Spaces:
Running
Running
File size: 3,041 Bytes
751e7d4 085880a f7a9983 085880a 4b143e6 f7a9983 751e7d4 71c83be 77de53d 751e7d4 a2ca183 f7a9983 4a6d7a3 f7a9983 a2ca183 f7a9983 085880a 6772cf6 a29437c 6772cf6 a29437c 6772cf6 085880a 6772cf6 1cb1025 085880a 170063c 085880a f7a9983 1cb1025 d4b2751 1cb1025 085880a 6159031 1cb1025 085880a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import os
import gradio as gr
from huggingface_hub import InferenceClient
from e2b_code_interpreter import Sandbox
from utils import run_interactive_notebook
message_history = None
E2B_API_KEY = os.environ['E2B_API_KEY']
HF_TOKEN = os.environ['HF_TOKEN']
DEFAULT_MAX_TOKENS = 512
DEFAULT_SYSTEM_PROMPT = """Environment: ipython
You are a code assistant with access to a ipython interpreter.
You solve tasks step-by-step and rely on code execution results.
Don't make any assumptions about the data but always check the format first.
If you generate code in your response you always run it in the interpreter.
When fix a mistake in the code always run it again.
Follow these steps given a new task and dataset:
1. Read in the data and make sure you understand each files format and content by printing useful information.
2. Execute the code at this point and don't try to write a solution before looking at the execution result.
3. After exploring the format write a quick action plan to solve the task from the user.
4. Then call the ipython interpreter directly with the solution and look at the execution result.
5. If there is an issue with the code, reason about potential issues and then propose a solution and execute again the fixed code and check the result.
Always run the code at each step and repeat the steps if necessary until you reach a solution.
NEVER ASSUME, ALWAYS VERIFY!"""
def execute_jupyter_agent(sytem_prompt, user_input, max_new_tokens):
client = InferenceClient(api_key=HF_TOKEN)
model = "meta-llama/Llama-3.1-8B-Instruct"
sbx = Sandbox(api_key=E2B_API_KEY)
messages = [
{"role": "system", "content": sytem_prompt},
{"role": "user", "content": user_input}
]
for notebook_html, messages in run_interactive_notebook(client, model, messages, sbx, max_new_tokens=max_new_tokens):
message_history = messages
yield notebook_html
css = """
#component-0 {
height: 100vh;
overflow-y: auto;
padding: 20px;
}
.gradio-container {
height: 100vh !important;
}
.contain {
height: 100vh !important;
}
"""
# Create the interface
with gr.Blocks(css=css) as demo:
gr.Markdown("# Jupyter Agent!")
with gr.Row():
user_input = gr.Textbox(label="User prompt", value="Solve the Lotka-Volterra equation and plot the results.", lines=3)
generate_btn = gr.Button("Let's go!")
output = gr.HTML(label="Jupyter Notebook")
with gr.Accordion("Advanced Settings", open=False):
system_input = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
elem_classes="input-box"
)
max_tokens = gr.Number(
label="Max New Tokens",
value=DEFAULT_MAX_TOKENS,
minimum=128,
maximum=2048,
step=8,
interactive=True
)
generate_btn.click(
fn=execute_jupyter_agent,
inputs=[system_input, user_input, max_tokens],
outputs=output
)
demo.launch() |