Spaces:
Sleeping
Sleeping
File size: 14,551 Bytes
2441f3f 657db0b 9ccf916 fe421d1 64136bc e2d9a99 2441f3f fe421d1 2441f3f fe421d1 560300f fe421d1 4996a19 64136bc 9ccf916 657db0b 10cefed fe421d1 4996a19 fe421d1 2441f3f fe421d1 2441f3f fe421d1 9b9b3ce fe421d1 9b9b3ce fe421d1 9b9b3ce fe421d1 560300f fe421d1 6a97ef9 fe421d1 9b9b3ce 6a97ef9 9b9b3ce 6a97ef9 9b9b3ce 6a97ef9 9b9b3ce 6a97ef9 657db0b 64136bc 657db0b 64136bc 2441f3f 9b9b3ce 10cefed 9b9b3ce e739a24 2441f3f fe421d1 e739a24 fe421d1 e739a24 6a97ef9 e739a24 4996a19 fe421d1 9b9b3ce e739a24 560300f e739a24 560300f fe421d1 e739a24 6a97ef9 e739a24 7ca0dae 657db0b 64136bc e2d9a99 560300f c3813c7 560300f 64136bc 560300f e2d9a99 560300f e2d9a99 560300f 10cefed fe421d1 c3813c7 fe421d1 6a97ef9 560300f e2d9a99 560300f e2d9a99 457b45f 560300f 9b9b3ce 560300f e2d9a99 560300f 64136bc 9b9b3ce c3813c7 657db0b fe421d1 657db0b 9b9b3ce 657db0b fe421d1 657db0b fe421d1 657db0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 |
# import spaces
import requests
import logging
import duckdb
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from bertopic import BERTopic
import gradio as gr
from bertopic.representation import (
KeyBERTInspired,
TextGeneration,
)
from umap import UMAP
import numpy as np
from torch import cuda, bfloat16
from transformers import (
BitsAndBytesConfig,
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
)
from prompts import REPRESENTATION_PROMPT
from hdbscan import HDBSCAN
from sklearn.feature_extraction.text import CountVectorizer
# from cuml.cluster import HDBSCAN
# from cuml.manifold import UMAP
from sentence_transformers import SentenceTransformer
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
session = requests.Session()
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
keybert = KeyBERTInspired()
vectorizer_model = CountVectorizer(stop_words="english")
model_id = "meta-llama/Llama-2-7b-chat-hf"
device = f"cuda:{cuda.current_device()}" if cuda.is_available() else "cpu"
logging.info(device)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True, # 4-bit quantization
bnb_4bit_quant_type="nf4", # Normalized float 4
bnb_4bit_use_double_quant=True, # Second quantization after the first
bnb_4bit_compute_dtype=bfloat16, # Computation type
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
quantization_config=bnb_config,
device_map="auto",
offload_folder="offload", # Offloading part of the model to CPU to save GPU memory
)
# Enable gradient checkpointing for memory efficiency during backprop
model.gradient_checkpointing_enable()
generator = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
temperature=0.1,
max_new_tokens=200, # Reduced max_new_tokens to limit memory consumption
repetition_penalty=1.1,
)
llama2 = TextGeneration(generator, prompt=REPRESENTATION_PROMPT)
representation_model = {
"KeyBERT": keybert,
"Llama2": llama2,
}
# TODO: It should be proporcional to the number of rows
# For small datasets (1-200 rows) it worked fine with 2 neighbors
N_NEIGHBORS = 15
umap_model = UMAP(
n_neighbors=N_NEIGHBORS,
n_components=5,
min_dist=0.0,
metric="cosine",
random_state=42,
)
hdbscan_model = HDBSCAN(
min_cluster_size=N_NEIGHBORS,
metric="euclidean",
cluster_selection_method="eom",
prediction_data=True,
)
reduce_umap_model = UMAP(
n_neighbors=N_NEIGHBORS,
n_components=2,
min_dist=0.0,
metric="cosine",
random_state=42,
)
def get_parquet_urls(dataset, config, split):
parquet_files = session.get(
f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}",
timeout=20,
).json()
if "error" in parquet_files:
raise Exception(f"Error fetching parquet files: {parquet_files['error']}")
parquet_urls = [file["url"] for file in parquet_files["parquet_files"]]
logging.debug(f"Parquet files: {parquet_urls}")
return ",".join(f"'{url}'" for url in parquet_urls)
def get_docs_from_parquet(parquet_urls, column, offset, limit):
SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};"
df = duckdb.sql(SQL_QUERY).to_df()
logging.debug(f"Dataframe: {df.head(5)}")
return df[column].tolist()
# @spaces.GPU
# TODO: Modify batch size to reduce memory consumption during embedding calculation, which value is better?
def calculate_embeddings(docs):
return sentence_model.encode(docs, show_progress_bar=True, batch_size=32)
# @spaces.GPU
def fit_model(base_model, docs, embeddings):
new_model = BERTopic(
"english",
# Sub-models
embedding_model=sentence_model,
umap_model=umap_model,
hdbscan_model=hdbscan_model,
representation_model=representation_model,
vectorizer_model=vectorizer_model,
# Hyperparameters
top_n_words=10,
verbose=True,
min_topic_size=15, # TODO: Should this value be coherent with N_NEIGHBORS?
)
logging.debug("Fitting new model")
new_model.fit(docs, embeddings)
logging.debug("End fitting new model")
if base_model is None:
return new_model, new_model
updated_model = BERTopic.merge_models([base_model, new_model])
nr_new_topics = len(set(updated_model.topics_)) - len(set(base_model.topics_))
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
logging.info(f"The following topics are newly found: {new_topics}")
return updated_model, new_model
def generate_topics(dataset, config, split, column, nested_column):
logging.info(
f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}"
)
parquet_urls = get_parquet_urls(dataset, config, split)
limit = 1_000
chunk_size = 300
offset = 0
base_model = None
all_docs = []
reduced_embeddings_list = []
topics_info, topic_plot = None, None
while offset < limit:
docs = get_docs_from_parquet(parquet_urls, column, offset, chunk_size)
if not docs:
break
logging.info(
f"----> Processing chunk: {offset=} {chunk_size=} with {len(docs)} docs"
)
embeddings = calculate_embeddings(docs)
base_model, _ = fit_model(base_model, docs, embeddings)
repr_model_topics = {
key: label[0][0].split("\n")[0]
for key, label in base_model.get_topics(full=True)["Llama2"].items()
}
base_model.set_topic_labels(repr_model_topics)
reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
reduced_embeddings_list.append(reduced_embeddings)
all_docs.extend(docs)
topics_info = base_model.get_topic_info()
# topic_plot = base_model.visualize_documents(
# all_docs,
# reduced_embeddings=np.vstack(reduced_embeddings_list),
# custom_labels=True,
# )
topic_plot = base_model.visualize_barchart()
logging.info(f"Topics: {repr_model_topics}")
yield topics_info, topic_plot
offset += chunk_size
logging.info("Finished processing all data")
cuda.empty_cache() # Clear cache at the end of each chunk
return topics_info, topic_plot
with gr.Blocks() as demo:
gr.Markdown("# 💠 Dataset Topic Discovery 🔭")
gr.Markdown("## Select dataset and text column")
with gr.Accordion("Data details", open=True):
with gr.Row():
with gr.Column(scale=3):
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
)
subset_dropdown = gr.Dropdown(label="Subset", visible=False)
split_dropdown = gr.Dropdown(label="Split", visible=False)
with gr.Accordion("Dataset preview", open=False):
@gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
def embed(name, subset, split):
html_code = f"""
<iframe
src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
frameborder="0"
width="100%"
height="600px"
></iframe>
"""
return gr.HTML(value=html_code)
with gr.Row():
text_column_dropdown = gr.Dropdown(label="Text column name")
nested_text_column_dropdown = gr.Dropdown(
label="Nested text column name", visible=False
)
generate_button = gr.Button("Generate Topics", variant="primary")
gr.Markdown("## Datamap")
topics_plot = gr.Plot()
with gr.Accordion("Topics Info", open=False):
topics_df = gr.DataFrame(interactive=False, visible=True)
generate_button.click(
generate_topics,
inputs=[
dataset_name,
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
outputs=[topics_df, topics_plot],
)
def _resolve_dataset_selection(
dataset: str, default_subset: str, default_split: str, text_feature
):
if "/" not in dataset.strip().strip("/"):
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(label="Text column name"),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
info_resp = session.get(
f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20
).json()
if "error" in info_resp:
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(label="Text column name"),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
subsets: list[str] = list(info_resp["dataset_info"])
subset = default_subset if default_subset in subsets else subsets[0]
splits: list[str] = list(info_resp["dataset_info"][subset]["splits"])
split = default_split if default_split in splits else splits[0]
features = info_resp["dataset_info"][subset]["features"]
def _is_string_feature(feature):
return isinstance(feature, dict) and feature.get("dtype") == "string"
text_features = [
feature_name
for feature_name, feature in features.items()
if _is_string_feature(feature)
]
nested_features = [
feature_name
for feature_name, feature in features.items()
if isinstance(feature, dict)
and isinstance(next(iter(feature.values())), dict)
]
nested_text_features = [
feature_name
for feature_name in nested_features
if any(
_is_string_feature(nested_feature)
for nested_feature in features[feature_name].values()
)
]
if not text_feature:
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features,
label="Text column name",
),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
if text_feature in nested_text_features:
nested_keys = [
feature_name
for feature_name, feature in features[text_feature].items()
if _is_string_feature(feature)
]
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features,
label="Text column name",
),
nested_text_column_dropdown: gr.Dropdown(
value=nested_keys[0],
choices=nested_keys,
label="Nested text column name",
visible=True,
),
}
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features, label="Text column name"
),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
@dataset_name.change(
inputs=[dataset_name],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_subset_dropdown(dataset: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset="default", default_split="train", text_feature=None
)
@subset_dropdown.change(
inputs=[dataset_name, subset_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset=subset, default_split="train", text_feature=None
)
@split_dropdown.change(
inputs=[dataset_name, subset_dropdown, split_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset=subset, default_split=split, text_feature=None
)
@text_column_dropdown.change(
inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_text_column_dropdown(
dataset: str, subset: str, split: str, text_column
) -> dict:
return _resolve_dataset_selection(
dataset,
default_subset=subset,
default_split=split,
text_feature=text_column,
)
demo.launch()
|