|
import torch |
|
|
|
import gradio as gr |
|
import pytube as pt |
|
from transformers import pipeline |
|
from huggingface_hub import model_info |
|
|
|
MODEL_NAME = "openai/whisper-small" |
|
lang = "en" |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
pipe = pipeline( |
|
task="automatic-speech-recognition", |
|
model=MODEL_NAME, |
|
chunk_length_s=30, |
|
device=device, |
|
) |
|
|
|
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") |
|
|
|
def transcribe(microphone, file_upload): |
|
warn_output = "" |
|
if (microphone is not None) and (file_upload is not None): |
|
warn_output = ( |
|
"WARNING: You've uploaded an audio file and used the microphone. " |
|
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" |
|
) |
|
|
|
elif (microphone is None) and (file_upload is None): |
|
return "ERROR: You have to either use the microphone or upload an audio file" |
|
|
|
file = microphone if microphone is not None else file_upload |
|
|
|
text = pipe(file)["text"] |
|
|
|
return warn_output + text |
|
|
|
demo = gr.Blocks() |
|
|
|
css = """ |
|
footer {display:none !important} |
|
.output-markdown{display:none !important} |
|
button.primary { |
|
z-index: 14; |
|
left: 0px; |
|
top: 0px; |
|
padding: 0px; |
|
cursor: pointer !important; |
|
background: none rgb(17, 20, 45) !important; |
|
border: none !important; |
|
color: rgb(255, 255, 255) !important; |
|
line-height: 1 !important; |
|
border-radius: 12px !important; |
|
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; |
|
box-shadow: none !important; |
|
} |
|
button.primary:hover{ |
|
z-index: 14; |
|
left: 0px; |
|
top: 0px; |
|
padding: 0px; |
|
cursor: pointer !important; |
|
background: none rgb(37, 56, 133) !important; |
|
border: none !important; |
|
color: rgb(255, 255, 255) !important; |
|
line-height: 1 !important; |
|
border-radius: 12px !important; |
|
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; |
|
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important; |
|
} |
|
.hover\:bg-orange-50:hover { |
|
--tw-bg-opacity: 1 !important; |
|
background-color: rgb(229,225,255) !important; |
|
} |
|
.to-orange-200 { |
|
--tw-gradient-to: rgb(37 56 133 / 37%) !important; |
|
} |
|
.from-orange-400 { |
|
--tw-gradient-from: rgb(17, 20, 45) !important; |
|
--tw-gradient-to: rgb(255 150 51 / 0); |
|
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important; |
|
} |
|
.group-hover\:from-orange-500{ |
|
--tw-gradient-from:rgb(17, 20, 45) !important; |
|
--tw-gradient-to: rgb(37 56 133 / 37%); |
|
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important; |
|
} |
|
.group:hover .group-hover\:text-orange-500{ |
|
--tw-text-opacity: 1 !important; |
|
color:rgb(37 56 133 / var(--tw-text-opacity)) !important; |
|
} |
|
""" |
|
|
|
examples = [ |
|
['TestAudio1.mp3'], ['TestAudio2.wav'], ['TestAudio3.wav'], ['TestAudio4.wav'], ['TestAudio5.wav'], ['TestAudio6.wav'], ['TestAudio7.wav'], ['TestAudio8.wav'], ['TestAudio9.wav'], ['TestAudio10.wav'] |
|
] |
|
|
|
mf_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.inputs.Audio(source="microphone", type="filepath", optional=True), |
|
gr.inputs.Audio(source="upload", type="filepath", optional=True) |
|
], |
|
outputs="text", |
|
layout="horizontal", |
|
theme="huggingface", |
|
allow_flagging="never", |
|
examples = examples, |
|
css = css |
|
).launch(enable_queue=True) |
|
|
|
|