File size: 4,050 Bytes
215728f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bedfbc
215728f
 
 
 
 
 
 
 
 
f34c738
 
 
 
 
 
 
 
 
 
 
 
 
6bb729f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
164c6a0
6bb729f
 
 
 
 
 
 
 
 
 
 
f34c738
215728f
f34c738
215728f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from PIL import Image, ImageOps
import numpy as np
from collections import OrderedDict
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from keras.models import load_model
import gradio as gr


def create_plot(data):
  sns.set_theme(style="whitegrid")

  f, ax = plt.subplots(figsize=(5, 5))

  sns.set_color_codes("pastel")
  sns.barplot(x="Total", y="Labels", data=data,label="Total", color="b")

  sns.set_color_codes("muted")
  sns.barplot(x="Confidence Score", y="Labels", data=data,label="Conficence Score", color="b")

  ax.legend(ncol=2, loc="lower right", frameon=True)
  sns.despine(left=True, bottom=True)
  return f


def predict_pneumonia(img):
  np.set_printoptions(suppress=True)
  model = load_model('keras_model.h5', compile=False)
  class_names = open('labels.txt', 'r').readlines()
  data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
  
  # image = Image.open(img).convert('RGB')
  image = img
  size = (224, 224)
  image_PIL = Image.fromarray(image)
  image = ImageOps.fit(image_PIL, size, Image.LANCZOS)
  image_array = np.asarray(image)
  normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
  data[0] = normalized_image_array
  prediction = model.predict(data)
  index = np.argmax(prediction)
  class_name = class_names[index]
  confidence_score = prediction[0][index]
  
  c_name = (class_name[2:])[:-1]
  if c_name == "Normal":
    pneumonia_prediction = "Chest XRay is normal no signs of pneumonia"
    other_class = "Pneumonia"
  else:
    other_class = "Normal"
    pneumonia_prediction = "Chest XRay shows signs of pneumonia"
 
  res = {"Labels":[c_name,other_class], "Confidence Score":[(confidence_score*100),(1-confidence_score)*100],"Total":100}
  data_for_plot = pd.DataFrame.from_dict(res)

  pneumonia_conf_plt = create_plot(data_for_plot)
  return pneumonia_prediction,pneumonia_conf_plt


css = """
footer {display:none !important}
.output-markdown{display:none !important}
footer {visibility: hidden}
.hover\:bg-orange-50:hover {
    --tw-bg-opacity: 1 !important;
    background-color: rgb(229,225,255) !important;
}

img.gr-sample-image:hover, video.gr-sample-video:hover {
    --tw-border-opacity: 1;
    border-color: rgb(37, 56, 133) !important;
}

.gr-button-lg {
    z-index: 14;
    width: 113px;
    height: 30px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important; 
    background: none rgb(17, 20, 45) !important;
    border: none !important;
    text-align: center !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 6px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: none !important;
}
.gr-button-lg:hover{
    z-index: 14;
    width: 113px;
    height: 30px;
    left: 0px;
    top: 0px;
    padding: 0px;
    cursor: pointer !important; 
    background: none rgb(66, 133, 244) !important;
    border: none !important;
    text-align: center !important;
    font-size: 14px !important;
    font-weight: 500 !important;
    color: rgb(255, 255, 255) !important;
    line-height: 1 !important;
    border-radius: 6px !important;
    transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
    box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}

"""
  
with gr.Blocks(title="Pneumonia Detection | Data Science Dojo", css = css) as demo:
  with gr.Row():
    with gr.Column(scale=4):
      with gr.Row():
          imgInput = gr.Image()
    with gr.Column(scale=1):
      pneumonia = gr.Textbox(label='Presence of pneumonia')
      plot = gr.Plot(label="Plot")
      
  submit_button = gr.Button(value="Submit")
  submit_button.click(fn=predict_pneumonia, inputs=[imgInput], outputs=[pneumonia,plot])

  gr.Examples(
        examples=["normal_Sample.jpg","pneumonia_sample.jpg"],
        inputs=imgInput,
        outputs=[pneumonia,plot],
        fn=predict_pneumonia,
        cache_examples=True,
    )

demo.launch()