Spaces:
Running
Running
File size: 4,595 Bytes
751e7d4 085880a f7a9983 3b5590f 401ca9f 085880a c931099 f7a9983 d950565 751e7d4 71c83be 28de828 77de53d 3b5590f 77de53d 751e7d4 bef42f1 f7a9983 401ca9f b7ce47c f7a9983 bef42f1 3b5590f 4c74a4e 3b5590f 5b8a275 3b5590f 12aabf0 2275821 3b5590f 2275821 0f3cefd 5d46926 401ca9f 2275821 085880a 6772cf6 e1952ef b5a423e e1952ef 6772cf6 a29437c 6772cf6 a29437c 6772cf6 085880a 28de828 e1952ef b5a423e 085880a c931099 2a2d977 bef42f1 e1952ef 908b38b 0bc40f8 908b38b 0bc40f8 085880a 6159031 bef42f1 e1952ef 085880a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import os
import gradio as gr
from huggingface_hub import InferenceClient
from e2b_code_interpreter import Sandbox
from pathlib import Path
from transformers import AutoTokenizer
from utils import run_interactive_notebook, create_base_notebook, update_notebook_display
E2B_API_KEY = os.environ['E2B_API_KEY']
HF_TOKEN = os.environ['HF_TOKEN']
DEFAULT_MAX_TOKENS = 512
DEFAULT_SYSTEM_PROMPT = """You are a code assistant with access to a ipython interpreter.
You solve tasks step-by-step and rely on code execution results.
Don't make any assumptions about the data but always check the format first.
If you generate code in your response you always run it in the interpreter.
When fix a mistake in the code always run it again.
Follow these steps given a new task and dataset:
1. Read in the data and make sure you understand each files format and content by printing useful information.
2. Execute the code at this point and don't try to write a solution before looking at the execution result.
3. After exploring the format write a quick action plan to solve the task from the user.
4. Then call the ipython interpreter directly with the solution and look at the execution result.
5. If there is an issue with the code, reason about potential issues and then propose a solution and execute again the fixed code and check the result.
Always run the code at each step and repeat the steps if necessary until you reach a solution.
NEVER ASSUME, ALWAYS VERIFY!
List of available files:
{}"""
def execute_jupyter_agent(sytem_prompt, user_input, max_new_tokens, model,files, message_history):
client = InferenceClient(api_key=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(model)
#model = "meta-llama/Llama-3.1-8B-Instruct"
sbx = Sandbox(api_key=E2B_API_KEY)
filenames = []
if files is not None:
for filepath in files:
filpath = Path(filepath)
with open(filepath, "rb") as file:
print(f"uploading {filepath}...")
sbx.files.write(filpath.name, file)
filenames.append(filpath.name)
# Initialize message_history if it doesn't exist
if len(message_history)==0:
message_history.append({"role": "system", "content": sytem_prompt.format("- " + "\n- ".join(filenames))})
message_history.append({"role": "user", "content": user_input})
print("history:", message_history)
for notebook_html, messages in run_interactive_notebook(client, model, tokenizer, message_history, sbx, max_new_tokens=max_new_tokens):
message_history = messages
yield notebook_html, message_history
def clear(state):
state = []
return update_notebook_display(create_base_notebook([])[0]), state
css = """
#component-0 {
height: 100vh;
overflow-y: auto;
padding: 20px;
}
.gradio-container {
height: 100vh !important;
}
.contain {
height: 100vh !important;
}
"""
# Create the interface
with gr.Blocks(css=css) as demo:
state = gr.State(value=[])
html_output = gr.HTML(value=update_notebook_display(create_base_notebook([])[0]))
with gr.Row():
user_input = gr.Textbox(value="Solve the Lotka-Volterra equation and plot the results.", lines=3)
with gr.Row():
files = gr.File(label="Upload files to use", file_count="multiple")
with gr.Row():
generate_btn = gr.Button("Let's go!")
clear_btn = gr.Button("Clear")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
system_input = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
elem_classes="input-box",
lines=8
)
with gr.Row():
max_tokens = gr.Number(
label="Max New Tokens",
value=DEFAULT_MAX_TOKENS,
minimum=128,
maximum=2048,
step=8,
interactive=True
)
model = gr.Dropdown(choices=[
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct"]
)
generate_btn.click(
fn=execute_jupyter_agent,
inputs=[system_input, user_input, max_tokens, model, files, state],
outputs=[html_output, state]
)
clear_btn.click(
fn=clear,
inputs=[state],
outputs=[html_output, state]
)
demo.launch() |