File size: 4,956 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch.nn as nn
import torch.nn.functional as F
import torch
from layers import SaveFeature
import pretrainedmodels
from torchvision.models import resnet34, resnet50, resnet101, resnet152
from pathlib import Path
from torchvision.models.resnet import conv3x3, BasicBlock, Bottleneck
import skimage
from scipy import ndimage
import numpy as np
import torchvision.transforms as transforms
import cv2
from constant import IMAGENET_MEAN, IMAGENET_STD

device="cuda" if torch.cuda.is_available() else "cpu"
class UpBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, expansion=1):
        super().__init__()
        inplanes = inplanes * expansion
        planes = planes * expansion
        self.upconv = nn.ConvTranspose2d(inplanes, planes, 2, 2, 0)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv1 = conv3x3(inplanes, planes)
        self.bn2 = nn.BatchNorm2d(planes)

    def forward(self, u, x):
        up = self.relu(self.bn1(self.upconv(u)))
        out = torch.cat([x, up], dim=1)  # cat along channel
        out = self.relu(self.bn2(self.conv1(out)))
        return out

class UpLayer(nn.Module):

    def __init__(self, block, inplanes, planes, blocks):
        super().__init__()
        self.up = UpBlock(inplanes, planes, block.expansion)
        layers = [block(planes * block.expansion, planes) for _ in range(1, blocks)]
        self.conv = nn.Sequential(*layers)

    def forward(self, u, x):
        x = self.up(u, x)
        x = self.conv(x)
        return x

from pathlib import Path



class Unet(nn.Module):
    tfm = transforms.Compose([
        transforms.Resize((256, 256)),
        transforms.ToTensor(),
        transforms.Normalize(IMAGENET_MEAN, IMAGENET_STD)
    ])

    def __init__(self, trained=False, model_name=None):
        super().__init__()
        self.layers = [3, 4, 6]
        self.block = Bottleneck
        if trained:
            assert model_name is not None
            self.load_model(model_name)
        else:
            self.load_pretrained()

    def cut_model(self, model, cut):
        return list(model.children())[:cut]

    def load_model(self, model_name):
        resnet = resnet50(False)
        self.backbone = nn.Sequential(*self.cut_model(resnet, 8))
        self.init_head()

        model_path = Path(__file__).parent / 'unet.h5'
        state_dict = torch.load(model_path, map_location=torch.device(device))
        self.load_state_dict(state_dict)

    def load_pretrained(self, torch=False):
        if torch:
            resnet = resnet50(True)
        else:
            resnet = pretrainedmodels.__dict__['resnet50']()
        self.backbone = nn.Sequential(*self.cut_model(resnet, 8))
        self.init_head()

    def init_head(self):
        self.sfs = [SaveFeature(self.backbone[i]) for i in [2, 4, 5, 6]]
        self.up_layer1 = UpLayer(self.block, 512, 256, self.layers[-1])
        self.up_layer2 = UpLayer(self.block, 256, 128, self.layers[-2])
        self.up_layer3 = UpLayer(self.block, 128, 64, self.layers[-3])

        self.map = conv3x3(64 * self.block.expansion, 64)  # 64e -> 64
        self.conv = conv3x3(128, 64)
        self.bn_conv = nn.BatchNorm2d(64)
        self.up_conv = nn.ConvTranspose2d(64, 1, 2, 2, 0)
        self.bn_up = nn.BatchNorm2d(1)

    def forward(self, x):
        x = F.relu(self.backbone(x))
        x = self.up_layer1(x, self.sfs[3].features)
        x = self.up_layer2(x, self.sfs[2].features)
        x = self.up_layer3(x, self.sfs[1].features)
        x = self.map(x)
        x = F.interpolate(x, scale_factor=2)
        x = torch.cat([self.sfs[0].features, x], dim=1)
        x = F.relu(self.bn_conv(self.conv(x)))
        x = F.relu(self.bn_up(self.up_conv(x)))
        return x

    def close(self):
        for sf in self.sfs:
            sf.remove()

    def segment(self, image):
        """

        image: cropped CXR PIL Image (h, w, 3)

        """
        kernel = np.ones((10, 10))
        iw, ih = image.size

        image_tensor = self.tfm(image).unsqueeze(0).to(next(self.parameters()).device)
        with torch.no_grad():
            py = torch.sigmoid(self(image_tensor))
        py = (py[0].cpu() > 0.5).type(torch.FloatTensor)  # 1, 256, 256

        mask = py[0].numpy()
        mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
        mask = cv2.resize(mask, (iw, ih))
        slice_y, slice_x = ndimage.find_objects(mask, 1)[0]
        h, w = slice_y.stop - slice_y.start, slice_x.stop - slice_x.start

        nw, nh = int(w / .875), int(h / .875)
        dw, dh = (nw - w) // 2, (nh - h) // 2
        t = max(slice_y.start - dh, 0)
        l = max(slice_x.start - dw, 0)
        b = min(slice_y.stop + dh, ih)
        r = min(slice_x.stop + dw, iw)
        return (t, l, b, r), mask