File size: 3,609 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import typing
from urllib.parse import urlparse

import torch


class TritonRemoteModel:
    """ A wrapper over a model served by the Triton Inference Server. It can

    be configured to communicate over GRPC or HTTP. It accepts Torch Tensors

    as input and returns them as outputs.

    """

    def __init__(self, url: str):
        """

        Keyword arguments:

        url: Fully qualified address of the Triton server - for e.g. grpc://localhost:8000

        """

        parsed_url = urlparse(url)
        if parsed_url.scheme == "grpc":
            from tritonclient.grpc import InferenceServerClient, InferInput

            self.client = InferenceServerClient(parsed_url.netloc)  # Triton GRPC client
            model_repository = self.client.get_model_repository_index()
            self.model_name = model_repository.models[0].name
            self.metadata = self.client.get_model_metadata(self.model_name, as_json=True)

            def create_input_placeholders() -> typing.List[InferInput]:
                return [
                    InferInput(i['name'], [int(s) for s in i["shape"]], i['datatype']) for i in self.metadata['inputs']]

        else:
            from tritonclient.http import InferenceServerClient, InferInput

            self.client = InferenceServerClient(parsed_url.netloc)  # Triton HTTP client
            model_repository = self.client.get_model_repository_index()
            self.model_name = model_repository[0]['name']
            self.metadata = self.client.get_model_metadata(self.model_name)

            def create_input_placeholders() -> typing.List[InferInput]:
                return [
                    InferInput(i['name'], [int(s) for s in i["shape"]], i['datatype']) for i in self.metadata['inputs']]

        self._create_input_placeholders_fn = create_input_placeholders

    @property
    def runtime(self):
        """Returns the model runtime"""
        return self.metadata.get("backend", self.metadata.get("platform"))

    def __call__(self, *args, **kwargs) -> typing.Union[torch.Tensor, typing.Tuple[torch.Tensor, ...]]:
        """ Invokes the model. Parameters can be provided via args or kwargs.

        args, if provided, are assumed to match the order of inputs of the model.

        kwargs are matched with the model input names.

        """
        inputs = self._create_inputs(*args, **kwargs)
        response = self.client.infer(model_name=self.model_name, inputs=inputs)
        result = []
        for output in self.metadata['outputs']:
            tensor = torch.as_tensor(response.as_numpy(output['name']))
            result.append(tensor)
        return result[0] if len(result) == 1 else result

    def _create_inputs(self, *args, **kwargs):
        args_len, kwargs_len = len(args), len(kwargs)
        if not args_len and not kwargs_len:
            raise RuntimeError("No inputs provided.")
        if args_len and kwargs_len:
            raise RuntimeError("Cannot specify args and kwargs at the same time")

        placeholders = self._create_input_placeholders_fn()
        if args_len:
            if args_len != len(placeholders):
                raise RuntimeError(f"Expected {len(placeholders)} inputs, got {args_len}.")
            for input, value in zip(placeholders, args):
                input.set_data_from_numpy(value.cpu().numpy())
        else:
            for input in placeholders:
                value = kwargs[input.name]
                input.set_data_from_numpy(value.cpu().numpy())
        return placeholders