import cv2 import gradio as gr import mediapipe as mp mp_drawing = mp.solutions.drawing_utils mp_drawing_styles = mp.solutions.drawing_styles mp_hands = mp.solutions.hands def fun(img): print(type(img)) with mp_hands.Hands( model_complexity=0,min_detection_confidence=0.5,min_tracking_confidence=0.5) as hands: img.flags.writeable = False image = cv2.flip(img[:,:,::-1], 1) # Convert the BGR image to RGB before processing. results = hands.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) image.flags.writeable = True if results.multi_hand_landmarks: for hand_landmarks in results.multi_hand_landmarks: mp_drawing.draw_landmarks( image, hand_landmarks, mp_hands.HAND_CONNECTIONS, mp_drawing_styles.get_default_hand_landmarks_style(), mp_drawing_styles.get_default_hand_connections_style()) return cv2.flip(image[:,:,::-1],1) with gr.Blocks(title="Realtime Keypoint Detection | Data Science Dojo", css="footer {display:none !important} .output-markdown{display:none !important}") as demo: with gr.Row(): with gr.Column(): input = gr.Webcam(streaming=True) with gr.Column(): output = gr.outputs.Image() input.stream(fn=fun, inputs = input, outputs = output) demo.launch(debug=True)