Spaces:
Runtime error
Runtime error
darthPanda
commited on
Commit
β’
0283b01
1
Parent(s):
5aa0262
added order taking NER
Browse files- README.md +1 -1
- app.py +63 -15
- order_parser.py +87 -0
- requirements.txt +2 -1
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Falcon Barista
|
3 |
-
emoji:
|
4 |
colorFrom: red
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Falcon Barista
|
3 |
+
emoji: π¦
|
4 |
colorFrom: red
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from asr_openai import AutomaticSpeechRecognition
|
3 |
from tts_elevenlabs import ElevenLabsTTS
|
4 |
from falcon_7b_llm import Falcon_7b_llm
|
|
|
5 |
import logging
|
6 |
import os
|
7 |
|
@@ -21,7 +23,15 @@ def generate_response(input_audio):
|
|
21 |
sentence = asr.run_transcription(input_audio)
|
22 |
# sentence = 'how are you?'
|
23 |
print(sentence)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
llm_response = llm.get_llm_response(sentence['text'])
|
|
|
25 |
output_audio = tts.tts_generate_audio(llm_response)
|
26 |
# output_audio = tts.tts_generate_audio(sentence)
|
27 |
chatbot_history.append(((input_audio,), (output_audio,)))
|
@@ -29,33 +39,71 @@ def generate_response(input_audio):
|
|
29 |
|
30 |
delete_files_in_folder('data//tts_responses')
|
31 |
|
32 |
-
title = "<h1 style='text-align: center; color: #ffffff; font-size: 40px;'>
|
33 |
|
34 |
asr = AutomaticSpeechRecognition()
|
35 |
tts = ElevenLabsTTS()
|
36 |
llm = Falcon_7b_llm()
|
|
|
37 |
chatbot_history = []
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
return chatbot_history
|
46 |
|
47 |
with gr.Blocks() as demo:
|
48 |
gr.Markdown(title)
|
|
|
49 |
with gr.Row():
|
50 |
gr.Image('https://i.imgur.com/fHCFI2T.png', label="Look how cute is Falcon Barista")
|
51 |
-
# gr.Image('data//falcon.png', label="Look how cute is Falcon Barista")
|
52 |
with gr.Column():
|
53 |
-
chatbot = gr.Chatbot(label='Chat with Falcon Barista', avatar_images=('data//user_avatar_logo.png','data//falcon_logo_transparent.png'))
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
if __name__ == "__main__":
|
61 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
from asr_openai import AutomaticSpeechRecognition
|
4 |
from tts_elevenlabs import ElevenLabsTTS
|
5 |
from falcon_7b_llm import Falcon_7b_llm
|
6 |
+
from order_parser import Order_Parser
|
7 |
import logging
|
8 |
import os
|
9 |
|
|
|
23 |
sentence = asr.run_transcription(input_audio)
|
24 |
# sentence = 'how are you?'
|
25 |
print(sentence)
|
26 |
+
global order_dict
|
27 |
+
try:
|
28 |
+
order_dict = order_taking.order_parser(sentence['text'])
|
29 |
+
print(order_dict)
|
30 |
+
except Exception as e:
|
31 |
+
print('order parsing failed')
|
32 |
+
print(e)
|
33 |
llm_response = llm.get_llm_response(sentence['text'])
|
34 |
+
print(llm_response)
|
35 |
output_audio = tts.tts_generate_audio(llm_response)
|
36 |
# output_audio = tts.tts_generate_audio(sentence)
|
37 |
chatbot_history.append(((input_audio,), (output_audio,)))
|
|
|
39 |
|
40 |
delete_files_in_folder('data//tts_responses')
|
41 |
|
42 |
+
title = "<h1 style='text-align: center; color: #ffffff; font-size: 40px;'> Falcon Barista (Pre-Alpha Release)"
|
43 |
|
44 |
asr = AutomaticSpeechRecognition()
|
45 |
tts = ElevenLabsTTS()
|
46 |
llm = Falcon_7b_llm()
|
47 |
+
order_taking = Order_Parser()
|
48 |
chatbot_history = []
|
49 |
+
order_display=False
|
50 |
+
order_dict={}
|
51 |
|
52 |
+
df = pd.DataFrame({
|
53 |
+
"item" : [],
|
54 |
+
"quantity" : [],
|
55 |
+
})
|
56 |
+
|
57 |
+
s = df#.style.format("{:.2f}")
|
|
|
58 |
|
59 |
with gr.Blocks() as demo:
|
60 |
gr.Markdown(title)
|
61 |
+
order_title = gr.Markdown('### Your Order', visible=False)
|
62 |
with gr.Row():
|
63 |
gr.Image('https://i.imgur.com/fHCFI2T.png', label="Look how cute is Falcon Barista")
|
|
|
64 |
with gr.Column():
|
65 |
+
chatbot = gr.Chatbot(label='Chat with Falcon Barista', avatar_images=('data//user_avatar_logo.png','data//falcon_logo_transparent.png'), scale=2)
|
66 |
+
mic = gr.Audio(source="microphone", type='filepath', scale=1)
|
67 |
+
mic.stop_recording(generate_response, mic, chatbot)
|
68 |
+
with gr.Row():
|
69 |
+
restart_btn = gr.Button(value="Restart Chat", scale=1, variant='stop')
|
70 |
+
# restart_btn.click(restart_chat, outputs=[chatbot])
|
71 |
+
end_btn = gr.Button(value="End Chat and Confirm Order", scale=2, variant='primary')
|
72 |
+
|
73 |
+
with gr.Column(visible=False) as output_col:
|
74 |
+
order_title = gr.Markdown('### Your Order')
|
75 |
+
order_summary = gr.DataFrame(s)
|
76 |
+
|
77 |
+
def restart_chat():
|
78 |
+
delete_files_in_folder('data//tts_responses')
|
79 |
+
global chatbot_history
|
80 |
+
chatbot_history = []
|
81 |
+
global order_dict
|
82 |
+
order_dict = {}
|
83 |
+
global df
|
84 |
+
df = pd.DataFrame({
|
85 |
+
"item" : [],
|
86 |
+
"quantity" : [],
|
87 |
+
})
|
88 |
+
order_taking.restart_state()
|
89 |
+
tts.restart_state()
|
90 |
+
llm.restart_state()
|
91 |
+
return {
|
92 |
+
chatbot: [],
|
93 |
+
output_col: gr.Column(visible=False)
|
94 |
+
}
|
95 |
+
|
96 |
+
def end_chat():
|
97 |
+
df = pd.DataFrame(list(order_dict.items()), columns=['item', 'quantity'])
|
98 |
+
|
99 |
+
s = df#.style.format("{:.2f}")
|
100 |
+
return {
|
101 |
+
output_col: gr.Column(visible=True),
|
102 |
+
order_summary: gr.DataFrame(s, visible=True)
|
103 |
+
}
|
104 |
+
|
105 |
+
restart_btn.click(restart_chat, outputs=[chatbot, output_col])
|
106 |
+
end_btn.click(end_chat, outputs=[output_col, order_summary])
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
demo.launch()
|
order_parser.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
2 |
+
from transformers import pipeline
|
3 |
+
from word2number import w2n
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
class Order_Parser():
|
7 |
+
def __init__(self):
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("davanstrien/deberta-v3-base_fine_tuned_food_ner")
|
9 |
+
model = AutoModelForTokenClassification.from_pretrained("davanstrien/deberta-v3-base_fine_tuned_food_ner")
|
10 |
+
self.pipe = pipeline("ner", model=model, tokenizer=tokenizer)
|
11 |
+
self.complete_order_dict={}
|
12 |
+
|
13 |
+
def restart_state(self):
|
14 |
+
self.complete_order_dict={}
|
15 |
+
|
16 |
+
def join_adjacent_items(self, data):
|
17 |
+
result = []
|
18 |
+
current_group = []
|
19 |
+
current_entity = None
|
20 |
+
|
21 |
+
for item in data:
|
22 |
+
# Check if the item's entity is related to FOOD or QUANTITY
|
23 |
+
if any(e in item['entity'] for e in ['FOOD', 'QUANTITY']):
|
24 |
+
# Start a new group if the entity type changes
|
25 |
+
if not current_entity:
|
26 |
+
current_entity = item['entity'].split('-')[-1]
|
27 |
+
elif current_entity != item['entity'].split('-')[-1]:
|
28 |
+
result.append({'entity': current_entity, 'word': ''.join(current_group)})
|
29 |
+
current_group = []
|
30 |
+
current_entity = item['entity'].split('-')[-1]
|
31 |
+
|
32 |
+
current_group.append(item['word'])
|
33 |
+
else:
|
34 |
+
if current_group:
|
35 |
+
result.append({'entity': current_entity, 'word': ''.join(current_group)})
|
36 |
+
current_group = []
|
37 |
+
current_entity = None
|
38 |
+
result.append(item)
|
39 |
+
|
40 |
+
# Handle the last group if it exists
|
41 |
+
if current_group:
|
42 |
+
result.append({'entity': current_entity, 'word': ''.join(current_group)})
|
43 |
+
|
44 |
+
return result
|
45 |
+
|
46 |
+
def order_parser(self, sentence):
|
47 |
+
sentence = sentence.replace(',', ' ')
|
48 |
+
sentence = sentence.replace('?', ' ')
|
49 |
+
sentence = sentence.replace('.', ' ')
|
50 |
+
# updated_sentence = updated_sentence.replace('and', 'one')
|
51 |
+
sentence = sentence.replace(' a ', ' one ')
|
52 |
+
sentence = sentence.replace(' an ', ' one ')
|
53 |
+
# sentence = sentence.replace(' and ', ' one ')
|
54 |
+
# print(updated_sentence)
|
55 |
+
# raw_order = self.pipe(updated_sentence)
|
56 |
+
print(sentence)
|
57 |
+
raw_order = self.pipe(sentence)
|
58 |
+
raw_order_piped = self.join_adjacent_items(raw_order)
|
59 |
+
|
60 |
+
order_dict={}
|
61 |
+
quantity_exist = False
|
62 |
+
for ent in raw_order_piped:
|
63 |
+
if 'QUANTITY' in ent['entity']:
|
64 |
+
quantity = ent['word'].replace('β', ' ')
|
65 |
+
try:
|
66 |
+
quantity = w2n.word_to_num(quantity)
|
67 |
+
except:
|
68 |
+
quantity = 1
|
69 |
+
|
70 |
+
# print(quantity)
|
71 |
+
quantity_exist = True
|
72 |
+
|
73 |
+
elif 'FOOD' in ent['entity']:
|
74 |
+
food = ent['word'].replace('β', '')
|
75 |
+
# print(food)
|
76 |
+
|
77 |
+
if quantity_exist:
|
78 |
+
order_dict[food] = quantity
|
79 |
+
else:
|
80 |
+
order_dict[food] = 1
|
81 |
+
|
82 |
+
quantity_exist=False
|
83 |
+
|
84 |
+
# print(order_dict)
|
85 |
+
self.complete_order_dict.update(order_dict)
|
86 |
+
return self.complete_order_dict
|
87 |
+
|
requirements.txt
CHANGED
@@ -8,4 +8,5 @@ scipy
|
|
8 |
elevenlabs
|
9 |
openai
|
10 |
torch
|
11 |
-
wandb
|
|
|
|
8 |
elevenlabs
|
9 |
openai
|
10 |
torch
|
11 |
+
wandb
|
12 |
+
word2number
|