File size: 3,857 Bytes
13b9ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a44a58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13b9ce8
 
 
 
 
 
 
 
 
 
 
 
 
 
2a44a58
 
13b9ce8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch

import gradio as gr
import pytube as pt
from transformers import pipeline
from huggingface_hub import model_info

MODEL_NAME = "openai/whisper-small" #this always needs to stay in line 8 :D sorry for the hackiness
lang = "en"

device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)

pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")

def transcribe(microphone, file_upload):
    warn_output = ""
    if (microphone is not None) and (file_upload is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )

    elif (microphone is None) and (file_upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

    file = microphone if microphone is not None else file_upload

    text = pipe(file)["text"]

    return warn_output + text

demo = gr.Blocks()

css = """
footer {display:none !important}
.output-markdown{display:none !important}
.gr-button-primary {
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important; 
    background: none rgb(17, 20, 45) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: none !important;
}
.gr-button-primary:hover{
    z-index: 14;
    height: 43px;
    width: 130px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important;
    background: none rgb(37, 56, 133) !important;
    border: none !important;
    text-align: center !important;
    font-family: Poppins !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 12px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
.hover\:bg-orange-50:hover {
    --tw-bg-opacity: 1 !important;
    background-color: rgb(229,225,255) !important;
}
.to-orange-200 {
    --tw-gradient-to: rgb(37 56 133 / 37%) !important;
}
.from-orange-400 {
    --tw-gradient-from: rgb(17, 20, 45) !important;
    --tw-gradient-to: rgb(255 150 51 / 0);
    --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group-hover\:from-orange-500{
    --tw-gradient-from:rgb(17, 20, 45) !important; 
    --tw-gradient-to: rgb(37 56 133 / 37%);
    --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important;
}
.group:hover .group-hover\:text-orange-500{
    --tw-text-opacity: 1 !important;
    color:rgb(37 56 133 / var(--tw-text-opacity)) !important;
}
"""

examples = [
    ['TestAudio1.mp3'], ['TestAudio2.wav'], ['TestAudio3.wav'], ['TestAudio4.wav'], ['TestAudio5.wav'], ['TestAudio6.wav'], ['TestAudio7.wav'], ['TestAudio8.wav'], ['TestAudio9.wav'], ['TestAudio10.wav']
]

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
        gr.inputs.Audio(source="upload", type="filepath", optional=True)
    ],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    allow_flagging="never",
    examples = examples,
    css = css
).launch(enable_queue=True)

#used openai/whisper model