File size: 11,716 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
from typing import Optional

import torch
import torch.nn.functional as F
from torch import nn

from attention import Attention


class BasicTransformerBlock(nn.Module):
    r"""

    A basic Transformer block.



    Parameters:

        dim (`int`): The number of channels in the input and output.

        num_attention_heads (`int`): The number of heads to use for multi-head attention.

        attention_head_dim (`int`): The number of channels in each head.

        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.

        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.

        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.

        attention_bias (:

            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.

        only_cross_attention (`bool`, *optional*):

            Whether to use only cross-attention layers. In this case two cross attention layers are used.

        double_self_attention (`bool`, *optional*):

            Whether to use two self-attention layers. In this case no cross attention layers are used.

        upcast_attention (`bool`, *optional*):

            Whether to upcast the attention computation to float32. This is useful for mixed precision training.

        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):

            Whether to use learnable elementwise affine parameters for normalization.

        norm_type (`str`, *optional*, defaults to `"layer_norm"`):

            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.

        final_dropout (`bool` *optional*, defaults to False):

            Whether to apply a final dropout after the last feed-forward layer.

    """

    def __init__(

        self,

        dim: int,

        num_attention_heads: int,

        attention_head_dim: int,

        dropout=0.0,

        cross_attention_dim: Optional[int] = None,

        activation_fn: str = "geglu",

        attention_bias: bool = False,

        only_cross_attention: bool = False,

        double_self_attention: bool = False,

        upcast_attention: bool = False,

        norm_elementwise_affine: bool = True,

        norm_type: str = "layer_norm",

        final_dropout: bool = False,

    ):
        super().__init__()
        self.only_cross_attention = only_cross_attention

        assert norm_type == "layer_norm"

        # Define 3 blocks. Each block has its own normalization layer.
        # 1. Self-Attn
        self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
        self.attn1 = Attention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            dropout=dropout,
            bias=attention_bias,
            cross_attention_dim=cross_attention_dim if only_cross_attention else None,
            upcast_attention=upcast_attention,
        )

        # 2. Cross-Attn
        if cross_attention_dim is not None or double_self_attention:
            # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
            # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
            # the second cross attention block.
            self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)

            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=(
                    cross_attention_dim if not double_self_attention else None
                ),
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.norm2 = None
            self.attn2 = None

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
        )

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
        # Sets chunk feed-forward
        self._chunk_size = chunk_size
        self._chunk_dim = dim

    def forward(

        self,

        hidden_states: torch.FloatTensor,

        attention_mask: Optional[torch.FloatTensor] = None,

        encoder_hidden_states: Optional[torch.FloatTensor] = None,

        encoder_attention_mask: Optional[torch.FloatTensor] = None,

    ) -> torch.FloatTensor:
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        norm_hidden_states = self.norm1(hidden_states)

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=(
                encoder_hidden_states if self.only_cross_attention else None
            ),
            attention_mask=attention_mask,
        )

        hidden_states = attn_output + hidden_states

        # 3. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = self.norm2(hidden_states)

            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
            )
            hidden_states = attn_output + hidden_states

        # 4. Feed-forward
        norm_hidden_states = self.norm3(hidden_states)

        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
                raise ValueError(
                    f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
                )

            num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
            ff_output = torch.cat(
                [
                    self.ff(hid_slice)
                    for hid_slice in norm_hidden_states.chunk(
                        num_chunks, dim=self._chunk_dim
                    )
                ],
                dim=self._chunk_dim,
            )
        else:
            ff_output = self.ff(norm_hidden_states)

        hidden_states = ff_output + hidden_states

        return hidden_states


class FeedForward(nn.Module):
    r"""

    A feed-forward layer.



    Parameters:

        dim (`int`): The number of channels in the input.

        dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.

        mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.

        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.

        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.

        final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.

    """

    def __init__(

        self,

        dim: int,

        dim_out: Optional[int] = None,

        mult: int = 4,

        dropout: float = 0.0,

        activation_fn: str = "geglu",

        final_dropout: bool = False,

    ):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim
        linear_cls = nn.Linear

        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim)
        if activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh")
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim)
        elif activation_fn == "geglu-approximate":
            act_fn = ApproximateGELU(dim, inner_dim)

        self.net = nn.ModuleList([])
        # project in
        self.net.append(act_fn)
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(linear_cls(inner_dim, dim_out))
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states


class GELU(nn.Module):
    r"""

    GELU activation function with tanh approximation support with `approximate="tanh"`.



    Parameters:

        dim_in (`int`): The number of channels in the input.

        dim_out (`int`): The number of channels in the output.

        approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.

    """

    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)
        self.approximate = approximate

    def gelu(self, gate: torch.Tensor) -> torch.Tensor:
        if gate.device.type != "mps":
            return F.gelu(gate, approximate=self.approximate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(
            dtype=gate.dtype
        )

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


class GEGLU(nn.Module):
    r"""

    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.



    Parameters:

        dim_in (`int`): The number of channels in the input.

        dim_out (`int`): The number of channels in the output.

    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        linear_cls = nn.Linear

        self.proj = linear_cls(dim_in, dim_out * 2)

    def gelu(self, gate: torch.Tensor) -> torch.Tensor:
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

    def forward(self, hidden_states, scale: float = 1.0):
        args = ()
        hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1)
        return hidden_states * self.gelu(gate)


class ApproximateGELU(nn.Module):
    r"""

    The approximate form of Gaussian Error Linear Unit (GELU). For more details, see section 2:

    https://arxiv.org/abs/1606.08415.



    Parameters:

        dim_in (`int`): The number of channels in the input.

        dim_out (`int`): The number of channels in the output.

    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)