Spaces:
Running
Running
File size: 5,110 Bytes
751e7d4 085880a d2daf95 f7a9983 3b5590f 401ca9f 085880a d2daf95 f7a9983 d2daf95 d950565 d2daf95 71c83be 28de828 77de53d 3b5590f 77de53d 751e7d4 d2daf95 f7a9983 401ca9f d2daf95 f7a9983 bef42f1 3b5590f 4c74a4e 3b5590f 12aabf0 d2daf95 2275821 0f3cefd 5d46926 d2daf95 2275821 085880a 6772cf6 e1952ef b5a423e e1952ef d2daf95 6772cf6 a29437c 6772cf6 a29437c 6772cf6 085880a a3b4442 e1952ef d2daf95 b5a423e d2daf95 e1952ef 7729daa 10c6d44 7729daa d2daf95 7729daa d2daf95 908b38b d2daf95 085880a 6159031 bef42f1 d2daf95 e1952ef d2daf95 085880a 4dd59d6 d2daf95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import gradio as gr
from gradio.utils import get_space
from huggingface_hub import InferenceClient
from e2b_code_interpreter import Sandbox
from pathlib import Path
from transformers import AutoTokenizer
if not get_space():
try:
from dotenv import load_dotenv
load_dotenv()
except (ImportError, ModuleNotFoundError):
pass
from utils import (
run_interactive_notebook,
create_base_notebook,
update_notebook_display,
)
E2B_API_KEY = os.environ["E2B_API_KEY"]
HF_TOKEN = os.environ["HF_TOKEN"]
DEFAULT_MAX_TOKENS = 512
DEFAULT_SYSTEM_PROMPT = """You are a code assistant with access to a ipython interpreter.
You solve tasks step-by-step and rely on code execution results.
Don't make any assumptions about the data but always check the format first.
If you generate code in your response you always run it in the interpreter.
When fix a mistake in the code always run it again.
Follow these steps given a new task and dataset:
1. Read in the data and make sure you understand each files format and content by printing useful information.
2. Execute the code at this point and don't try to write a solution before looking at the execution result.
3. After exploring the format write a quick action plan to solve the task from the user.
4. Then call the ipython interpreter directly with the solution and look at the execution result.
5. If there is an issue with the code, reason about potential issues and then propose a solution and execute again the fixed code and check the result.
Always run the code at each step and repeat the steps if necessary until you reach a solution.
NEVER ASSUME, ALWAYS VERIFY!
List of available files:
{}"""
def execute_jupyter_agent(
sytem_prompt, user_input, max_new_tokens, model, files, message_history
):
client = InferenceClient(api_key=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(model)
# model = "meta-llama/Llama-3.1-8B-Instruct"
sbx = Sandbox(api_key=E2B_API_KEY)
filenames = []
if files is not None:
for filepath in files:
filpath = Path(filepath)
with open(filepath, "rb") as file:
print(f"uploading {filepath}...")
sbx.files.write(filpath.name, file)
filenames.append(filpath.name)
# Initialize message_history if it doesn't exist
if len(message_history) == 0:
message_history.append(
{
"role": "system",
"content": sytem_prompt.format("- " + "\n- ".join(filenames)),
}
)
message_history.append({"role": "user", "content": user_input})
print("history:", message_history)
for notebook_html, messages in run_interactive_notebook(
client, model, tokenizer, message_history, sbx, max_new_tokens=max_new_tokens
):
message_history = messages
yield notebook_html, message_history
def clear(state):
state = []
return update_notebook_display(create_base_notebook([])[0]), state
css = """
#component-0 {
height: 100vh;
overflow-y: auto;
padding: 20px;
}
.gradio-container {
height: 100vh !important;
}
.contain {
height: 100vh !important;
}
"""
# Create the interface
with gr.Blocks() as demo:
state = gr.State(value=[])
html_output = gr.HTML(value=update_notebook_display(create_base_notebook([])[0]))
user_input = gr.Textbox(
value="Solve the Lotka-Volterra equation and plot the results.", lines=3
)
with gr.Row():
generate_btn = gr.Button("Let's go!")
clear_btn = gr.Button("Clear")
with gr.Accordion("Upload files", open=False):
files = gr.File(label="Upload files to use", file_count="multiple")
with gr.Accordion("Advanced Settings", open=False):
system_input = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
elem_classes="input-box",
lines=8,
)
with gr.Row():
max_tokens = gr.Number(
label="Max New Tokens",
value=DEFAULT_MAX_TOKENS,
minimum=128,
maximum=2048,
step=8,
interactive=True,
)
model = gr.Dropdown(
value="meta-llama/Llama-3.1-8B-Instruct",
choices=[
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
],
)
generate_btn.click(
fn=execute_jupyter_agent,
inputs=[system_input, user_input, max_tokens, model, files, state],
outputs=[html_output, state],
)
clear_btn.click(fn=clear, inputs=[state], outputs=[html_output, state])
demo.load(
fn=None,
inputs=None,
outputs=None,
js=""" () => {
if (document.querySelectorAll('.dark').length) {
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
}
}
"""
)
demo.launch(ssr_mode=False)
|