Spaces:
Running
Running
File size: 10,754 Bytes
f7a9983 5c34853 20875a0 f7a9983 100570e dfa06cf a73b1a6 100570e 6fef5b1 f7a9983 7b6df75 2018677 f7a9983 7b6df75 e9163a2 100570e e9163a2 f7a9983 100570e f7a9983 100570e 926febf 100570e f7a9983 100570e 571d707 100570e 926febf 100570e f7a9983 2018677 f7a9983 7120f23 100570e 20875a0 f7a9983 100570e 20875a0 c2726bd 5c34853 2315b1e c2726bd 0fd0d1f c2726bd fa34d67 f7a9983 6b6ff22 7120f23 f7a9983 01c6792 ef8e02d 6d80856 f7a9983 7120f23 f7a9983 7120f23 f7a9983 e0df5b6 f7a9983 69a9c5e f7a9983 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import nbformat
from nbformat.v4 import new_notebook, new_markdown_cell, new_code_cell
from nbconvert import HTMLExporter
from huggingface_hub import InferenceClient
from e2b_code_interpreter import Sandbox
from transformers import AutoTokenizer
from traitlets.config import Config
config = Config()
html_exporter = HTMLExporter(config=config, template_name="classic")
with open("llama3_template.jinja", "r") as f:
llama_template = f.read()
MAX_TURNS = 4
def parse_exec_result_nb(execution):
"""Convert an E2B Execution object to Jupyter notebook cell output format"""
outputs = []
if execution.logs.stdout:
outputs.append({
'output_type': 'stream',
'name': 'stdout',
'text': ''.join(execution.logs.stdout)
})
if execution.logs.stderr:
outputs.append({
'output_type': 'stream',
'name': 'stderr',
'text': ''.join(execution.logs.stderr)
})
if execution.error:
outputs.append({
'output_type': 'error',
'ename': execution.error.name,
'evalue': execution.error.value,
'traceback': [line for line in execution.error.traceback.split('\n')]
})
for result in execution.results:
output = {
'output_type': 'execute_result' if result.is_main_result else 'display_data',
'metadata': {},
'data': {}
}
if result.text:
output['data']['text/plain'] = [result.text] # Array for text/plain
if result.html:
output['data']['text/html'] = result.html
if result.png:
output['data']['image/png'] = result.png
if result.svg:
output['data']['image/svg+xml'] = result.svg
if result.jpeg:
output['data']['image/jpeg'] = result.jpeg
if result.pdf:
output['data']['application/pdf'] = result.pdf
if result.latex:
output['data']['text/latex'] = result.latex
if result.json:
output['data']['application/json'] = result.json
if result.javascript:
output['data']['application/javascript'] = result.javascript
if result.is_main_result and execution.execution_count is not None:
output['execution_count'] = execution.execution_count
if output['data']:
outputs.append(output)
return outputs
system_template = """\
<details>
<summary style="display: flex; align-items: center;">
<div class="alert alert-block alert-info" style="margin: 0; width: 100%;">
<b>System: <span class="arrow">▶</span></b>
</div>
</summary>
<div class="alert alert-block alert-info">
{}
</div>
</details>
<style>
details > summary .arrow {{
display: inline-block;
transition: transform 0.2s;
}}
details[open] > summary .arrow {{
transform: rotate(90deg);
}}
</style>
"""
user_template = """<div class="alert alert-block alert-success">
<b>User:</b> {}
</div>
"""
header_message = """<p align="center">
<img src="https://huggingface.co/spaces/lvwerra/jupyter-agent/resolve/main/jupyter-agent.png" />
</p>
<p style="text-align:center;">Let a LLM agent write and execute code inside a notebook!</p>"""
bad_html_bad = """input[type="file"] {
display: block;
}"""
def create_base_notebook(messages):
base_notebook = {
"metadata": {
"kernel_info": {"name": "python3"},
"language_info": {
"name": "python",
"version": "3.12",
},
},
"nbformat": 4,
"nbformat_minor": 0,
"cells": []
}
base_notebook["cells"].append({
"cell_type": "markdown",
"metadata": {},
"source": header_message
})
if len(messages)==0:
base_notebook["cells"].append({
"cell_type": "code",
"execution_count": None,
"metadata": {},
"source": "",
"outputs": []
})
code_cell_counter = 0
for message in messages:
if message["role"] == "system":
text = system_template.format(message["content"].replace('\n', '<br>'))
base_notebook["cells"].append({
"cell_type": "markdown",
"metadata": {},
"source": text
})
elif message["role"] == "user":
text = user_template.format(message["content"].replace('\n', '<br>'))
base_notebook["cells"].append({
"cell_type": "markdown",
"metadata": {},
"source": text
})
elif message["role"] == "assistant" and "tool_calls" in message:
base_notebook["cells"].append({
"cell_type": "code",
"execution_count": None,
"metadata": {},
"source": message["content"],
"outputs": []
})
elif message["role"] == "ipython":
code_cell_counter +=1
base_notebook["cells"][-1]["outputs"] = message["nbformat"]
base_notebook["cells"][-1]["execution_count"] = code_cell_counter
elif message["role"] == "assistant" and "tool_calls" not in message:
base_notebook["cells"].append({
"cell_type": "markdown",
"metadata": {},
"source": message["content"]
})
else:
raise ValueError(message)
return base_notebook, code_cell_counter
def execute_code(sbx, code):
execution = sbx.run_code(code, on_stdout=lambda data: print('stdout:', data))
output = ""
if len(execution.logs.stdout) > 0:
output += "\n".join(execution.logs.stdout)
if len(execution.logs.stderr) > 0:
output += "\n".join(execution.logs.stderr)
if execution.error is not None:
output += execution.error.traceback
return output, execution
def parse_exec_result_llm(execution):
output = ""
if len(execution.logs.stdout) > 0:
output += "\n".join(execution.logs.stdout)
if len(execution.logs.stderr) > 0:
output += "\n".join(execution.logs.stderr)
if execution.error is not None:
output += execution.error.traceback
return output
def update_notebook_display(notebook_data):
notebook = nbformat.from_dict(notebook_data)
notebook_body, _ = html_exporter.from_notebook_node(notebook)
notebook_body = notebook_body.replace(bad_html_bad, "")
return notebook_body
def run_interactive_notebook(client, model, tokenizer, messages, sbx, max_new_tokens=512):
notebook_data, code_cell_counter = create_base_notebook(messages)
turns = 0
try:
#code_cell_counter = 0
while turns <= MAX_TURNS:
turns += 1
input_tokens = tokenizer.apply_chat_template(
messages,
chat_template=llama_template,
builtin_tools=["code_interpreter"],
add_generation_prompt=True
)
model_input = tokenizer.decode(input_tokens)
print(f"Model input:\n{model_input}\n{'='*80}")
response_stream = client.text_generation(
model=model,
prompt=model_input,
details=True,
stream=True,
do_sample=True,
repetition_penalty=1.1,
temperature=0.8,
max_new_tokens=max_new_tokens,
)
assistant_response = ""
tokens = []
code_cell = False
for i, chunk in enumerate(response_stream):
if not chunk.token.special:
content = chunk.token.text
else:
content = ""
tokens.append(chunk.token.text)
assistant_response += content
if len(tokens)==1:
create_cell=True
code_cell = "<|python_tag|>" in tokens[0]
if code_cell:
code_cell_counter +=1
else:
create_cell = False
# Update notebook in real-time
if create_cell:
if "<|python_tag|>" in tokens[0]:
notebook_data["cells"].append({
"cell_type": "code",
"execution_count": None,
"metadata": {},
"source": assistant_response,
"outputs": []
})
else:
notebook_data["cells"].append({
"cell_type": "markdown",
"metadata": {},
"source": assistant_response
})
else:
notebook_data["cells"][-1]["source"] = assistant_response
if i%16 == 0:
yield update_notebook_display(notebook_data), messages
yield update_notebook_display(notebook_data), messages
# Handle code execution
if code_cell:
notebook_data["cells"][-1]["execution_count"] = code_cell_counter
exec_result, execution = execute_code(sbx, assistant_response)
messages.append({
"role": "assistant",
"content": assistant_response,
"tool_calls": [{
"type": "function",
"function": {
"name": "code_interpreter",
"arguments": {"code": assistant_response}
}
}]
})
messages.append({"role": "ipython", "content": parse_exec_result_llm(execution), "nbformat": parse_exec_result_nb(execution)})
# Update the last code cell with execution results
notebook_data["cells"][-1]["outputs"] = parse_exec_result_nb(execution)
update_notebook_display(notebook_data)
else:
messages.append({"role": "assistant", "content": assistant_response})
if tokens[-1] == "<|eot_id|>":
break
finally:
sbx.kill()
yield update_notebook_display(notebook_data), messages |