|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") |
|
|
|
def zeroShotClassification(text_input, candidate_labels): |
|
labels = [label.strip(' ') for label in candidate_labels.split(',')] |
|
output = {} |
|
prediction = classifier(text_input, labels) |
|
for i in range(len(prediction['labels'])): |
|
output[prediction['labels'][i]] = prediction['scores'][i] |
|
return output |
|
|
|
examples = [["One day I will see the world", "travel, live, die, future"]] |
|
|
|
css = """ |
|
footer {display:none !important} |
|
.output-markdown{display:none !important} |
|
.gr-button-primary { |
|
z-index: 14; |
|
height: 43px; |
|
width: 130px; |
|
left: 0px; |
|
top: 0px; |
|
padding: 0px; |
|
cursor: pointer !important; |
|
background: none rgb(17, 20, 45) !important; |
|
border: none !important; |
|
text-align: center !important; |
|
font-family: Poppins !important; |
|
font-size: 14px !important; |
|
font-weight: 500 !important; |
|
color: rgb(255, 255, 255) !important; |
|
line-height: 1 !important; |
|
border-radius: 12px !important; |
|
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; |
|
box-shadow: none !important; |
|
} |
|
.gr-button-primary:hover{ |
|
z-index: 14; |
|
height: 43px; |
|
width: 130px; |
|
left: 0px; |
|
top: 0px; |
|
padding: 0px; |
|
cursor: pointer !important; |
|
background: none rgb(37, 56, 133) !important; |
|
border: none !important; |
|
text-align: center !important; |
|
font-family: Poppins !important; |
|
font-size: 14px !important; |
|
font-weight: 500 !important; |
|
color: rgb(255, 255, 255) !important; |
|
line-height: 1 !important; |
|
border-radius: 12px !important; |
|
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important; |
|
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important; |
|
} |
|
.hover\:bg-orange-50:hover { |
|
--tw-bg-opacity: 1 !important; |
|
background-color: rgb(229,225,255) !important; |
|
} |
|
|
|
|
|
|
|
.to-orange-200 { |
|
--tw-gradient-to: rgb(37 56 133 / 37%) !important; |
|
} |
|
|
|
.from-orange-400 { |
|
--tw-gradient-from: rgb(17, 20, 45) !important; |
|
--tw-gradient-to: rgb(255 150 51 / 0); |
|
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important; |
|
} |
|
|
|
.group-hover\:from-orange-500{ |
|
--tw-gradient-from:rgb(17, 20, 45) !important; |
|
--tw-gradient-to: rgb(37 56 133 / 37%); |
|
--tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to) !important; |
|
} |
|
.group:hover .group-hover\:text-orange-500{ |
|
--tw-text-opacity: 1 !important; |
|
color:rgb(37 56 133 / var(--tw-text-opacity)) !important; |
|
} |
|
|
|
|
|
""" |
|
|
|
demo = gr.Interface(fn=zeroShotClassification, inputs=[gr.Textbox(label="Input"), gr.Textbox(label="Candidate Labels")], outputs=gr.Label(label="Classification"), title="Zero Shot Text Classification | Data Science Dojo", examples=examples, css=css) |
|
demo.launch() |