import gradio as gr from transformers import AutoModelForSequenceClassification, AutoTokenizer, TextClassificationPipeline tokenizer = AutoTokenizer.from_pretrained("daspartho/text-emotion") model = AutoModelForSequenceClassification.from_pretrained("daspartho/text-emotion") # i've uploaded the model on HuggingFace :) pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, top_k=6) label_map={ 'LABEL_0':'🙁', 'LABEL_1':'😃', 'LABEL_2':'🥰', 'LABEL_3':'😠', 'LABEL_4':'😬', 'LABEL_5':'😳' } def classify_text(text): predictions = pipe(text)[0] return {label_map[pred['label']]: float(pred['score']) for pred in predictions} iface = gr.Interface( title='Text Emotion', description = "enter a text and the model will attempt to predict the emotion.", article = "
", fn=classify_text, inputs=gr.inputs.Textbox(label="type the text here"), outputs=gr.outputs.Label(label='what the model thinks'), ) iface.launch()