Spaces:
Sleeping
Sleeping
File size: 1,253 Bytes
8e0b903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import pandas as pd
import numpy as np
from skimage import color, morphology
from constant import PATH, TRAIN_CSV, VAL_CSV, TEST_CSV
def get_chestxray_from_csv():
result = []
for f in [PATH/TRAIN_CSV, PATH/VAL_CSV, PATH/TEST_CSV]:
df = pd.read_csv(f, sep=' ', header=None)
images = df.iloc[:, 0].values
labels = df.iloc[:, 1:].values
result.append((images, labels))
return result
def sigmoid_np(x):
return 1. / (1. + np.exp(-x))
def blend_segmentation(image, mask, gt_mask=None, boundary=False, alpha=1):
image = np.array(image) # Convert PIL Image to NumPy array
w, h = image.shape[1], image.shape[0]
color_mask = np.zeros((h, w, 3)) # PIL Image
if boundary: mask = morphology.dilation(mask, morphology.disk(3)) - mask
color_mask[mask==1] = [1, 0, 0] # RGB
if gt_mask is not None:
gt_boundary = morphology.dilation(gt_mask, morphology.disk(3)) - gt_mask
color_mask[gt_boundary==1] = [0, 1, 0] # RGB
image_hsv = color.rgb2hsv(image)
color_mask_hsv = color.rgb2hsv(color_mask)
image_hsv[..., 0] = color_mask_hsv[..., 0]
image_hsv[..., 1] = color_mask_hsv[..., 1] * alpha
return color.hsv2rgb(image_hsv)
|