File size: 13,807 Bytes
2441f3f
657db0b
 
 
 
 
9ccf916
fe421d1
 
 
 
64136bc
e2d9a99
2441f3f
fe421d1
2441f3f
fe421d1
 
 
 
560300f
fe421d1
4996a19
64136bc
 
 
 
9ccf916
657db0b
 
 
 
 
 
10cefed
fe421d1
4996a19
fe421d1
 
 
 
 
2441f3f
 
 
 
 
 
fe421d1
 
 
 
 
 
2441f3f
fe421d1
 
 
 
 
 
 
 
 
 
 
 
560300f
fe421d1
6a97ef9
fe421d1
 
 
6a97ef9
 
 
 
 
 
 
 
 
 
 
 
 
 
657db0b
 
 
 
 
 
 
 
 
 
64136bc
657db0b
 
 
 
 
 
 
 
 
64136bc
2441f3f
10cefed
fe421d1
e739a24
 
2441f3f
fe421d1
e739a24
 
fe421d1
e739a24
6a97ef9
 
e739a24
4996a19
fe421d1
 
 
 
e739a24
560300f
e739a24
560300f
fe421d1
e739a24
 
 
 
 
 
6a97ef9
e739a24
 
 
7ca0dae
657db0b
 
 
 
 
 
 
 
64136bc
e2d9a99
560300f
c3813c7
560300f
64136bc
560300f
 
 
e2d9a99
560300f
e2d9a99
560300f
10cefed
fe421d1
c3813c7
 
 
 
 
 
 
fe421d1
6a97ef9
560300f
e2d9a99
 
560300f
e2d9a99
 
560300f
 
 
e739a24
560300f
 
 
e2d9a99
 
560300f
 
64136bc
c3813c7
657db0b
 
 
fe421d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
657db0b
 
fe421d1
657db0b
fe421d1
657db0b
fe421d1
 
657db0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# import spaces
import requests
import logging
import duckdb
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from bertopic import BERTopic
import gradio as gr
from bertopic.representation import (
    KeyBERTInspired,
    TextGeneration,
)
from umap import UMAP
import numpy as np
from torch import cuda, bfloat16
from transformers import (
    BitsAndBytesConfig,
    AutoTokenizer,
    AutoModelForCausalLM,
    pipeline,
)
from prompts import REPRESENTATION_PROMPT
from hdbscan import HDBSCAN
from sklearn.feature_extraction.text import CountVectorizer

# from cuml.cluster import HDBSCAN
# from cuml.manifold import UMAP
from sentence_transformers import SentenceTransformer

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)


session = requests.Session()
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
keybert = KeyBERTInspired()
vectorizer_model = CountVectorizer(stop_words="english")

model_id = "meta-llama/Llama-2-7b-chat-hf"
device = f"cuda:{cuda.current_device()}" if cuda.is_available() else "cpu"
logging.info(device)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,  # 4-bit quantization
    bnb_4bit_quant_type="nf4",  # Normalized float 4
    bnb_4bit_use_double_quant=True,  # Second quantization after the first
    bnb_4bit_compute_dtype=bfloat16,  # Computation type
)

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    trust_remote_code=True,
    quantization_config=bnb_config,
    device_map="auto",
)

generator = pipeline(
    model=model,
    tokenizer=tokenizer,
    task="text-generation",
    temperature=0.1,
    max_new_tokens=500,
    repetition_penalty=1.1,
)

llama2 = TextGeneration(generator, prompt=REPRESENTATION_PROMPT)
representation_model = {
    "KeyBERT": keybert,
    "Llama2": llama2,
}

umap_model = UMAP(
    n_neighbors=15, n_components=5, min_dist=0.0, metric="cosine", random_state=42
)

hdbscan_model = HDBSCAN(
    min_cluster_size=15,
    metric="euclidean",
    cluster_selection_method="eom",
    prediction_data=True,
)

reduce_umap_model = UMAP(
    n_neighbors=15, n_components=2, min_dist=0.0, metric="cosine", random_state=42
)


def get_parquet_urls(dataset, config, split):
    parquet_files = session.get(
        f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}",
        timeout=20,
    ).json()
    if "error" in parquet_files:
        raise Exception(f"Error fetching parquet files: {parquet_files['error']}")
    parquet_urls = [file["url"] for file in parquet_files["parquet_files"]]
    logging.debug(f"Parquet files: {parquet_urls}")
    return ",".join(f"'{url}'" for url in parquet_urls)


def get_docs_from_parquet(parquet_urls, column, offset, limit):
    SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};"
    df = duckdb.sql(SQL_QUERY).to_df()
    logging.debug(f"Dataframe: {df.head(5)}")
    return df[column].tolist()


# @spaces.GPU
def calculate_embeddings(docs):
    return sentence_model.encode(docs, show_progress_bar=True, batch_size=100)


# @spaces.GPU
def fit_model(base_model, docs, embeddings):
    new_model = BERTopic(
        "english",
        # Sub-models
        embedding_model=sentence_model,
        umap_model=umap_model,
        hdbscan_model=hdbscan_model,
        representation_model=representation_model,
        vectorizer_model=vectorizer_model,
        # Hyperparameters
        top_n_words=10,
        verbose=True,
        min_topic_size=15,
    )
    logging.debug("Fitting new model")
    new_model.fit(docs, embeddings)
    logging.debug("End fitting new model")

    if base_model is None:
        return new_model, new_model

    updated_model = BERTopic.merge_models([base_model, new_model])
    nr_new_topics = len(set(updated_model.topics_)) - len(set(base_model.topics_))
    new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
    logging.info(f"The following topics are newly found: {new_topics}")
    return updated_model, new_model


def generate_topics(dataset, config, split, column, nested_column):
    logging.info(
        f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}"
    )

    parquet_urls = get_parquet_urls(dataset, config, split)
    limit = 1_000
    chunk_size = 300
    offset = 0
    base_model = None
    all_docs = []
    reduced_embeddings_list = []
    topics_info, topic_plot = None, None
    while offset < limit:
        docs = get_docs_from_parquet(parquet_urls, column, offset, chunk_size)
        if not docs:
            break

        logging.info(
            f"----> Processing chunk: {offset=} {chunk_size=} with {len(docs)} docs"
        )

        embeddings = calculate_embeddings(docs)
        base_model, _ = fit_model(base_model, docs, embeddings)

        repr_model_topics = {
            key: label[0][0].split("\n")[0]
            for key, label in base_model.get_topics(full=True)["Llama2"].items()
        }

        base_model.set_topic_labels(repr_model_topics)

        reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
        reduced_embeddings_list.append(reduced_embeddings)

        all_docs.extend(docs)

        topics_info = base_model.get_topic_info()
        topic_plot = base_model.visualize_documents(
            all_docs,
            reduced_embeddings=np.vstack(reduced_embeddings_list),
            custom_labels=True,
        )

        logging.info(f"Topics: {llama2_labels}")

        yield topics_info, topic_plot

        offset += chunk_size

    logging.info("Finished processing all data")
    return topics_info, topic_plot


with gr.Blocks() as demo:
    gr.Markdown("# 💠 Dataset Topic Discovery 🔭")
    gr.Markdown("## Select dataset and text column")
    with gr.Accordion("Data details", open=True):
        with gr.Row():
            with gr.Column(scale=3):
                dataset_name = HuggingfaceHubSearch(
                    label="Hub Dataset ID",
                    placeholder="Search for dataset id on Huggingface",
                    search_type="dataset",
                )
            subset_dropdown = gr.Dropdown(label="Subset", visible=False)
            split_dropdown = gr.Dropdown(label="Split", visible=False)

        with gr.Accordion("Dataset preview", open=False):

            @gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
            def embed(name, subset, split):
                html_code = f"""
                <iframe
                src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
                frameborder="0"
                width="100%"
                height="600px"
                ></iframe>
                    """
                return gr.HTML(value=html_code)

        with gr.Row():
            text_column_dropdown = gr.Dropdown(label="Text column name")
            nested_text_column_dropdown = gr.Dropdown(
                label="Nested text column name", visible=False
            )

        generate_button = gr.Button("Generate Notebook", variant="primary")

    gr.Markdown("## Datamap")
    topics_plot = gr.Plot()
    with gr.Accordion("Topics Info", open=False):
        topics_df = gr.DataFrame(interactive=False, visible=True)
    generate_button.click(
        generate_topics,
        inputs=[
            dataset_name,
            subset_dropdown,
            split_dropdown,
            text_column_dropdown,
            nested_text_column_dropdown,
        ],
        outputs=[topics_df, topics_plot],
    )

    def _resolve_dataset_selection(
        dataset: str, default_subset: str, default_split: str, text_feature
    ):
        if "/" not in dataset.strip().strip("/"):
            return {
                subset_dropdown: gr.Dropdown(visible=False),
                split_dropdown: gr.Dropdown(visible=False),
                text_column_dropdown: gr.Dropdown(label="Text column name"),
                nested_text_column_dropdown: gr.Dropdown(visible=False),
            }
        info_resp = session.get(
            f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20
        ).json()
        if "error" in info_resp:
            return {
                subset_dropdown: gr.Dropdown(visible=False),
                split_dropdown: gr.Dropdown(visible=False),
                text_column_dropdown: gr.Dropdown(label="Text column name"),
                nested_text_column_dropdown: gr.Dropdown(visible=False),
            }
        subsets: list[str] = list(info_resp["dataset_info"])
        subset = default_subset if default_subset in subsets else subsets[0]
        splits: list[str] = list(info_resp["dataset_info"][subset]["splits"])
        split = default_split if default_split in splits else splits[0]
        features = info_resp["dataset_info"][subset]["features"]

        def _is_string_feature(feature):
            return isinstance(feature, dict) and feature.get("dtype") == "string"

        text_features = [
            feature_name
            for feature_name, feature in features.items()
            if _is_string_feature(feature)
        ]
        nested_features = [
            feature_name
            for feature_name, feature in features.items()
            if isinstance(feature, dict)
            and isinstance(next(iter(feature.values())), dict)
        ]
        nested_text_features = [
            feature_name
            for feature_name in nested_features
            if any(
                _is_string_feature(nested_feature)
                for nested_feature in features[feature_name].values()
            )
        ]
        if not text_feature:
            return {
                subset_dropdown: gr.Dropdown(
                    value=subset, choices=subsets, visible=len(subsets) > 1
                ),
                split_dropdown: gr.Dropdown(
                    value=split, choices=splits, visible=len(splits) > 1
                ),
                text_column_dropdown: gr.Dropdown(
                    choices=text_features + nested_text_features,
                    label="Text column name",
                ),
                nested_text_column_dropdown: gr.Dropdown(visible=False),
            }
        if text_feature in nested_text_features:
            nested_keys = [
                feature_name
                for feature_name, feature in features[text_feature].items()
                if _is_string_feature(feature)
            ]
            return {
                subset_dropdown: gr.Dropdown(
                    value=subset, choices=subsets, visible=len(subsets) > 1
                ),
                split_dropdown: gr.Dropdown(
                    value=split, choices=splits, visible=len(splits) > 1
                ),
                text_column_dropdown: gr.Dropdown(
                    choices=text_features + nested_text_features,
                    label="Text column name",
                ),
                nested_text_column_dropdown: gr.Dropdown(
                    value=nested_keys[0],
                    choices=nested_keys,
                    label="Nested text column name",
                    visible=True,
                ),
            }
        return {
            subset_dropdown: gr.Dropdown(
                value=subset, choices=subsets, visible=len(subsets) > 1
            ),
            split_dropdown: gr.Dropdown(
                value=split, choices=splits, visible=len(splits) > 1
            ),
            text_column_dropdown: gr.Dropdown(
                choices=text_features + nested_text_features, label="Text column name"
            ),
            nested_text_column_dropdown: gr.Dropdown(visible=False),
        }

    @dataset_name.change(
        inputs=[dataset_name],
        outputs=[
            subset_dropdown,
            split_dropdown,
            text_column_dropdown,
            nested_text_column_dropdown,
        ],
    )
    def show_input_from_subset_dropdown(dataset: str) -> dict:
        return _resolve_dataset_selection(
            dataset, default_subset="default", default_split="train", text_feature=None
        )

    @subset_dropdown.change(
        inputs=[dataset_name, subset_dropdown],
        outputs=[
            subset_dropdown,
            split_dropdown,
            text_column_dropdown,
            nested_text_column_dropdown,
        ],
    )
    def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
        return _resolve_dataset_selection(
            dataset, default_subset=subset, default_split="train", text_feature=None
        )

    @split_dropdown.change(
        inputs=[dataset_name, subset_dropdown, split_dropdown],
        outputs=[
            subset_dropdown,
            split_dropdown,
            text_column_dropdown,
            nested_text_column_dropdown,
        ],
    )
    def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
        return _resolve_dataset_selection(
            dataset, default_subset=subset, default_split=split, text_feature=None
        )

    @text_column_dropdown.change(
        inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown],
        outputs=[
            subset_dropdown,
            split_dropdown,
            text_column_dropdown,
            nested_text_column_dropdown,
        ],
    )
    def show_input_from_text_column_dropdown(
        dataset: str, subset: str, split: str, text_column
    ) -> dict:
        return _resolve_dataset_selection(
            dataset,
            default_subset=subset,
            default_split=split,
            text_feature=text_column,
        )


demo.launch()