transformers import DistilBertForQuestionAnswering, DistilBertConfig, DistilBertTokenizerFast | |
import torch | |
model = DistilBertForQuestionAnswering(DistilBertConfig.from_pretrained('distilbert/distilbert-base-multilingual-cased')).to("cpu") | |
st_dict = torch.load("QazDistilBERT.pt") | |
model.load_state_dict(st_dict) | |
tokenizer = DistilBertTokenizerFast.from_pretrained("dappyx/QazDistilbertFast-tokenizerV3") | |
import gradio as gr | |
def qa_pipeline(text,question): | |
inputs = tokenizer(question, text, return_tensors="pt") | |
input_ids = inputs['input_ids'].to("cpu") | |
attention_mask = inputs['attention_mask'].to("cpu") | |
outputs = model(input_ids=input_ids,attention_mask=attention_mask) | |
start_index = torch.argmax(outputs.start_logits, dim=-1).item() | |
end_index = torch.argmax(outputs.end_logits, dim=-1).item() | |
predict_answer_tokens = inputs.input_ids[0, start_index : end_index + 1] | |
return tokenizer.decode(predict_answer_tokens) | |
def answer_question(context, question): | |
result = qa_pipeline(context, question) | |
return result | |
# Создаем интерфейс | |
iface = gr.Interface( | |
fn=answer_question, | |
inputs=[ | |
gr.Textbox(lines=10, label="Context"), | |
gr.Textbox(lines=2, label="Question") | |
], | |
outputs="text", | |
title="Question Answering Model", | |
description="Введите контекст и задайте вопрос, чтобы получить ответ." | |
) | |
# Запускаем интерфейс | |
iface.launch() | |