import os import gradio as gr from huggingface_hub import InferenceClient from e2b_code_interpreter import Sandbox from pathlib import Path from transformers import AutoTokenizer from utils import run_interactive_notebook, create_base_notebook, update_notebook_display E2B_API_KEY = os.environ['E2B_API_KEY'] HF_TOKEN = os.environ['HF_TOKEN'] DEFAULT_MAX_TOKENS = 512 DEFAULT_SYSTEM_PROMPT = """You are a code assistant with access to a ipython interpreter. You solve tasks step-by-step and rely on code execution results. Don't make any assumptions about the data but always check the format first. If you generate code in your response you always run it in the interpreter. When fix a mistake in the code always run it again. Follow these steps given a new task and dataset: 1. Read in the data and make sure you understand each files format and content by printing useful information. 2. Execute the code at this point and don't try to write a solution before looking at the execution result. 3. After exploring the format write a quick action plan to solve the task from the user. 4. Then call the ipython interpreter directly with the solution and look at the execution result. 5. If there is an issue with the code, reason about potential issues and then propose a solution and execute again the fixed code and check the result. Always run the code at each step and repeat the steps if necessary until you reach a solution. NEVER ASSUME, ALWAYS VERIFY! List of available files: {}""" def execute_jupyter_agent(sytem_prompt, user_input, max_new_tokens, model,files, message_history): client = InferenceClient(api_key=HF_TOKEN) tokenizer = AutoTokenizer.from_pretrained(model) #model = "meta-llama/Llama-3.1-8B-Instruct" sbx = Sandbox(api_key=E2B_API_KEY) filenames = [] if files is not None: for filepath in files: filpath = Path(filepath) with open(filepath, "rb") as file: print(f"uploading {filepath}...") sbx.files.write(filpath.name, file) filenames.append(filpath.name) # Initialize message_history if it doesn't exist if len(message_history)==0: message_history.append({"role": "system", "content": sytem_prompt.format("- " + "\n- ".join(filenames))}) message_history.append({"role": "user", "content": user_input}) print("history:", message_history) for notebook_html, messages in run_interactive_notebook(client, model, tokenizer, message_history, sbx, max_new_tokens=max_new_tokens): message_history = messages yield notebook_html, message_history def clear(state): state = [] return update_notebook_display(create_base_notebook([])[0]), state css = """ #component-0 { height: 100vh; overflow-y: auto; padding: 20px; } .gradio-container { height: 100vh !important; } .contain { height: 100vh !important; } """ # Create the interface with gr.Blocks(css=css) as demo: state = gr.State(value=[]) html_output = gr.HTML(value=update_notebook_display(create_base_notebook([])[0])) user_input = gr.Textbox(value="Solve the Lotka-Volterra equation and plot the results.", lines=3) with gr.Row(): generate_btn = gr.Button("Let's go!") clear_btn = gr.Button("Clear") with gr.Accordion("Upload files", open=False): files = gr.File(label="Upload files to use", file_count="multiple") with gr.Accordion("Advanced Settings", open=False): system_input = gr.Textbox( label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, elem_classes="input-box", lines=8 ) with gr.Row(): max_tokens = gr.Number( label="Max New Tokens", value=DEFAULT_MAX_TOKENS, minimum=128, maximum=2048, step=8, interactive=True ) model = gr.Dropdown(value="meta-llama/Llama-3.1-8B-Instruct", choices=[ "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.1-8B-Instruct", "meta-llama/Llama-3.1-70B-Instruct"] ) generate_btn.click( fn=execute_jupyter_agent, inputs=[system_input, user_input, max_tokens, model, files, state], outputs=[html_output, state] ) clear_btn.click( fn=clear, inputs=[state], outputs=[html_output, state] ) demo.launch()