asoria's picture
asoria HF staff
First try: flan-t5-base for representation model
5a8d02c
raw
history blame
19 kB
import logging
import os
import datamapplot
import duckdb
import numpy as np
import requests
from dotenv import load_dotenv
from torch import cuda
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from bertopic import BERTopic
from bertopic.representation import KeyBERTInspired
from bertopic.representation import TextGeneration
from cuml.manifold import UMAP
from cuml.cluster import HDBSCAN
from huggingface_hub import HfApi
from sklearn.feature_extraction.text import CountVectorizer
from sentence_transformers import SentenceTransformer
from transformers import pipeline
# These imports at the end because of torch/datamapplot issue in Zero GPU
# import spaces
import gradio as gr
"""
TODOs:
- Improve representation layer (Try with llamacpp or TextGeneration)
- Make it run on Zero GPU
- Try with more rows (Current: 50_000/10_000 -> Minimal Targett: 1_000_000/20_000)
- Export interactive plots and serve their HTML content (It doesn't work with gr.HTML)
"""
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
EXPORTS_REPOSITORY = os.getenv("EXPORTS_REPOSITORY")
assert (
EXPORTS_REPOSITORY is not None
), "You need to set EXPORTS_REPOSITORY in your environment variables"
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
MAX_ROWS = 50_000
CHUNK_SIZE = 10_000
session = requests.Session()
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
prompt = "I have a topic described by the following keywords: [KEYWORDS]. Based on the previous keywords, what is this topic about?"
generator = pipeline("text2text-generation", model="google/flan-t5-base")
representation_model = TextGeneration(generator)
vectorizer_model = CountVectorizer(stop_words="english")
global_topic_model = None
def get_split_rows(dataset, config, split):
config_size = session.get(
f"https://datasets-server.huggingface.co/size?dataset={dataset}&config={config}",
timeout=20,
).json()
if "error" in config_size:
raise Exception(f"Error fetching config size: {config_size['error']}")
split_size = next(
(s for s in config_size["size"]["splits"] if s["split"] == split),
None,
)
if split_size is None:
raise Exception(f"Error fetching split {split} in config {config}")
return split_size["num_rows"]
def get_parquet_urls(dataset, config, split):
parquet_files = session.get(
f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}&split={split}",
timeout=20,
).json()
if "error" in parquet_files:
raise Exception(f"Error fetching parquet files: {parquet_files['error']}")
parquet_urls = [file["url"] for file in parquet_files["parquet_files"]]
logging.debug(f"Parquet files: {parquet_urls}")
return ",".join(f"'{url}'" for url in parquet_urls)
def get_docs_from_parquet(parquet_urls, column, offset, limit):
SQL_QUERY = f"SELECT {column} FROM read_parquet([{parquet_urls}]) LIMIT {limit} OFFSET {offset};"
df = duckdb.sql(SQL_QUERY).to_df()
logging.debug(f"Dataframe: {df.head(5)}")
return df[column].tolist()
# @spaces.GPU
def calculate_embeddings(docs):
return sentence_model.encode(docs, show_progress_bar=True, batch_size=32)
def calculate_n_neighbors_and_components(n_rows):
n_neighbors = min(max(n_rows // 20, 15), 100)
n_components = 10 if n_rows > 1000 else 5 # Higher components for larger datasets
return n_neighbors, n_components
# @spaces.GPU
def fit_model(docs, embeddings, n_neighbors, n_components):
global global_topic_model
umap_model = UMAP(
n_neighbors=n_neighbors,
n_components=n_components,
min_dist=0.0,
metric="cosine",
random_state=42,
)
hdbscan_model = HDBSCAN(
min_cluster_size=max(
5, n_neighbors // 2
), # Reducing min_cluster_size for fewer outliers
metric="euclidean",
cluster_selection_method="eom",
prediction_data=True,
)
new_model = BERTopic(
language="english",
# Sub-models
embedding_model=sentence_model, # Step 1 - Extract embeddings
umap_model=umap_model, # Step 2 - UMAP model
hdbscan_model=hdbscan_model, # Step 3 - Cluster reduced embeddings
vectorizer_model=vectorizer_model, # Step 4 - Tokenize topics
representation_model=representation_model, # Step 5 - Label topics
# Hyperparameters
top_n_words=10,
verbose=True,
min_topic_size=n_neighbors, # Coherent with n_neighbors?
)
logging.info("Fitting new model")
new_model.fit(docs, embeddings)
logging.info("End fitting new model")
global_topic_model = new_model
logging.info("Global model updated")
def _push_to_hub(
dataset_id,
file_path,
):
logging.info(f"Pushing file to hub: {dataset_id} on file {file_path}")
file_name = file_path.split("/")[-1]
api = HfApi(token=HF_TOKEN)
try:
logging.info(f"About to push {file_path} - {dataset_id}")
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=file_name,
repo_id=EXPORTS_REPOSITORY,
repo_type="dataset",
)
except Exception as e:
logging.info("Failed to push file", e)
raise
def generate_topics(dataset, config, split, column, nested_column, plot_type):
logging.info(
f"Generating topics for {dataset} with config {config} {split} {column} {nested_column}"
)
parquet_urls = get_parquet_urls(dataset, config, split)
split_rows = get_split_rows(dataset, config, split)
logging.info(f"Split rows: {split_rows}")
limit = min(split_rows, MAX_ROWS)
n_neighbors, n_components = calculate_n_neighbors_and_components(limit)
reduce_umap_model = UMAP(
n_neighbors=n_neighbors,
n_components=2, # For visualization, keeping it for 2D
min_dist=0.0,
metric="cosine",
random_state=42,
)
offset = 0
rows_processed = 0
base_model = None
all_docs = []
reduced_embeddings_list = []
topics_info, topic_plot = None, None
full_processing = split_rows <= MAX_ROWS
message = (
f"⚙️ Processing full dataset: 0 of ({split_rows} rows)"
if full_processing
else f"⚙️ Processing partial dataset 0 of ({limit} rows)"
)
yield (
gr.Accordion(open=False),
gr.DataFrame(value=[], interactive=False, visible=True),
gr.Plot(value=None, visible=True),
gr.Label({message: rows_processed / limit}, visible=True),
"",
)
while offset < limit:
docs = get_docs_from_parquet(parquet_urls, column, offset, CHUNK_SIZE)
if not docs:
break
logging.info(
f"----> Processing chunk: {offset=} {CHUNK_SIZE=} with {len(docs)} docs"
)
embeddings = calculate_embeddings(docs)
fit_model(docs, embeddings, n_neighbors, n_components)
if base_model is None:
base_model = global_topic_model
else:
updated_model = BERTopic.merge_models([base_model, global_topic_model])
nr_new_topics = len(set(updated_model.topics_)) - len(
set(base_model.topics_)
)
new_topics = list(updated_model.topic_labels_.values())[-nr_new_topics:]
logging.info(f"The following topics are newly found: {new_topics}")
base_model = updated_model
reduced_embeddings = reduce_umap_model.fit_transform(embeddings)
reduced_embeddings_list.append(reduced_embeddings)
all_docs.extend(docs)
reduced_embeddings_array = np.vstack(reduced_embeddings_list)
topics_info = base_model.get_topic_info()
all_topics, _ = base_model.transform(all_docs)
all_topics = np.array(all_topics)
topic_plot = (
base_model.visualize_document_datamap(
docs=all_docs,
reduced_embeddings=reduced_embeddings_array,
title=dataset,
width=800,
height=700,
arrowprops={
"arrowstyle": "wedge,tail_width=0.5",
"connectionstyle": "arc3,rad=0.05",
"linewidth": 0,
"fc": "#33333377",
},
dynamic_label_size=False,
# label_wrap_width=12,
# label_over_points=True,
# dynamic_label_size=True,
# max_font_size=36,
# min_font_size=4,
)
if plot_type == "DataMapPlot"
else base_model.visualize_documents(
docs=all_docs,
reduced_embeddings=reduced_embeddings_array,
custom_labels=True,
title=dataset,
)
)
rows_processed += len(docs)
progress = min(rows_processed / limit, 1.0)
logging.info(f"Progress: {progress} % - {rows_processed} of {limit}")
message = (
f"⚙️ Processing full dataset: {rows_processed} of {limit}"
if full_processing
else f"⚙️ Processing partial dataset: {rows_processed} of {limit} rows"
)
yield (
gr.Accordion(open=False),
topics_info,
topic_plot,
gr.Label({message: progress}, visible=True),
"",
)
offset += CHUNK_SIZE
logging.info("Finished processing all data")
plot_png = f"{dataset.replace('/', '-')}-{plot_type.lower()}.png"
if plot_type == "DataMapPlot":
topic_plot.savefig(plot_png, format="png", dpi=300)
else:
topic_plot.write_image(plot_png)
_push_to_hub(dataset, plot_png)
plot_png_link = (
f"https://huggingface.co/datasets/{EXPORTS_REPOSITORY}/blob/main/{plot_png}"
)
yield (
gr.Accordion(open=False),
topics_info,
topic_plot,
gr.Label(
{f"✅ Done: {rows_processed} rows have been processed": 1.0}, visible=True
),
f"[![Download as PNG](https://img.shields.io/badge/Download_as-PNG-red)]({plot_png_link})",
)
cuda.empty_cache()
with gr.Blocks() as demo:
gr.Markdown("# 💠 Dataset Topic Discovery 🔭")
gr.Markdown("## Select dataset and text column")
data_details_accordion = gr.Accordion("Data details", open=True)
with data_details_accordion:
with gr.Row():
with gr.Column(scale=3):
dataset_name = HuggingfaceHubSearch(
label="Hub Dataset ID",
placeholder="Search for dataset id on Huggingface",
search_type="dataset",
)
subset_dropdown = gr.Dropdown(label="Subset", visible=False)
split_dropdown = gr.Dropdown(label="Split", visible=False)
with gr.Accordion("Dataset preview", open=False):
@gr.render(inputs=[dataset_name, subset_dropdown, split_dropdown])
def embed(name, subset, split):
html_code = f"""
<iframe
src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}"
frameborder="0"
width="100%"
height="600px"
></iframe>
"""
return gr.HTML(value=html_code)
with gr.Row():
text_column_dropdown = gr.Dropdown(label="Text column name")
nested_text_column_dropdown = gr.Dropdown(
label="Nested text column name", visible=False
)
plot_type_radio = gr.Radio(
["DataMapPlot", "Plotly"],
value="DataMapPlot",
label="Choose the plot type",
interactive=True,
)
generate_button = gr.Button("Generate Topics", variant="primary")
gr.Markdown("## Data map")
full_topics_generation_label = gr.Label(visible=False, show_label=False)
open_png_label = gr.Markdown()
topics_plot = gr.Plot()
with gr.Accordion("Topics Info", open=False):
topics_df = gr.DataFrame(interactive=False, visible=True)
generate_button.click(
generate_topics,
inputs=[
dataset_name,
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
plot_type_radio,
],
outputs=[
data_details_accordion,
topics_df,
topics_plot,
full_topics_generation_label,
open_png_label,
],
)
def _resolve_dataset_selection(
dataset: str, default_subset: str, default_split: str, text_feature
):
if "/" not in dataset.strip().strip("/"):
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(label="Text column name"),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
info_resp = session.get(
f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20
).json()
if "error" in info_resp:
return {
subset_dropdown: gr.Dropdown(visible=False),
split_dropdown: gr.Dropdown(visible=False),
text_column_dropdown: gr.Dropdown(label="Text column name"),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
subsets: list[str] = list(info_resp["dataset_info"])
subset = default_subset if default_subset in subsets else subsets[0]
splits: list[str] = list(info_resp["dataset_info"][subset]["splits"])
split = default_split if default_split in splits else splits[0]
features = info_resp["dataset_info"][subset]["features"]
def _is_string_feature(feature):
return isinstance(feature, dict) and feature.get("dtype") == "string"
text_features = [
feature_name
for feature_name, feature in features.items()
if _is_string_feature(feature)
]
nested_features = [
feature_name
for feature_name, feature in features.items()
if isinstance(feature, dict)
and isinstance(next(iter(feature.values())), dict)
]
nested_text_features = [
feature_name
for feature_name in nested_features
if any(
_is_string_feature(nested_feature)
for nested_feature in features[feature_name].values()
)
]
if not text_feature:
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features,
label="Text column name",
),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
if text_feature in nested_text_features:
nested_keys = [
feature_name
for feature_name, feature in features[text_feature].items()
if _is_string_feature(feature)
]
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features,
label="Text column name",
),
nested_text_column_dropdown: gr.Dropdown(
value=nested_keys[0],
choices=nested_keys,
label="Nested text column name",
visible=True,
),
}
return {
subset_dropdown: gr.Dropdown(
value=subset, choices=subsets, visible=len(subsets) > 1
),
split_dropdown: gr.Dropdown(
value=split, choices=splits, visible=len(splits) > 1
),
text_column_dropdown: gr.Dropdown(
choices=text_features + nested_text_features, label="Text column name"
),
nested_text_column_dropdown: gr.Dropdown(visible=False),
}
@dataset_name.change(
inputs=[dataset_name],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_subset_dropdown(dataset: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset="default", default_split="train", text_feature=None
)
@subset_dropdown.change(
inputs=[dataset_name, subset_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset=subset, default_split="train", text_feature=None
)
@split_dropdown.change(
inputs=[dataset_name, subset_dropdown, split_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict:
return _resolve_dataset_selection(
dataset, default_subset=subset, default_split=split, text_feature=None
)
@text_column_dropdown.change(
inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown],
outputs=[
subset_dropdown,
split_dropdown,
text_column_dropdown,
nested_text_column_dropdown,
],
)
def show_input_from_text_column_dropdown(
dataset: str, subset: str, split: str, text_column
) -> dict:
return _resolve_dataset_selection(
dataset,
default_subset=subset,
default_split=split,
text_feature=text_column,
)
demo.launch()