asoria's picture
asoria HF staff
Update app.py
10cefed verified
raw
history blame
13.3 kB
import spaces
import requests
import logging
import duckdb
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from bertopic import BERTopic
import pandas as pd
import gradio as gr
from bertopic.representation import KeyBERTInspired
from umap import UMAP
# from cuml.cluster import HDBSCAN
# from cuml.manifold import UMAP
from sentence_transformers import SentenceTransformer
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
session = requests.Session()
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
def get_parquet_urls(dataset, config, split):
parquet_files = session.get(
f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}",
timeout=20,
).json()
if "error" in parquet_files:
raise Exception(f"Error fetching parquet files: {parquet_files['error']}")
parquet_urls = [file["url"] for file in parquet_files["parquet_files"]]
logging.debug(f"Parquet files: {parquet_urls}")
return ",".join(f"'{url}'" for url in parquet_urls)
def get_docs_from_parquet(parquet_urls, column, offset, limit):
SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};"
df = duckdb.sql(SQL_QUERY).to_df()
logging.debug(f"Dataframe: {df.head(5)}")
return df[column].tolist()
@spaces.GPU
def calculate_embeddings(docs):
embeddings = sentence_model.encode(docs, show_progress_bar=True, batch_size=100)
logging.info(f"Embeddings shape: {embeddings.shape}")
return embeddings
@spaces.GPU
def fit_model(base_model, sentence_model, representation_model, docs, embeddings):
new_model = BERTopic(
"english",
embedding_model=sentence_model,
representation_model=representation_model,
min_topic_size=15, # umap_model=umap_model, hdbscan_model=hdbscan_model
)
logging.info("Fitting new model")
new_model.fit(docs, embeddings)
logging.info("End fitting new model")
if base_model is None:
return new_model, new_model
updated_model = BERTopic.merge_models([base_model, new_model])
nr_new_topics = len(set(updated_model.topics_)) - len(set(base_model.topics_))
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
logging.info("The following topics are newly found:")
logging.info(f"{new_topics}\n")
return updated_model, new_model
def generate_topics(dataset, config, split, column, nested_column):
logging.info(
f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}"
)
parquet_urls = get_parquet_urls(dataset, config, split)
limit = 1_000
chunk_size = 300
offset = 0
representation_model = KeyBERTInspired()
base_model = None
# docs = get_docs_from_parquet(parquet_urls, column, offset, chunk_size)
# base_model = BERTopic(
# "english", representation_model=representation_model, min_topic_size=15
# )
# base_model.fit_transform(docs)
# yield base_model.get_topic_info(), base_model.visualize_topics()
# Create instances of GPU-accelerated UMAP and HDBSCAN
# umap_model = UMAP(n_components=5, n_neighbors=15, min_dist=0.0)
# hdbscan_model = HDBSCAN(min_samples=10, gen_min_span_tree=True)
while True:
docs = get_docs_from_parquet(parquet_urls, column, offset, chunk_size)
logging.info(f"------------> New chunk data {offset=} {chunk_size=}")
embeddings = calculate_embeddings(docs)
offset = offset + chunk_size
if not docs or offset >= limit:
break
# new_model = BERTopic(
# "english",
# embedding_model=sentence_model,
# representation_model=representation_model,
# min_topic_size=15, # umap_model=umap_model, hdbscan_model=hdbscan_model
# )
# logging.info("Fitting new model")
# new_model.fit(docs, embeddings)
# logging.info("End fitting new model")
# if base_model is not None:
# updated_model = BERTopic.merge_models([base_model, new_model])
# nr_new_topics = len(set(updated_model.topics_)) - len(
# set(base_model.topics_)
# )
# new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
# logging.info("The following topics are newly found:")
# logging.info(f"{new_topics}\n")
# base_model = updated_model
# else:
# base_model = new_model
# logging.info(base_model.get_topic_info())
base_model, new_model = fit_model(
base_model, sentence_model, representation_model, docs, embeddings
)
# reduced_embeddings = UMAP(
# n_neighbors=10, n_components=2, min_dist=0.0, metric="cosine"
# ).fit_transform(embeddings)
# logging.info(f"Reduced embeddings shape: {reduced_embeddings.shape}")
yield (
base_model.get_topic_info(),
new_model.visualize_documents(
docs, embeddings=embeddings
), # TODO: Visualize the merged models
)
logging.info("Finished processing all data")
return base_model.get_topic_info(), base_model.visualize_topics()
with gr.Blocks() as demo:
gr.Markdown(
"""
# 💠 Dataset Topic Discovery 🔭
## Select dataset and text column
"""
)
with gr.Row():
with gr.Column(scale=3):
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
)
subset_dropdown = gr.Dropdown(label="Subset", visible=False)
split_dropdown = gr.Dropdown(label="Split", visible=False)
with gr.Accordion("Dataset preview", open=False):
@gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
def embed(name, subset, split):
html_code = f"""
<iframe
src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
frameborder="0"
width="100%"
height="600px"
></iframe>
"""
return gr.HTML(value=html_code)
with gr.Row():
text_column_dropdown = gr.Dropdown(label="Text column name")
nested_text_column_dropdown = gr.Dropdown(
label="Nested text column name", visible=False
)
generate_button = gr.Button("Generate Notebook", variant="primary")
gr.Markdown("## Topics info")
topics_df = gr.DataFrame(interactive=False, visible=True)
topics_plot = gr.Plot()
generate_button.click(
generate_topics,
inputs=[
dataset_name,
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
outputs=[topics_df, topics_plot],
)
# TODO: choose num_rows, random, or offset -> By default limit max to 1176 rows
# -> From the article, it could be in GPU 1176/sec
def _resolve_dataset_selection(
dataset: str, default_subset: str, default_split: str, text_feature
):
if "/" not in dataset.strip().strip("/"):
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(label="Text column name"),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
info_resp = session.get(
f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20
).json()
if "error" in info_resp:
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(label="Text column name"),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
subsets: list[str] = list(info_resp["dataset_info"])
subset = default_subset if default_subset in subsets else subsets[0]
splits: list[str] = list(info_resp["dataset_info"][subset]["splits"])
split = default_split if default_split in splits else splits[0]
features = info_resp["dataset_info"][subset]["features"]
def _is_string_feature(feature):
return isinstance(feature, dict) and feature.get("dtype") == "string"
text_features = [
feature_name
for feature_name, feature in features.items()
if _is_string_feature(feature)
]
nested_features = [
feature_name
for feature_name, feature in features.items()
if isinstance(feature, dict)
and isinstance(next(iter(feature.values())), dict)
]
nested_text_features = [
feature_name
for feature_name in nested_features
if any(
_is_string_feature(nested_feature)
for nested_feature in features[feature_name].values()
)
]
if not text_feature:
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features,
label="Text column name",
),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
if text_feature in nested_text_features:
nested_keys = [
feature_name
for feature_name, feature in features[text_feature].items()
if _is_string_feature(feature)
]
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features,
label="Text column name",
),
nested_text_column_dropdown: gr.Dropdown(
value=nested_keys[0],
choices=nested_keys,
label="Nested text column name",
visible=True,
),
}
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features, label="Text column name"
),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
@dataset_name.change(
inputs=[dataset_name],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_subset_dropdown(dataset: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset="default", default_split="train", text_feature=None
)
@subset_dropdown.change(
inputs=[dataset_name, subset_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset=subset, default_split="train", text_feature=None
)
@split_dropdown.change(
inputs=[dataset_name, subset_dropdown, split_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset=subset, default_split=split, text_feature=None
)
@text_column_dropdown.change(
inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_text_column_dropdown(
dataset: str, subset: str, split: str, text_column
) -> dict:
return _resolve_dataset_selection(
dataset,
default_subset=subset,
default_split=split,
text_feature=text_column,
)
demo.launch()