Spaces:
Runtime error
Runtime error
import streamlit as st | |
import tempfile | |
import pandas as pd | |
from langchain import HuggingFacePipeline | |
from transformers import AutoTokenizer | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.document_loaders.csv_loader import CSVLoader | |
from langchain.vectorstores import FAISS | |
from langchain.chains import RetrievalQA | |
import transformers | |
import torch | |
import textwrap | |
def main(): | |
st.set_page_config(page_title="Talk with BORROWER data") | |
st.title("Talk with BORROWER data") | |
query = st.text_input("Send a Message") | |
if st.button("Submit Query", type="primary"): | |
DB_FAISS_PATH = "vectorstore/db_faiss" | |
loader = CSVLoader(file_path="./borrower_data.csv", encoding="utf-8", csv_args={ | |
'delimiter': ','}) | |
data = loader.load() | |
model = "stabilityai/stablelm-zephyr-3b" | |
tokenizer = AutoTokenizer.from_pretrained(model) | |
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto", do_sample=True, top_k=1, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id,offload_folder="offload") | |
llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': 0}) | |
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') | |
vectorstore = FAISS.from_documents(data, embeddings,allow_dangerous_deserialization=True) | |
vectorstore.save_local(DB_FAISS_PATH) | |
# Load the saved vectorstore | |
vectorstore = FAISS.load_local(DB_FAISS_PATH, embeddings) | |
chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", return_source_documents=True, retriever=vectorstore.as_retriever()) | |
result = chain(query) | |
st.write(result['result']) | |
if __name__ == '__main__': | |
main() |