skillsia / main.py
datacipen's picture
Update main.py
ba30866 verified
raw
history blame
54.4 kB
import os
import time
from operator import itemgetter
from collections import Counter
from langchain_community.document_loaders import PyPDFLoader, TextLoader
from chainlit.types import AskFileResponse
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableLambda
from langchain.schema.runnable.config import RunnableConfig
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain, create_extraction_chain
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_community.llms import HuggingFaceEndpoint
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.schema import StrOutputParser
from langchain.chains.conversational_retrieval.prompts import CONDENSE_QUESTION_PROMPT
from langchain.chains.question_answering import load_qa_chain
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain_pinecone import PineconeVectorStore
from pinecone import Pinecone
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
import pandas as pd
import numpy as np
import chainlit as cl
from chainlit.input_widget import Select, TextInput
from chainlit import user_session
from offres_emploi import Api
from offres_emploi.utils import dt_to_str_iso
import datetime
import plotly.express as px
import bcrypt
import ast
import json
import requests
import http.client
from bs4 import BeautifulSoup
from literalai import LiteralClient
literal_client = LiteralClient(api_key=os.getenv("LITERAL_API_KEY"))
literal_client.instrument_openai()
@cl.password_auth_callback
def auth_callback(username: str, password: str):
auth = json.loads(os.environ['CHAINLIT_AUTH_LOGIN'])
ident = next(d['ident'] for d in auth if d['ident'] == username)
pwd = next(d['pwd'] for d in auth if d['ident'] == username)
resultLogAdmin = bcrypt.checkpw(username.encode('utf-8'), bcrypt.hashpw(ident.encode('utf-8'), bcrypt.gensalt()))
resultPwdAdmin = bcrypt.checkpw(password.encode('utf-8'), bcrypt.hashpw(pwd.encode('utf-8'), bcrypt.gensalt()))
resultRole = next(d['role'] for d in auth if d['ident'] == username)
if resultLogAdmin and resultPwdAdmin and resultRole == "admindatapcc":
return cl.User(
identifier=ident + " : 🧑‍💼 Admin Datapcc", metadata={"role": "admin", "provider": "credentials"}
)
elif resultLogAdmin and resultPwdAdmin and resultRole == "userdatapcc":
return cl.User(
identifier=ident + " : 🧑‍🎓 User Datapcc", metadata={"role": "user", "provider": "credentials"}
)
def process_file(file: AskFileResponse):
if file.type == "text/plain":
Loader = TextLoader
elif file.type == "application/pdf":
Loader = PyPDFLoader
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
loader = Loader(file.path)
documents = loader.load()
docs = text_splitter.split_documents(documents)
return docs
def removeTags(all):
for data in all(['style', 'script']):
data.decompose()
return ' '.join(all.stripped_strings)
def localisation():
ListCentroids = [
{ "ID": "01", "Longitude": 5.3245259, "Latitude":46.0666003 },
{ "ID": "02", "Longitude": 3.5960246, "Latitude": 49.5519632 },
{ "ID": "03", "Longitude": 3.065278, "Latitude": 46.4002783 },
{ "ID": "04", "Longitude": 6.2237688, "Latitude": 44.1105837 },
{ "ID": "05", "Longitude": 6.2018836, "Latitude": 44.6630487 },
{ "ID": "06", "Longitude": 7.0755745, "Latitude":43.9463082 },
{ "ID": "07", "Longitude": 4.3497308, "Latitude": 44.7626044 },
{ "ID": "08", "Longitude": 4.6234893, "Latitude": 49.6473884 },
{ "ID": "09", "Longitude": 1.6037147, "Latitude": 42.9696091 },
{ "ID": "10", "Longitude": 4.1394954, "Latitude": 48.2963286 },
{ "ID": "11", "Longitude": 2.3140163, "Latitude": 43.1111427 },
{ "ID": "12", "Longitude": 2.7365234, "Latitude": 44.2786323 },
{ "ID": "13", "Longitude": 5.0515492, "Latitude": 43.5539098 },
{ "ID": "14", "Longitude": -0.3930779, "Latitude": 49.1024215 },
{ "ID": "15", "Longitude": 2.6367657, "Latitude": 44.9643217 },
{ "ID": "16", "Longitude": 0.180475, "Latitude": 45.706264 },
{ "ID": "17", "Longitude": -0.7082589, "Latitude": 45.7629699 },
{ "ID": "18", "Longitude": 2.5292424, "Latitude": 47.0926687 },
{ "ID": "19", "Longitude": 1.8841811, "Latitude": 45.3622055 },
{ "ID": "2A", "Longitude": 8.9906834, "Latitude": 41.8619761 },
{ "ID": "2B", "Longitude": 9.275489, "Latitude": 42.372014 },
{ "ID": "21", "Longitude": 4.7870471, "Latitude": 47.4736746 },
{ "ID": "22", "Longitude": -2.9227591, "Latitude": 48.408402 },
{ "ID": "23", "Longitude": 2.0265508, "Latitude": 46.0837382 },
{ "ID": "24", "Longitude": 0.7140145, "Latitude": 45.1489678 },
{ "ID": "25", "Longitude": 6.3991355, "Latitude": 47.1879451 },
{ "ID": "26", "Longitude": 5.1717552, "Latitude": 44.8055408 },
{ "ID": "27", "Longitude": 0.9488116, "Latitude": 49.1460288 },
{ "ID": "28", "Longitude": 1.2793491, "Latitude": 48.3330017 },
{ "ID": "29", "Longitude": -4.1577074, "Latitude": 48.2869945 },
{ "ID": "30", "Longitude": 4.2650329, "Latitude": 43.9636468 },
{ "ID": "31", "Longitude": 1.2728958, "Latitude": 43.3671081 },
{ "ID": "32", "Longitude": 0.4220039, "Latitude": 43.657141 },
{ "ID": "33", "Longitude": -0.5760716, "Latitude": 44.8406068 },
{ "ID": "34", "Longitude": 3.4197556, "Latitude": 43.62585 },
{ "ID": "35", "Longitude": -1.6443812, "Latitude": 48.1801254 },
{ "ID": "36", "Longitude": 1.6509938, "Latitude": 46.7964222 },
{ "ID": "37", "Longitude": 0.7085619, "Latitude": 47.2802601 },
{ "ID": "38", "Longitude": 5.6230772, "Latitude": 45.259805 },
{ "ID": "39", "Longitude": 5.612871, "Latitude": 46.7398138 },
{ "ID": "40", "Longitude": -0.8771738, "Latitude": 44.0161251 },
{ "ID": "41", "Longitude": 1.3989178, "Latitude": 47.5866519 },
{ "ID": "42", "Longitude": 4.2262355, "Latitude": 45.7451186 },
{ "ID": "43", "Longitude": 3.8118151, "Latitude": 45.1473029 },
{ "ID": "44", "Longitude": -1.7642949, "Latitude": 47.4616509 },
{ "ID": "45", "Longitude": 2.2372695, "Latitude": 47.8631395 },
{ "ID": "46", "Longitude": 1.5732157, "Latitude": 44.6529284 },
{ "ID": "47", "Longitude": 0.4788052, "Latitude": 44.4027215 },
{ "ID": "48", "Longitude": 3.4991239, "Latitude": 44.5191573 },
{ "ID": "49", "Longitude": -0.5136056, "Latitude": 47.3945201 },
{ "ID": "50", "Longitude": -1.3203134, "Latitude": 49.0162072 },
{ "ID": "51", "Longitude": 4.2966555, "Latitude": 48.9479636 },
{ "ID": "52", "Longitude": 5.1325796, "Latitude": 48.1077196 },
{ "ID": "53", "Longitude": -0.7073921, "Latitude": 48.1225795 },
{ "ID": "54", "Longitude": 6.144792, "Latitude": 48.7995163 },
{ "ID": "55", "Longitude": 5.2888292, "Latitude": 49.0074545 },
{ "ID": "56", "Longitude": -2.8746938, "Latitude": 47.9239486 },
{ "ID": "57", "Longitude": 6.5610683, "Latitude": 49.0399233 },
{ "ID": "58", "Longitude": 3.5544332, "Latitude": 47.1122301 },
{ "ID": "59", "Longitude": 3.2466616, "Latitude": 50.4765414 },
{ "ID": "60", "Longitude": 2.4161734, "Latitude": 49.3852913 },
{ "ID": "61", "Longitude": 0.2248368, "Latitude": 48.5558919 },
{ "ID": "62", "Longitude": 2.2555152, "Latitude": 50.4646795 },
{ "ID": "63", "Longitude": 3.1322144, "Latitude": 45.7471805 },
{ "ID": "64", "Longitude": -0.793633, "Latitude": 43.3390984 },
{ "ID": "65", "Longitude": 0.1478724, "Latitude": 43.0526238 },
{ "ID": "66", "Longitude": 2.5239855, "Latitude": 42.5825094 },
{ "ID": "67", "Longitude": 7.5962225, "Latitude": 48.662515 },
{ "ID": "68", "Longitude": 7.2656284, "Latitude": 47.8586205 },
{ "ID": "69", "Longitude": 4.6859896, "Latitude": 45.8714754 },
{ "ID": "70", "Longitude": 6.1388571, "Latitude": 47.5904191 },
{ "ID": "71", "Longitude": 4.6394021, "Latitude": 46.5951234 },
{ "ID": "72", "Longitude": 0.1947322, "Latitude": 48.0041421 },
{ "ID": "73", "Longitude": 6.4662232, "Latitude": 45.4956055 },
{ "ID": "74", "Longitude": 6.3609606, "Latitude": 46.1045902 },
{ "ID": "75", "Longitude": 2.3416082, "Latitude": 48.8626759 },
{ "ID": "76", "Longitude": 1.025579, "Latitude": 49.6862911 },
{ "ID": "77", "Longitude": 2.8977309, "Latitude": 48.5957831 },
{ "ID": "78", "Longitude": 1.8080138, "Latitude": 48.7831982 },
{ "ID": "79", "Longitude": -0.3159014, "Latitude": 46.5490257 },
{ "ID": "80", "Longitude": 2.3380595, "Latitude": 49.9783317 },
{ "ID": "81", "Longitude": 2.2072751, "Latitude": 43.8524305 },
{ "ID": "82", "Longitude": 1.2649374, "Latitude": 44.1254902 },
{ "ID": "83", "Longitude": 6.1486127, "Latitude": 43.5007903 },
{ "ID": "84", "Longitude": 5.065418, "Latitude": 44.0001599 },
{ "ID": "85", "Longitude": -1.3956692, "Latitude": 46.5929102 },
{ "ID": "86", "Longitude": 0.4953679, "Latitude": 46.5719095 },
{ "ID": "87", "Longitude": 1.2500647, "Latitude": 45.9018644 },
{ "ID": "88", "Longitude": 6.349702, "Latitude": 48.1770451 },
{ "ID": "89", "Longitude": 3.5634078, "Latitude": 47.8474664 },
{ "ID": "90", "Longitude": 6.9498114, "Latitude": 47.6184394 },
{ "ID": "91", "Longitude": 2.2714555, "Latitude": 48.5203114 },
{ "ID": "92", "Longitude": 2.2407148, "Latitude": 48.835321 },
{ "ID": "93", "Longitude": 2.4811577, "Latitude": 48.9008719 },
{ "ID": "94", "Longitude": 2.4549766, "Latitude": 48.7832368 },
{ "ID": "95", "Longitude": 2.1802056, "Latitude": 49.076488 },
{ "ID": "974", "Longitude": 55.536384, "Latitude": -21.115141 },
{ "ID": "973", "Longitude": -53.125782, "Latitude": 3.933889 },
{ "ID": "972", "Longitude": -61.024174, "Latitude": 14.641528 },
{ "ID": "971", "Longitude": -61.551, "Latitude": 16.265 }
]
return ListCentroids
def plotDemandeur(dataframe, coderome):
df = dataframe.sort_values(by=['Indicateur'])
fig_demandeur = px.histogram(df, x='Indicateur', y='Valeur', height=1000, title="Demandeurs d'emploi et offres d'emploi du code ROME : " + coderome, color='Indicateur', labels={'Valeur':'Nombre'}, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple"),autosize=True)
return fig_demandeur
def plotSalaire(dataframe):
df = dataframe.sort_values(by=['salaire'])
fig_demandeur = px.histogram(df, x='emploi', y='salaire', barmode='group', title="Salaires médians", color='categorie', text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple"),autosize=True)
return fig_demandeur
def plotDifficulte(dataframe):
if len(dataframe) == 0:
title = "Aucune donnée difficulté de recrutement renseignée!"
else:
title = "Difficulté de recrutement"
df = dataframe.sort_values(by=['Valeur'])
fig_demandeur = px.histogram(df, x='Indicateur', y='Valeur', title=title, color='Indicateur', labels={'Valeur':'Pourcentage'}, text_auto=True).update_layout(font=dict(size=9,color="RebeccaPurple"),autosize=True)
return fig_demandeur
def plotRepartition(dataframe,title):
df = dataframe.sort_values(by=['Valeur'])
fig_repartition = px.pie(df, names='Indicateur', values='Valeur', color='Indicateur', title=title, labels={'Valeur':'pourcentage'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10,color="RebeccaPurple"))
return fig_repartition
def removeTags(all):
for data in all(['style', 'script']):
data.decompose()
return ''.join(all.stripped_strings)
def htmlToDataframe(htmlTable):
data = []
list_header = []
soup = BeautifulSoup(htmlTable,'html.parser')
header = soup.find_all("table")[0].find("tr")
for items in header:
try:
list_header.append(items.get_text())
except:
continue
HTML_data = soup.find_all("table")[0].find_all("tr")[1:]
for element in HTML_data:
sub_data = []
for sub_element in element:
try:
sub_data.append(sub_element.get_text())
except:
continue
data.append(sub_data)
dataFrame = pd.DataFrame(data = data, columns = list_header)
return dataFrame
def datavisualisation_chiffres_cles_emplois(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, "lxml")
alldemandeurs = ''
allsalaires = ''
alldifficultes = ''
allrepartitions = ''
allentreprises = ''
allembauches = soup.select('p.population_category')
allnumembauchesfirst = soup.select('p.population_main-num.data')
allnumembauches = removeTags(allnumembauchesfirst[0]).split('\xa0')
allnumembauches = ''.join(allnumembauches)
allnumoffres = removeTags(allnumembauchesfirst[1]).split('\xa0')
allnumoffres = ''.join(allnumoffres)
alldetailembauches = soup.select('p.hiring_text.ng-star-inserted')
allnumevolutionembauches = soup.select('p.main.ng-star-inserted')
alldetailevolutionembauches = soup.select('p.population_bubble-title')
alldemandeurs = "<table><tr><td>Indicateur</td><td>Valeur</td></tr><tr><td>" + removeTags(allembauches[0]) + " (" + removeTags(alldetailembauches[0]) + ");"
if len(alldetailevolutionembauches) >= 1 and len(allnumevolutionembauches) >= 1:
alldemandeurs += "\nÉvolution demandeurs d'emploi (" + removeTags(alldetailevolutionembauches[0]) + ": " + removeTags(allnumevolutionembauches[0]) + ")</td>"
else:
alldemandeurs += "</td>"
alldemandeurs += "<td>" + allnumembauches + "</td></tr>"
alldemandeurs += "<tr><td>" + removeTags(allembauches[1]) + " (" + removeTags(alldetailembauches[1]) + ");"
if len(alldetailevolutionembauches) >= 2 and len(allnumevolutionembauches) >= 2:
alldemandeurs += "\nÉvolution offres d'emploi (" + removeTags(alldetailevolutionembauches[1]) + ": " + removeTags(allnumevolutionembauches[1]) + ")</td>
else:
alldemandeurs += "</td>"
alldemandeurs += "<td>" + allnumoffres + "</td></tr>"
alldemandeurs += "</table>"
allFAP = soup.select('tr.sectorTable__line.ng-star-inserted')
allcategorie = soup.select('td.sectorTable__cell')
alltypesalaires = soup.select('th.sectorTable__cell')
allFAPsalaires = soup.select('p.sectorTable__cellValue')
if len(allFAPsalaires) >= 3:
allsalaires = "<table><tr><td>categorie</td><td>emploi</td><td>salaire</td></tr>"
allsalaires += "<tr><td>" + removeTags(alltypesalaires[1]) + "</td><td>" + removeTags(allcategorie[0]) + "</td><td>" + removeTags(allFAPsalaires[0]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
allsalaires += "<tr><td>" + removeTags(alltypesalaires[2]) + "</td><td>" + removeTags(allcategorie[0]) + "</td><td>" + removeTags(allFAPsalaires[1]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
allsalaires += "<tr><td>" + removeTags(alltypesalaires[3]) + "</td><td>" + removeTags(allcategorie[0]) + "</td><td>" + removeTags(allFAPsalaires[2]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
if len(allFAP) >= 2 and len(allFAPsalaires) == 6:
allsalaires += "<tr><td>" + removeTags(alltypesalaires[1]) + "</td><td>" + removeTags(allcategorie[4]) + "</td><td>" + removeTags(allFAPsalaires[3]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
allsalaires += "<tr><td>" + removeTags(alltypesalaires[2]) + "</td><td>" + removeTags(allcategorie[4]) + "</td><td>" + removeTags(allFAPsalaires[4]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
allsalaires += "<tr><td>" + removeTags(alltypesalaires[3]) + "</td><td>" + removeTags(allcategorie[4]) + "</td><td>" + removeTags(allFAPsalaires[5]).replace('\xa0','').replace(' ','').replace('€','') + "</td></tr>"
allsalaires += "</table>"
alltypedifficultes = soup.select('.tabs-main-content_persp-col2-bar.ng-star-inserted')
alldifficulte = soup.select('p.horizontal-graph_title')
allpcdifficulte = soup.select('div.horizontal-graph_data')
alldifficultes = "<table><tr><td>Indicateur</td><td>Valeur</td></tr>"
for i in range(0,len(alltypedifficultes)):
alldifficultes += "<tr><td>" + removeTags(alldifficulte[i]) + "</td><td>" + removeTags(allpcdifficulte[i]).replace('Pour le territoire principal FRANCE pour les ' + removeTags(alldifficulte[i]),'').replace('%','') + "</td></tr>"
alldifficultes += "</table>"
alltyperepartitions = soup.select('div.hiring-contract_legende_item.ng-star-inserted')
allrepartition = soup.select('p.hiring-contract_legende_item_label')
allpcrepartition = soup.select('span.hiring-contract_legende_item-first')
allrepartitions = "<table><tr><td>Indicateur</td><td>Valeur</td></tr>"
for i in range(0,len(alltyperepartitions)):
allrepartitions += "<tr><td>" + removeTags(allrepartition[i]).replace('(' + removeTags(allpcrepartition[i]) + ')','') + "</td><td>" + removeTags(allpcrepartition[i]).replace('%','').replace(',','.') + "</td></tr>"
allrepartitions += "</table>"
allentrepriserepartitions = soup.select('div.horizontal-graph_pattern.sm-bubble_wrapper > span')
allentreprise = soup.select('span.sr-only')
allpcentreprise = soup.select('span.data.ng-star-inserted')
allentreprises = "<table><tr><td>Indicateur</td><td>Valeur</td></tr>"
for i in range(0,len(allentrepriserepartitions)):
allentreprises += "<tr><td>" + removeTags(allentrepriserepartitions[i])[0:-4] + "</td><td>" + removeTags(allentrepriserepartitions[i])[-4:].replace('%','').replace(',','.') + "</td></tr>"
allentreprises += "</table>"
return [alldemandeurs, allsalaires, alldifficultes, allrepartitions, allentreprises]
def listToString(list):
return str(list)
def arrayToString(array):
arrayList = []
for i in range(0,len(array)):
if listToString(array[i]).find("libelle")!=-1:
arrayList.append(array[i]['libelle'])
else:
arrayList.append("; ")
string = ', '.join(arrayList)
return string + '; '
def searchByRome(rome,index):
libelle = ''
if rome.find(',') != -1:
romeArray = rome.split(',')
for i in range(0,len(romeArray)):
codeRome = romeArray[i].strip()
if i <= 5 and len(codeRome) == 5:
all_docs = index.query(
top_k=1,
vector= [0] * 768, # embedding dimension
namespace='',
filter={"categorie": {"$eq": "rome"}, "rome":{"$eq": codeRome}},
include_metadata=True
)
libelle = libelle + " " + all_docs['matches'][0]['metadata']['libelle_rome']
else:
all_docs = index.query(
top_k=1,
vector= [0] * 768, # embedding dimension
namespace='',
filter={"categorie": {"$eq": "rome"}, "rome":{"$eq": rome}},
include_metadata=True
)
libelle = libelle + " " + all_docs['matches'][0]['metadata']['libelle_rome']
return libelle
@cl.author_rename
def rename(orig_author: str):
rename_dict = {"ConversationalRetrievalChain": "💬 Assistant conversationnel", "Retriever": "Agent conversationnel", "StuffDocumentsChain": "Chaîne de documents", "LLMChain": "Agent", "HuggingFaceEndpoint": "Mistral AI 🤖"}
return rename_dict.get(orig_author, orig_author)
@cl.action_callback("datavizChiffresClesMetiers")
async def on_action(action):
romeListArray = ast.literal_eval(action.value)
elements = []
for j in range(0, len(romeListArray)):
table = datavisualisation_chiffres_cles_emplois("https://dataemploi.pole-emploi.fr/metier/chiffres-cles/NAT/FR/" + romeListArray[j])
plot_demandeur = plotDemandeur(htmlToDataframe(table[0]), romeListArray[j])
elements.append(cl.Plotly(name="chart_demandeur", figure=plot_demandeur, display="inline", size="large"))
if len(table[1]) > 0:
plot_salaire = plotSalaire(htmlToDataframe(table[1]))
elements.append(cl.Plotly(name="chart_salaire", figure=plot_salaire, display="inline", size="large"))
plot_difficulte = plotDifficulte(htmlToDataframe(table[2]))
elements.append(cl.Plotly(name="chart_difficulte", figure=plot_difficulte, display="inline", size="large"))
plot_repartitionContrat = plotRepartition(htmlToDataframe(table[3]), "Répartition des embauches du métier : type de contrat")
elements.append(cl.Plotly(name="chart_repatitionContrat", figure=plot_repartitionContrat, display="inline", size="large"))
plot_repartitionEntreprise = plotRepartition(htmlToDataframe(table[4]), "Répartition des embauches du métier : type entreprise")
elements.append(cl.Plotly(name="chart_repartitionEntreprise", figure=plot_repartitionEntreprise, display="inline", size="large"))
await cl.Message(content="Datavisualisation des chiffres clés des Métiers", elements=elements).send()
@cl.action_callback("download")
async def on_action(action):
content = []
content.append(action.value)
arrayContent = np.array(content)
df = pd.DataFrame(arrayContent)
with open('./' + action.description + '.txt', 'wb') as csv_file:
df.to_csv(path_or_buf=csv_file, index=False,header=False, encoding='utf-8')
elements = [
cl.File(
name= action.description + ".txt",
path="./" + action.description + ".txt",
display="inline",
),
]
await cl.Message(
author="Datapcc : 🌐🌐🌐", content="[Lien] 🔗", elements=elements
).send()
await action.remove()
@cl.action_callback("saveMemory")
async def on_action(action):
buffer = cl.user_session.get("saveMemory")
cl.user_session.set("saveMemory", buffer + action.value)
await cl.Message(
author="Datapcc : 🌐🌐🌐", content="🗃️ Document sauvegardé dans le buffer Memory!"
).send()
await action.remove()
@cl.cache
def to_cache(file):
#time.sleep(5) # Simulate a time-consuming process
return "https://cipen.univ-gustave-eiffel.fr/fileadmin/CIPEN/datas/assets/docs/" + file + ".csv"
@cl.set_chat_profiles
async def chat_profile():
return [
cl.ChatProfile(name="Note composante sectorielle - NCS",markdown_description="Note composante sectorielle",icon="./public/favicon.png",),
]
@cl.on_chat_start
async def start():
await cl.Avatar(
name="You",
path="./public/logo-ofipe.jpg",
).send()
chat_profile = cl.user_session.get("chat_profile")
chatProfile = chat_profile.split(' - ')
if chatProfile[1] == 'NCS':
app_user = cl.user_session.get("user")
welcomeUser = app_user.identifier
welcomeUserArray = welcomeUser.split('@')
welcomeUserStr = welcomeUserArray[0].replace('.',' ')
await cl.Message(f"> Bonjour {welcomeUserStr}").send()
df_allcompetences = pd.read_csv('./public/referentiel_competence.csv')
df_competences = df_allcompetences[['libelle_competence']].copy()
df_competences = df_competences.sort_values(by=['libelle_competence'])
competences_list = df_competences['libelle_competence'].tolist()
competences_list.sort()
competences_list.insert(0, "")
cl.user_session.set("arraySettingsComp", competences_list)
settings = await cl.ChatSettings(
[
Select(
id="competence",
label="Compétences",
values=competences_list,
initial_index=0,
),
TextInput(id="competenceInput", label="ou saisir une compétence voire des objectifs pédagogiques", placeholder="ou saisir une compétence voire des objectifs pédagogiques", tooltip="saisir une compétence voire des objectifs pédagogiques"),
]
).send()
value = settings["competence"]
if len(value) < 2:
warning = [
cl.Image(name="Warning", size="small", display="inline", path="./public/warning.png")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="1️⃣ Cliquez sur le bouton dont l'image suit, dans le prompt, pour commencer à élaborer une note sectorielle de la chaîne documentaire APCC!").send()
await cl.Message(author="Datapcc : 🌐🌐🌐",content="", elements=warning).send()
await cl.Message(author="Datapcc : 🌐🌐🌐",content="2️⃣ Puis sélectionnez ou saisissez une compétence ou des objectifs pédagogiques. Et vous êtes prêt!\n\n🔗 Plateforme de feedback et de fil d'activité : https://cloud.getliteral.ai/").send()
contextChat = cl.user_session.get("contextChatBot")
if not contextChat:
contextChat = df_competences.to_string(index = False)
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN']
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
model = HuggingFaceEndpoint(
repo_id=repo_id,
max_new_tokens=6000,
temperature=1.0,
streaming=True
)
cl.user_session.set("memory", ConversationBufferMemory(return_messages=True))
memory = cl.user_session.get("memory")
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
f"Contexte : Vous êtes un spécialiste du marché de l'emploi en fonction du niveau de qualification, des compétences professionnelles, des compétences transversales, du salaire et de l'expérience. Vous êtes doué pour faire des analyses du système travail sur les métiers les plus demandés grâce à votre aptitude à synthétiser les informations en fonction des critères définis ci-avant. En fonction des informations suivantes et du contexte suivant seulement et strictement. Contexte : {contextChat[0:26500]}. Réponds à la question suivante de la manière la plus pertinente, la plus exhaustive et la plus détaillée possible, avec au minimum 3000 tokens jusqu'à 4000 tokens, seulement et strictement dans le contexte et les informations fournies. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies.",
),
MessagesPlaceholder(variable_name="history"),
("human", "{question}, dans le contexte fourni."),
]
)
runnable = (
RunnablePassthrough.assign(
history=RunnableLambda(memory.load_memory_variables) | itemgetter("history")
)
| prompt
| model
)
cl.user_session.set("runnable", runnable)
@literal_client.step(type="run")
async def construction_NCS(competenceList):
context = await contexte(competenceList)
emploisST = context.to_string(index = False)
romeListArray = cl.user_session.get("codeRomeArray")
ficheClesMetier = await document_chiffres_cles_emplois("https://dataemploi.francetravail.fr/metier/chiffres-cles/NAT/FR/", romeListArray)
contentChatBot = str(emploisST).replace('[','').replace(']','').replace('{','').replace('}','') + ficheClesMetier
cl.user_session.set("contextChatBot", contentChatBot[0:28875])
finals_df = context[['intitule','typeContratLibelle','experienceLibelle','competences','description','qualitesProfessionnelles','salaire','lieuTravail','formations']].copy()
listEmplois = finals_df.values.tolist()
stringEmplois = ''
for i in range(0,len(listEmplois)):
stringEmplois += "\n✔️ Emploi : " + str(listEmplois[i][0]) + ";\n◉ Contrat : " + str(listEmplois[i][1]) + ";\n◉ Compétences professionnelles : " + str(listEmplois[i][3]) + ";\n" + "◉ Salaire : " + str(listEmplois[i][6]) + ";\n◉ Qualification : " + str(listEmplois[i][5]).replace("'libelle'","\n• 'libelle") + ";\n◉ Localisation : " + str(listEmplois[i][7]) + ";\n◉ Expérience : " + str(listEmplois[i][2]) + ";\n◉ Niveau de qualification : " + str(listEmplois[i][8]) + ";\n◉ Description de l'emploi : " + str(listEmplois[i][4]) + "\n"
await cl.sleep(1)
listEmplois_name = f"Liste des emplois"
text_elements = []
text_elements.append(
cl.Text(content="Question : " + competenceList + "\n\nRéponse :\n" + stringEmplois.replace('[','').replace(']','').replace('{','').replace('}','').replace("'code'","\n• 'code'"), name=listEmplois_name)
)
await cl.Message(author="Datapcc : 🌐🌐🌐",content="👨‍💼 Source France Travail : " + listEmplois_name, elements=text_elements).send()
await cl.sleep(1)
listClesMetier_name = f"Chiffres clés des emplois"
text_ClesMetier = []
text_ClesMetier.append(
cl.Text(content="Question : " + competenceList + "\n\nRéponse :\n" + ficheClesMetier, name=listClesMetier_name)
)
await cl.Message(author="Datapcc : 🌐🌐🌐",content="📈 Source France Travail : " + listClesMetier_name, elements=text_ClesMetier).send()
await cl.sleep(1)
datavizChiffresClesMetiers = [
cl.Action(name="datavizChiffresClesMetiers", value=str(romeListArray), description="Afficher la datavisualisation des chiffres clés des métiers")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="📊 Afficher la datavisualisation des chiffres clés des métiers", actions=datavizChiffresClesMetiers).send()
await cl.sleep(1)
codeArray = romeListArray
ficheMetiers = []
for i in range(0,len(codeArray)):
ficheMetiers = [
cl.File(name= "Fiche métier " + codeArray[i],url="https://www.soi-tc.fr/assets/fiches_pe/FEM_" + codeArray[i] + ".pdf",display="inline",)
]
await cl.Message(
author="Datapcc : 🌐🌐🌐", content="[Fiches métiers] 🔗", elements=ficheMetiers
).send()
await datavisualisation_statistiques_emplois(context)
return "datavisualisation des statistiques de l'emploi"
@cl.step(type="run")
async def recuperation_contexte(getNote):
getContext = cl.user_session.get(getNote)
return getNote + " :\n" + getContext
@cl.step(type="retrieval")
async def contexte(competence):
results = await creation_liste_code_Rome(competence)
await cl.sleep(1)
romeListArray = cl.user_session.get("codeRomeArray")
df_emplois = await API_France_Travail(romeListArray)
#await cl.sleep(1)
#for j in range(0, len(romeListArray)):
# table = await datavisualisation_chiffres_cles_emplois("https://dataemploi.pole-emploi.fr/metier/chiffres-cles/NAT/FR/" + romeListArray[j])
# plot_demandeur = plotDemandeur(htmlToDataframe(table[0]), romeListArray[j])
# if len(table[1]) > 0:
# plot_salaire = plotSalaire(htmlToDataframe(table[1]))
# plot_difficulte = plotDifficulte(htmlToDataframe(table[2]))
# plot_repartitionContrat = plotRepartition(htmlToDataframe(table[3]), "Répartition des embauches du métier : type de contrat")
# plot_repartitionEntreprise = plotRepartition(htmlToDataframe(table[4]), "Répartition des embauches du métier : type entreprise")
return df_emplois
@cl.step(type="tool")
async def document_chiffres_cles_emplois(url, codes):
all = ""
codeArray = codes
for i in range(0,len(codeArray)):
response = requests.get(url + codeArray[i])
soup = BeautifulSoup(response.text, "html.parser")
if soup.select('h1#titreMetier'):
alltitre = soup.select('h1#titreMetier')
allTitre = removeTags(alltitre[0])
else:
allTitre = ""
if soup.select('div.jobs_item-container-flex'):
allembauches = soup.select('div.jobs_item-container-flex')
allEmbauches = removeTags(allembauches[0])
else:
allEmbauches = ""
if soup.select('div.key-number_block.shadow.inset'):
allsalaires = soup.select('div.key-number_block.shadow.inset')
allSalaires = removeTags(allsalaires[0])
else:
allSalaires = ""
if soup.select('tbody.sectorTable__body'):
allsalairesMedian = soup.select('tbody.sectorTable__body')
allSalairesMedian = removeTags(allsalairesMedian[0])
else:
allSalairesMedian = ""
if soup.select('div.dynamism_canvas-wrapper > p.sr-only'):
allDiff = soup.select('div.dynamism_canvas-wrapper > p.sr-only')
alldiff = removeTags(allDiff[0])
else:
alldiff = ""
if soup.select('div.tabs-main-data_persp-col2'):
allDiffOrigin = soup.select('div.tabs-main-data_persp-col2')
alldiffOrigin = removeTags(allDiffOrigin[0])
else:
alldiffOrigin = ""
allTypeContrat = ""
if soup.find_all("div", class_="hiring-contract_legende_item ng-star-inserted"):
allContrat = soup.find_all("div", class_="hiring-contract_legende_item ng-star-inserted")
for j in range(0,len(allContrat)):
allTypeContrat = allTypeContrat + removeTags(allContrat[j]) + ", "
if soup.find_all("div", class_="horizontal-graph_patterns"):
allEntreprise = soup.find_all("div", class_="horizontal-graph_patterns")
allentreprise = removeTags(allEntreprise[0])
else:
allentreprise = ""
all = all + "\n\nChiffres-clés Métier : \n**" + allTitre + "**:\n◉ Demandeurs d'emploi et Offres d'emploi : " + allEmbauches.replace("Plus de données sur les Demandeurs d'emploi","").replace("Plus de données","") + ".\n◉ Salaires proposés dans les offres : " + allSalaires + ".\n◉ Salaires médians constatés : " + allSalairesMedian + ".\n◉ Difficultés de recrutement pour les entreprises : " + alldiff + ".\n◉ Origine des difficultés : " + alldiffOrigin + ".\n◉ Répartition des embauches par type de contrat : " + allTypeContrat + ".\n◉ Répartition des embauches par taille d'entreprise : " + allentreprise + "."
return all
@cl.step(type="tool")
async def datavisualisation_statistiques_emplois(results_df):
arraydataframe = []
arrayfirstdataframe = []
arraylocalisationdataframe = []
results = []
count = 0
if results_df.empty == False:
count = count + 1
finals = results_df[['intitule','typeContratLibelle','experienceLibelle','competences','qualitesProfessionnelles','salaire','lieuTravail','formations']].copy()
finals["lieuTravail"] = finals["lieuTravail"].apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
finals_df = finals
finals_df.dropna(subset=['qualitesProfessionnelles','formations','competences'], inplace=True)
finals_df["competences"] = finals_df["competences"].apply(lambda x:[str(e['libelle']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
finals_df["qualitesProfessionnelles"] = finals_df["qualitesProfessionnelles"].apply(lambda x:[str(e['libelle']) + ": " + str(e['description']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
finals_df["formations"] = finals_df["formations"].apply(lambda x:[str(e['niveauLibelle']) for e in x]).apply(lambda x:'; '.join(map(str, x)))
finals_df = finals_df.sort_values(by=['lieuTravail'])
finals_localisation = results_df[['lieuTravail']].copy()
finals_localisation["lieuTravail"] = finals_localisation["lieuTravail"].apply(lambda x: np.array(x)).apply(lambda x: x['libelle']).apply(lambda x: x[0:3]).apply(lambda x: x.strip())
finals_localisation.drop(finals_localisation[finals_localisation['lieuTravail'] == 'Fra'].index, inplace = True)
finals_localisation.drop(finals_localisation[finals_localisation['lieuTravail'] == 'FRA'].index, inplace = True)
finals_localisation.drop(finals_localisation[finals_localisation['lieuTravail'] == 'Ile'].index, inplace = True)
finals_localisation.drop(finals_localisation[finals_localisation['lieuTravail'] == 'Mar'].index, inplace = True)
finals_localisation.drop(finals_localisation[finals_localisation['lieuTravail'] == 'Bou'].index, inplace = True)
finals_localisation.drop(finals_localisation[finals_localisation['lieuTravail'] == '976'].index, inplace = True)
arraylocalisationdataframe.append(finals_localisation)
arrayfirstdataframe.append(results_df)
if len(finals_df) != 0:
arraydataframe.append(finals_df)
first_df = pd.concat(arrayfirstdataframe)
finals_df = pd.concat(arraydataframe)
localisation_df = pd.concat(arraylocalisationdataframe)
######## Emplois ########
df_intitule = first_df.groupby('intitule').size().reset_index(name='obs')
df_intitule = df_intitule.sort_values(by=['obs'])
df_intitule = df_intitule.iloc[-25:]
fig_intitule = px.bar(df_intitule, x='obs', y='intitule', orientation='h', color='obs', title="Les principaux emplois", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10,color="RebeccaPurple"),autosize=True).update_traces(hovertemplate=df_intitule["intitule"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_intitule["intitule"]], showlegend=False)
######## Types de contrat ########
df_contrat = first_df.groupby('typeContratLibelle').size().reset_index(name='obs')
fig_contrat = px.pie(df_contrat, names='typeContratLibelle', values='obs', color='obs', title="Les types de contrat", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10,color="RebeccaPurple"))
df_secteur = first_df.groupby('secteurActiviteLibelle').size().reset_index(name='obs')
df_secteur = df_secteur.sort_values(by=['obs'])
df_secteur = df_secteur.iloc[-25:]
fig_secteur = px.bar(df_secteur, x='obs', y='secteurActiviteLibelle', orientation='h', color='obs', title="Les principaux secteurs d'activités", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10,color="RebeccaPurple"),autosize=True).update_traces(hovertemplate=df_secteur["secteurActiviteLibelle"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_secteur["secteurActiviteLibelle"]], showlegend=False)
######## Compétences professionnelles ########
df1 = finals_df
df1['competences'] = finals_df['competences'].str.split(';')
df2 = df1.explode('competences')
df2 = df2.groupby('competences').size().reset_index(name='obs')
df2 = df2.sort_values(by=['obs'])
df2 = df2.iloc[-20:]
fig_competences = px.bar(df2, x='obs', y='competences', orientation='h', color='obs', title="Les principales compétences professionnelles", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10,color="RebeccaPurple"),autosize=True).update_traces(hovertemplate=df2["competences"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df2['competences']], showlegend=False)
######## Compétences transversales ########
df_transversales = finals_df
df_transversales['qualitesProfessionnelles'] = finals_df['qualitesProfessionnelles'].str.split(';')
df_comptransversales = df_transversales.explode('qualitesProfessionnelles')
df_comptransversales = df_comptransversales.groupby('qualitesProfessionnelles').size().reset_index(name='obs')
df_comptransversales = df_comptransversales.sort_values(by=['obs'])
df_comptransversales = df_comptransversales.iloc[-20:]
fig_transversales = px.bar(df_comptransversales, x='obs', y='qualitesProfessionnelles', orientation='h', color='obs', title="Les principales compétences transversales", labels={'obs':'nombre'}, color_continuous_scale="Teal", text_auto=True).update_layout(font=dict(size=10,color="RebeccaPurple"),autosize=True).update_traces(hovertemplate=df_comptransversales["qualitesProfessionnelles"] + ' <br>Nombre : %{x}', y=[y[:100] + "..." for y in df_comptransversales["qualitesProfessionnelles"]], showlegend=False)
######## Niveaux de qualification ########
df_formations = finals_df.groupby('formations').size().reset_index(name='obs')
fig_formations = px.pie(df_formations, names='formations', values='obs', color='obs', title="Les niveaux de qualification", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10,color="RebeccaPurple"))
######## Expériences professionnelles ########
df_experience = finals_df.groupby('experienceLibelle').size().reset_index(name='obs')
fig_experience = px.pie(df_experience, names='experienceLibelle', values='obs', color='obs', title="Les expériences professionnelles", labels={'obs':'nombre'}, color_discrete_sequence=px.colors.qualitative.Safe).update_traces(textposition='inside', textinfo='percent+label').update_layout(font=dict(size=10,color="RebeccaPurple"))
res = requests.get(
"https://raw.githubusercontent.com/codeforgermany/click_that_hood/main/public/data/spain-provinces.geojson"
)
######## localisation ########
ListCentroids = localisation()
df_localisation = localisation_df.groupby('lieuTravail').size().reset_index(name='obs')
df_localisation = df_localisation.sort_values(by=['lieuTravail'])
df_localisation['longitude'] = df_localisation['lieuTravail']
df_localisation['latitude'] = df_localisation['lieuTravail']
df_localisation["longitude"] = df_localisation['longitude'].apply(lambda x:[loc['Longitude'] for loc in ListCentroids if loc['ID'] == x]).apply(lambda x:''.join(map(str, x)))
df_localisation["longitude"] = pd.to_numeric(df_localisation["longitude"], downcast="float")
df_localisation["latitude"] = df_localisation['latitude'].apply(lambda x:[loc['Latitude'] for loc in ListCentroids if loc['ID'] == x]).apply(lambda x:''.join(map(str, x)))
df_localisation["latitude"] = pd.to_numeric(df_localisation["latitude"], downcast="float")
fig_localisation = px.scatter_mapbox(df_localisation, lat="latitude", lon="longitude", hover_name="lieuTravail", size="obs").update_layout(
mapbox={
"style": "carto-positron",
"center": {"lon": 2, "lat" : 47},
"zoom": 4.5,
"layers": [
{
"source": res.json(),
"type": "line",
"color": "green",
"line": {"width": 0},
}
],
}
)
elements = []
elements.append(cl.Plotly(name="chart_intitule", figure=fig_intitule, display="inline", size="large"))
elements.append(cl.Plotly(name="chart_contrat", figure=fig_contrat, display="inline", size="large"))
elements.append(cl.Plotly(name="chart_competences", figure=fig_competences, display="inline", size="large"))
elements.append(cl.Plotly(name="chart_transversales", figure=fig_transversales, display="inline", size="large"))
elements.append(cl.Plotly(name="chart_formations", figure=fig_formations, display="inline", size="large"))
elements.append(cl.Plotly(name="chart_experience", figure=fig_experience, display="inline", size="large"))
elements.append(cl.Plotly(name="chart_secteur", figure=fig_secteur, display="inline", size="large"))
elements.append(cl.Plotly(name="chart_localisation", figure=fig_localisation, display="inline", size="large"))
await cl.Message(content="Datavisualisation du marché de l'emploi", elements=elements).send()
@cl.step(type="tool")
async def API_France_Travail(romeListArray):
client = await connexion_France_Travail()
todayDate = datetime.datetime.today()
month, year = (todayDate.month-1, todayDate.year) if todayDate.month != 1 else (12, todayDate.year-1)
start_dt = todayDate.replace(day=1, month=month, year=year)
end_dt = datetime.datetime.today()
results = []
for k in romeListArray:
params = {"motsCles": k,'minCreationDate': dt_to_str_iso(start_dt),'maxCreationDate': dt_to_str_iso(end_dt),'range':'0-149'}
search_on_big_data = client.search(params=params)
results += search_on_big_data["resultats"]
results_df = pd.DataFrame(results)
return results_df
@cl.step(type="tool")
async def creation_liste_code_Rome(competence):
os.environ['PINECONE_API_KEYROME'] = os.environ['PINECONE_API_KEYROME']
docsearch = await connexion_catalogue_Rome()
retrieve_comp = docsearch.similarity_search(competence, k=30, filter={"categorie": {"$eq": os.environ['PINECONE_API_KEYROME']}})
retrieve = pd.DataFrame(retrieve_comp)
codeRome = []
competence = []
metier = []
for i in range(0,len(retrieve_comp)):
codeRome.append(retrieve_comp[i].metadata['code_rome'])
competence.append(retrieve_comp[i].metadata['libelle_competence'])
metier.append(retrieve_comp[i].metadata['libelle_appellation_long'])
results_df = pd.DataFrame({'codeRome': codeRome,'competence': competence, 'metier': metier})
arrayresults = results_df.values.tolist()
displayresults = '| Code Rome | Compétence | Métier |\n| -------- | ------- | ------- |'
for j in range(0, len(arrayresults)):
displayresults += '\n| ' + arrayresults[j][0] + ' | ' + arrayresults[j][1] + ' | ' + arrayresults[j][2] + ' |'
print(arrayresults[0][0] + arrayresults[0][1] + arrayresults[0][2])
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Voici le résultat de la recherche sémantique sur le catalogue Rome :\n" + displayresults).send()
results_df = results_df.drop_duplicates(subset=["codeRome"])
results_df = results_df.head(5)
codeRomeString = results_df["codeRome"].to_string(index = False)
codeRome_list = results_df["codeRome"].tolist()
actionRome = await cl.AskActionMessage(
content="Etes-vous d'accord avec la sélection des 5 codes Rome automatiques issus de la recherche sémantique ? :\n" + codeRomeString.replace(' ',','),
actions=[
cl.Action(name="continue", value="Offres d'emploi en temps réel", label="✅ Oui, je veux continuer vers l'extraction en temps réel des offres d'emploi"),
cl.Action(name="cancel", value="Saisie des codes Rome", label="❌ Non, je veux saisir ma liste de codes Rome, séparés par des virgules"),
], timeout=3600
).send()
if actionRome and actionRome.get("name") == "continue":
await cl.Message(
content="Connexion à France Travail, et récupération des offres d'emploi",
).send()
cl.user_session.set("codeRomeArray", codeRome_list)
else:
actionsaisierome = await cl.AskUserMessage(content="Saisissez vos codes Rome dans le prompt? ⚠️ Attention, indiquez seulement des codes Rome séparés par des virgules", timeout=3600).send()
if actionsaisierome:
await cl.Message(
content=f"Votre saisie est : {actionsaisierome['output']}",
).send()
stringCodeRome = actionsaisierome['output'].replace(' ','')
stopWords = [';','.',':','!','|']
teststringCodeRome = [ele for ele in stopWords if(ele in stringCodeRome)]
teststringCodeRome = bool(teststringCodeRome)
if teststringCodeRome == False:
arrayCodeRome = stringCodeRome.split(',')
else:
arrayCodeRome = codeRome_list
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Votre ssaisie est erronée. Nous continuons l'action avec les codes Rome sélectionnés automatiquement pour vous : " + codeRome_list).send()
cl.user_session.set("codeRomeArray", arrayCodeRome)
@cl.step(type="tool")
async def connexion_France_Travail():
client = Api(client_id=os.environ['POLE_EMPLOI_CLIENT_ID'],
client_secret=os.environ['POLE_EMPLOI_CLIENT_SECRET'])
return client
@cl.step(type="tool")
async def connexion_catalogue_Rome():
os.environ['PINECONE_API_KEY'] = os.environ['PINECONE_API_KEY']
os.environ['PINECONE_INDEX_NAME'] = os.environ['PINECONE_INDEX_NAME']
embeddings = HuggingFaceEmbeddings()
docsearch = PineconeVectorStore.from_existing_index(os.environ['PINECONE_INDEX_NAME'], embeddings)
return docsearch
@cl.step(type="llm")
async def IA():
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN']
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
llm = HuggingFaceEndpoint(
repo_id=repo_id, max_new_tokens=5000, temperature=1.0, task="text2text-generation", streaming=True
)
return llm
@cl.on_settings_update
async def setup_agent(settings):
if not settings['competence'] and not settings['competenceInput']:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content=f"⚠️ Pas de contexte : {settings['competence']}\n⛔ Vous ne pouvez pas élaborer de note sectorielle!"
).send()
elif settings['competence'] and not settings['competenceInput']:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content=f"👍 Changement de contexte : {settings['competence']}"
).send()
competenceList = settings['competence']
cl.user_session.set("competenceFree", competenceList)
else:
await cl.Message(
author="Datapcc : 🌐🌐🌐",content=f"👍 Changement de contexte : {settings['competenceInput']}"
).send()
competenceList = settings['competenceInput']
cl.user_session.set("competenceFree", competenceList)
if not cl.user_session.get("saveMemory"):
cl.user_session.set("saveMemory", "")
await construction_NCS(competenceList)
contextChat = cl.user_session.get("contextChatBot")
if not contextChat:
contextChat = "Il n'y a pas de contexte."
os.environ['HUGGINGFACEHUB_API_TOKEN'] = os.environ['HUGGINGFACEHUB_API_TOKEN']
repo_id = "mistralai/Mistral-7B-Instruct-v0.3"
model = HuggingFaceEndpoint(
repo_id=repo_id,
max_new_tokens=3600,
temperature=0.5,
streaming=True
)
memory = cl.user_session.get("memory")
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
f"Contexte : Vous êtes un spécialiste du marché de l'emploi en fonction du niveau de qualification, des compétences professionnelles, des compétences transversales, du salaire et de l'expérience. Vous êtes doué pour faire des analyses du système travail sur les métiers les plus demandés grâce à votre aptitude à synthétiser les informations en fonction des critères définis ci-avant. En fonction des informations suivantes et du contexte suivant seulement et strictement. Contexte : {contextChat[0:28875]}. Réponds à la question suivante de la manière la plus pertinente, la plus exhaustive et la plus détaillée possible, avec au minimum 3000 tokens jusqu'à 3600 tokens, seulement et strictement dans le contexte et les informations fournies. Essayez donc de comprendre en profondeur le contexte et répondez uniquement en vous basant sur les informations fournies.",
),
MessagesPlaceholder(variable_name="history"),
("human", "{question}, dans le contexte fourni."),
]
)
runnable = (
RunnablePassthrough.assign(
history=RunnableLambda(memory.load_memory_variables) | itemgetter("history")
)
| prompt
| model
)
cl.user_session.set("runnable", runnable)
@cl.on_message
async def main(message: cl.Message):
async with cl.Step(root=True, name="Réponse de Mistral", type="llm") as parent_step:
parent_step.input = message.content
chat_profile = cl.user_session.get("chat_profile")
chatProfile = chat_profile.split(' - ')
memory = cl.user_session.get("memory")
runnable = cl.user_session.get("runnable") # type: Runnable
msg = cl.Message(author="Datapcc : 🌐🌐🌐",content="")
text_elements = []
answer = []
async for chunk in runnable.astream({"question": message.content},
config=RunnableConfig(callbacks=[cl.AsyncLangchainCallbackHandler(stream_final_answer=True)])):
await parent_step.stream_token(chunk)
await msg.stream_token(chunk)
QA_context_name = f"Question-réponse sur le contexte"
text_elements.append(
cl.Text(content="Question : " + message.content + "\n\nRéponse :\n" + msg.content, name=QA_context_name)
)
actions = [
cl.Action(name="download", value="Question : " + message.content + "\n\nRéponse : " + msg.content, description="download_QA_emplois")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Download", actions=actions).send()
await cl.sleep(2)
saves = [
cl.Action(name="saveToMemory", value="Question : " + message.content + "\n\nRéponse : " + msg.content, description="Mettre en mémoire la réponse à votre requête")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Mettre en mémoire la réponse à votre requête", actions=saves).send()
await cl.sleep(2)
memories = [
cl.Action(name="download", value=cl.user_session.get('saveMemory'), description="download_referentiel")
]
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Télécharger la mise en mémoire de vos fiches", actions=memories).send()
await cl.sleep(1.5)
await cl.Message(author="Datapcc : 🌐🌐🌐",content="Contexte : " + QA_context_name, elements=text_elements).send()
memory.chat_memory.add_user_message(message.content)
memory.chat_memory.add_ai_message(msg.content)