File size: 5,110 Bytes
751e7d4
085880a
d2daf95
f7a9983
 
3b5590f
401ca9f
085880a
d2daf95
 
 
f7a9983
d2daf95
 
 
d950565
d2daf95
 
 
 
 
 
 
 
 
71c83be
28de828
77de53d
 
 
 
 
 
 
 
 
 
 
 
 
3b5590f
 
 
 
77de53d
751e7d4
d2daf95
 
 
f7a9983
401ca9f
 
d2daf95
f7a9983
 
bef42f1
3b5590f
4c74a4e
 
 
 
 
 
 
3b5590f
12aabf0
d2daf95
 
 
 
 
 
 
2275821
0f3cefd
5d46926
 
d2daf95
 
 
2275821
 
085880a
6772cf6
e1952ef
 
b5a423e
e1952ef
d2daf95
6772cf6
a29437c
 
 
 
 
 
6772cf6
 
 
a29437c
 
 
 
6772cf6
 
 
085880a
a3b4442
e1952ef
d2daf95
b5a423e
d2daf95
 
 
 
 
e1952ef
 
 
7729daa
10c6d44
7729daa
 
 
 
 
 
 
d2daf95
7729daa
 
 
 
 
 
 
 
d2daf95
 
 
 
 
 
 
 
 
 
908b38b
d2daf95
085880a
6159031
bef42f1
d2daf95
e1952ef
 
d2daf95
085880a
4dd59d6
 
 
 
 
 
 
 
 
 
 
 
d2daf95
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import gradio as gr
from gradio.utils import get_space
from huggingface_hub import InferenceClient
from e2b_code_interpreter import Sandbox
from pathlib import Path
from transformers import AutoTokenizer

if not get_space():
    try:
        from dotenv import load_dotenv

        load_dotenv()
    except (ImportError, ModuleNotFoundError):
        pass


from utils import (
    run_interactive_notebook,
    create_base_notebook,
    update_notebook_display,
)

E2B_API_KEY = os.environ["E2B_API_KEY"]
HF_TOKEN = os.environ["HF_TOKEN"]
DEFAULT_MAX_TOKENS = 512
DEFAULT_SYSTEM_PROMPT = """You are a code assistant with access to a ipython interpreter.
You solve tasks step-by-step and rely on code execution results.
Don't make any assumptions about the data but always check the format first.
If you generate code in your response you always run it in the interpreter.
When fix a mistake in the code always run it again.

Follow these steps given a new task and dataset:
1. Read in the data and make sure you understand each files format and content by printing useful information. 
2. Execute the code at this point and don't try to write a solution before looking at the execution result.
3. After exploring the format write a quick action plan to solve the task from the user.
4. Then call the ipython interpreter directly with the solution and look at the execution result.
5. If there is an issue with the code, reason about potential issues and then propose a solution and execute again the fixed code and check the result.
Always run the code at each step and repeat the steps if necessary until you reach a solution. 

NEVER ASSUME, ALWAYS VERIFY!

List of available files:
{}"""


def execute_jupyter_agent(
    sytem_prompt, user_input, max_new_tokens, model, files, message_history
):
    client = InferenceClient(api_key=HF_TOKEN)

    tokenizer = AutoTokenizer.from_pretrained(model)
    # model = "meta-llama/Llama-3.1-8B-Instruct"

    sbx = Sandbox(api_key=E2B_API_KEY)

    filenames = []
    if files is not None:
        for filepath in files:
            filpath = Path(filepath)
            with open(filepath, "rb") as file:
                print(f"uploading {filepath}...")
                sbx.files.write(filpath.name, file)
                filenames.append(filpath.name)

    # Initialize message_history if it doesn't exist
    if len(message_history) == 0:
        message_history.append(
            {
                "role": "system",
                "content": sytem_prompt.format("- " + "\n- ".join(filenames)),
            }
        )
    message_history.append({"role": "user", "content": user_input})

    print("history:", message_history)

    for notebook_html, messages in run_interactive_notebook(
        client, model, tokenizer, message_history, sbx, max_new_tokens=max_new_tokens
    ):
        message_history = messages
        yield notebook_html, message_history


def clear(state):
    state = []
    return update_notebook_display(create_base_notebook([])[0]), state


css = """
#component-0 {
    height: 100vh;
    overflow-y: auto;
    padding: 20px;
}

.gradio-container {
    height: 100vh !important;
}

.contain {
    height: 100vh !important;
}
"""


# Create the interface
with gr.Blocks() as demo:
    state = gr.State(value=[])

    html_output = gr.HTML(value=update_notebook_display(create_base_notebook([])[0]))

    user_input = gr.Textbox(
        value="Solve the Lotka-Volterra equation and plot the results.", lines=3
    )

    with gr.Row():
        generate_btn = gr.Button("Let's go!")
        clear_btn = gr.Button("Clear")

    with gr.Accordion("Upload files", open=False):
        files = gr.File(label="Upload files to use", file_count="multiple")

    with gr.Accordion("Advanced Settings", open=False):
        system_input = gr.Textbox(
            label="System Prompt",
            value=DEFAULT_SYSTEM_PROMPT,
            elem_classes="input-box",
            lines=8,
        )
        with gr.Row():
            max_tokens = gr.Number(
                label="Max New Tokens",
                value=DEFAULT_MAX_TOKENS,
                minimum=128,
                maximum=2048,
                step=8,
                interactive=True,
            )

            model = gr.Dropdown(
                value="meta-llama/Llama-3.1-8B-Instruct",
                choices=[
                    "meta-llama/Llama-3.2-3B-Instruct",
                    "meta-llama/Llama-3.1-8B-Instruct",
                    "meta-llama/Llama-3.1-70B-Instruct",
                ],
            )

    generate_btn.click(
        fn=execute_jupyter_agent,
        inputs=[system_input, user_input, max_tokens, model, files, state],
        outputs=[html_output, state],
    )

    clear_btn.click(fn=clear, inputs=[state], outputs=[html_output, state])

    demo.load(
        fn=None,
        inputs=None,
        outputs=None,
        js=""" () => {
    if (document.querySelectorAll('.dark').length) {
        document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
    }
}
"""
    )

demo.launch(ssr_mode=False)