Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,46 @@
|
|
1 |
# app.py
|
2 |
import streamlit as st
|
|
|
|
|
|
|
3 |
import torch
|
|
|
4 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
from IndicTransToolkit import IndicProcessor
|
6 |
-
|
7 |
-
import
|
8 |
-
from starlette.applications import Starlette
|
9 |
-
from starlette.routing import Mount
|
10 |
-
from starlette.staticfiles import StaticFiles
|
11 |
-
import nest_asyncio
|
12 |
-
from api import app
|
13 |
-
|
14 |
-
# Enable nested event loops
|
15 |
-
nest_asyncio.apply()
|
16 |
|
17 |
-
# Initialize models and processors
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
"ai4bharat/indictrans2-en-indic-1B",
|
22 |
-
trust_remote_code=True
|
23 |
-
)
|
24 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
25 |
-
"ai4bharat/indictrans2-en-indic-1B",
|
26 |
-
trust_remote_code=True
|
27 |
-
)
|
28 |
-
ip = IndicProcessor(inference=True)
|
29 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
-
model = model.to(DEVICE)
|
31 |
-
return model, tokenizer, ip, DEVICE
|
32 |
|
33 |
-
|
34 |
-
model
|
35 |
|
36 |
def translate_text(sentences: List[str], target_lang: str):
|
37 |
try:
|
38 |
src_lang = "eng_Latn"
|
39 |
-
batch = ip.preprocess_batch(
|
40 |
-
|
41 |
-
|
42 |
-
tgt_lang=target_lang
|
43 |
-
)
|
44 |
-
inputs = tokenizer(
|
45 |
-
batch,
|
46 |
-
truncation=True,
|
47 |
-
padding="longest",
|
48 |
-
return_tensors="pt",
|
49 |
-
return_attention_mask=True
|
50 |
-
).to(DEVICE)
|
51 |
-
|
52 |
with torch.no_grad():
|
53 |
generated_tokens = model.generate(
|
54 |
-
|
55 |
use_cache=True,
|
56 |
min_length=0,
|
57 |
max_length=256,
|
58 |
num_beams=5,
|
59 |
num_return_sequences=1
|
60 |
)
|
61 |
-
|
62 |
with tokenizer.as_target_tokenizer():
|
63 |
generated_tokens = tokenizer.batch_decode(
|
64 |
generated_tokens.detach().cpu().tolist(),
|
65 |
skip_special_tokens=True,
|
66 |
clean_up_tokenization_spaces=True
|
67 |
)
|
68 |
-
|
69 |
translations = ip.postprocess_batch(generated_tokens, lang=target_lang)
|
70 |
return {
|
71 |
"translations": translations,
|
@@ -75,12 +50,13 @@ def translate_text(sentences: List[str], target_lang: str):
|
|
75 |
except Exception as e:
|
76 |
raise Exception(f"Translation failed: {str(e)}")
|
77 |
|
78 |
-
|
|
|
79 |
st.title("Indic Language Translator")
|
80 |
-
|
81 |
# Input text
|
82 |
text_input = st.text_area("Enter text to translate:", "Hello, how are you?")
|
83 |
-
|
84 |
# Language selection
|
85 |
target_languages = {
|
86 |
"Hindi": "hin_Deva",
|
@@ -95,17 +71,13 @@ def streamlit_app():
|
|
95 |
"Odia": "ori_Orya"
|
96 |
}
|
97 |
|
98 |
-
target_lang = st.selectbox(
|
99 |
-
|
100 |
-
options=list(target_languages.keys())
|
101 |
-
)
|
102 |
-
|
103 |
if st.button("Translate"):
|
104 |
try:
|
105 |
-
result = translate_text(
|
106 |
-
|
107 |
-
|
108 |
-
)
|
109 |
st.success("Translation:")
|
110 |
st.write(result["translations"][0])
|
111 |
except Exception as e:
|
@@ -116,9 +88,8 @@ def streamlit_app():
|
|
116 |
st.header("API Documentation")
|
117 |
st.markdown("""
|
118 |
To use the translation API, send POST requests to:
|
119 |
-
|
120 |
-
|
121 |
-
```
|
122 |
Request body format:
|
123 |
```json
|
124 |
{
|
@@ -126,21 +97,19 @@ def streamlit_app():
|
|
126 |
"target_lang": "hin_Deva"
|
127 |
}
|
128 |
```
|
129 |
-
""")
|
130 |
-
st.markdown("Available target languages:")
|
131 |
-
for lang, code in target_languages.items():
|
132 |
-
st.markdown(f"- {lang}: `{code}`")
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
if __name__ == "__main__":
|
142 |
-
|
143 |
-
streamlit_app()
|
144 |
-
else:
|
145 |
-
import uvicorn
|
146 |
-
uvicorn.run(create_app(), host="0.0.0.0", port=7860)
|
|
|
1 |
# app.py
|
2 |
import streamlit as st
|
3 |
+
from fastapi import FastAPI, HTTPException
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from typing import List
|
6 |
import torch
|
7 |
+
import asyncio
|
8 |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
9 |
from IndicTransToolkit import IndicProcessor
|
10 |
+
import requests
|
11 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Initialize models and processors
|
14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True)
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indictrans2-en-indic-1B", trust_remote_code=True)
|
16 |
+
ip = IndicProcessor(inference=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
model = model.to(DEVICE)
|
20 |
|
21 |
def translate_text(sentences: List[str], target_lang: str):
|
22 |
try:
|
23 |
src_lang = "eng_Latn"
|
24 |
+
batch = ip.preprocess_batch(sentences, src_lang=src_lang, tgt_lang=target_lang)
|
25 |
+
inputs = tokenizer(batch, truncation=True, padding="longest", return_tensors="pt", return_attention_mask=True).to(DEVICE)
|
26 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
with torch.no_grad():
|
28 |
generated_tokens = model.generate(
|
29 |
+
inputs,
|
30 |
use_cache=True,
|
31 |
min_length=0,
|
32 |
max_length=256,
|
33 |
num_beams=5,
|
34 |
num_return_sequences=1
|
35 |
)
|
36 |
+
|
37 |
with tokenizer.as_target_tokenizer():
|
38 |
generated_tokens = tokenizer.batch_decode(
|
39 |
generated_tokens.detach().cpu().tolist(),
|
40 |
skip_special_tokens=True,
|
41 |
clean_up_tokenization_spaces=True
|
42 |
)
|
43 |
+
|
44 |
translations = ip.postprocess_batch(generated_tokens, lang=target_lang)
|
45 |
return {
|
46 |
"translations": translations,
|
|
|
50 |
except Exception as e:
|
51 |
raise Exception(f"Translation failed: {str(e)}")
|
52 |
|
53 |
+
# Streamlit interface
|
54 |
+
def main():
|
55 |
st.title("Indic Language Translator")
|
56 |
+
|
57 |
# Input text
|
58 |
text_input = st.text_area("Enter text to translate:", "Hello, how are you?")
|
59 |
+
|
60 |
# Language selection
|
61 |
target_languages = {
|
62 |
"Hindi": "hin_Deva",
|
|
|
71 |
"Odia": "ori_Orya"
|
72 |
}
|
73 |
|
74 |
+
target_lang = st.selectbox("Select target language:", options=list(target_languages.keys()))
|
75 |
+
|
|
|
|
|
|
|
76 |
if st.button("Translate"):
|
77 |
try:
|
78 |
+
result = translate_text(sentences=[text_input], target_lang=target_languages[target_lang])
|
79 |
+
|
80 |
+
# Display result
|
|
|
81 |
st.success("Translation:")
|
82 |
st.write(result["translations"][0])
|
83 |
except Exception as e:
|
|
|
88 |
st.header("API Documentation")
|
89 |
st.markdown("""
|
90 |
To use the translation API, send POST requests to:
|
91 |
+
https://USERNAME-SPACE_NAME.hf.space/translate
|
92 |
+
|
|
|
93 |
Request body format:
|
94 |
```json
|
95 |
{
|
|
|
97 |
"target_lang": "hin_Deva"
|
98 |
}
|
99 |
```
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
Available target languages:
|
102 |
+
- Hindi: hin_Deva
|
103 |
+
- Bengali: ben_Beng
|
104 |
+
- Tamil: tam_Taml
|
105 |
+
- Telugu: tel_Telu
|
106 |
+
- Marathi: mar_Deva
|
107 |
+
- Gujarati: guj_Gujr
|
108 |
+
- Kannada: kan_Knda
|
109 |
+
- Malayalam: mal_Mlym
|
110 |
+
- Punjabi: pan_Guru
|
111 |
+
- Odia: ori_Orya
|
112 |
+
""")
|
113 |
|
114 |
if __name__ == "__main__":
|
115 |
+
main()
|
|
|
|
|
|
|
|