File size: 4,598 Bytes
751e7d4
085880a
f7a9983
 
3b5590f
401ca9f
085880a
c931099
f7a9983
d950565
751e7d4
 
71c83be
28de828
77de53d
 
 
 
 
 
 
 
 
 
 
 
 
3b5590f
 
 
 
77de53d
751e7d4
bef42f1
f7a9983
401ca9f
 
b7ce47c
f7a9983
 
bef42f1
3b5590f
4c74a4e
 
 
 
 
 
 
3b5590f
5b8a275
3b5590f
12aabf0
2275821
3b5590f
2275821
0f3cefd
5d46926
 
401ca9f
2275821
 
085880a
6772cf6
e1952ef
 
b5a423e
e1952ef
6772cf6
a29437c
 
 
 
 
 
6772cf6
 
 
a29437c
 
 
 
6772cf6
 
 
085880a
7eb873e
e1952ef
7729daa
b5a423e
7729daa
 
 
e1952ef
 
 
7729daa
10c6d44
7729daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
908b38b
7729daa
 
 
 
 
 
 
0bc40f8
085880a
6159031
bef42f1
e1952ef
 
 
 
 
 
 
085880a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import gradio as gr
from huggingface_hub import InferenceClient
from e2b_code_interpreter import Sandbox
from pathlib import Path
from transformers import AutoTokenizer

from utils import run_interactive_notebook, create_base_notebook, update_notebook_display


E2B_API_KEY = os.environ['E2B_API_KEY']
HF_TOKEN = os.environ['HF_TOKEN']
DEFAULT_MAX_TOKENS = 512
DEFAULT_SYSTEM_PROMPT = """You are a code assistant with access to a ipython interpreter.
You solve tasks step-by-step and rely on code execution results.
Don't make any assumptions about the data but always check the format first.
If you generate code in your response you always run it in the interpreter.
When fix a mistake in the code always run it again.

Follow these steps given a new task and dataset:
1. Read in the data and make sure you understand each files format and content by printing useful information. 
2. Execute the code at this point and don't try to write a solution before looking at the execution result.
3. After exploring the format write a quick action plan to solve the task from the user.
4. Then call the ipython interpreter directly with the solution and look at the execution result.
5. If there is an issue with the code, reason about potential issues and then propose a solution and execute again the fixed code and check the result.
Always run the code at each step and repeat the steps if necessary until you reach a solution. 

NEVER ASSUME, ALWAYS VERIFY!

List of available files:
{}"""


def execute_jupyter_agent(sytem_prompt, user_input, max_new_tokens, model,files, message_history):
    client = InferenceClient(api_key=HF_TOKEN)

    tokenizer = AutoTokenizer.from_pretrained(model)
    #model = "meta-llama/Llama-3.1-8B-Instruct"

    sbx = Sandbox(api_key=E2B_API_KEY)

    filenames = []
    if files is not None:
        for filepath in files:
            filpath = Path(filepath)
            with open(filepath, "rb") as file:
                print(f"uploading {filepath}...")
                sbx.files.write(filpath.name, file)
                filenames.append(filpath.name)


    
    # Initialize message_history if it doesn't exist
    if len(message_history)==0:
        message_history.append({"role": "system", "content": sytem_prompt.format("- " + "\n- ".join(filenames))})
    message_history.append({"role": "user", "content": user_input})

    print("history:", message_history)

    for notebook_html, messages in run_interactive_notebook(client, model, tokenizer, message_history, sbx, max_new_tokens=max_new_tokens):
        message_history = messages
        yield notebook_html, message_history


def clear(state):
    state = []
    return update_notebook_display(create_base_notebook([])[0]), state

css = """
#component-0 {
    height: 100vh;
    overflow-y: auto;
    padding: 20px;
}

.gradio-container {
    height: 100vh !important;
}

.contain {
    height: 100vh !important;
}
"""


# Create the interface
with gr.Blocks(css=css) as demo:
    state = gr.State(value=[])
    
    html_output = gr.HTML(value=update_notebook_display(create_base_notebook([])[0]))
    
    user_input = gr.Textbox(value="Solve the Lotka-Volterra equation and plot the results.", lines=3)
    
    with gr.Row():
        generate_btn = gr.Button("Let's go!")
        clear_btn = gr.Button("Clear")

    with gr.Accordion("Upload files", open=False):
        files = gr.File(label="Upload files to use", file_count="multiple")

        
    with gr.Accordion("Advanced Settings", open=False):
        system_input = gr.Textbox(
            label="System Prompt",
            value=DEFAULT_SYSTEM_PROMPT,
            elem_classes="input-box",
            lines=8
        )
        with gr.Row():
            max_tokens = gr.Number(
                label="Max New Tokens",
                value=DEFAULT_MAX_TOKENS,
                minimum=128,
                maximum=2048,
                step=8,
                interactive=True
            )
            
            model = gr.Dropdown(value="meta-llama/Llama-3.1-8B-Instruct", 
                                choices=[
                "meta-llama/Llama-3.2-3B-Instruct",
                "meta-llama/Llama-3.1-8B-Instruct", 
                "meta-llama/Llama-3.1-70B-Instruct"]
                               )
        
    generate_btn.click(
        fn=execute_jupyter_agent,
        inputs=[system_input, user_input, max_tokens, model, files, state],
        outputs=[html_output,  state]
    )

    clear_btn.click(
        fn=clear,
        inputs=[state],
        outputs=[html_output,  state]
    )

demo.launch()