File size: 3,396 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
path: ../datasets/coco  # dataset root dir
train: train2017.txt  # train images (relative to 'path') 118287 images
val: val2017.txt  # val images (relative to 'path') 5000 images
test: test-dev2017.txt  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  21: bear
  22: zebra
  23: giraffe
  24: backpack
  25: umbrella
  26: handbag
  27: tie
  28: suitcase
  29: frisbee
  30: skis
  31: snowboard
  32: sports ball
  33: kite
  34: baseball bat
  35: baseball glove
  36: skateboard
  37: surfboard
  38: tennis racket
  39: bottle
  40: wine glass
  41: cup
  42: fork
  43: knife
  44: spoon
  45: bowl
  46: banana
  47: apple
  48: sandwich
  49: orange
  50: broccoli
  51: carrot
  52: hot dog
  53: pizza
  54: donut
  55: cake
  56: chair
  57: couch
  58: potted plant
  59: bed
  60: dining table
  61: toilet
  62: tv
  63: laptop
  64: mouse
  65: remote
  66: keyboard
  67: cell phone
  68: microwave
  69: oven
  70: toaster
  71: sink
  72: refrigerator
  73: book
  74: clock
  75: vase
  76: scissors
  77: teddy bear
  78: hair drier
  79: toothbrush


# stuff names
stuff_names: [
  'banner', 'blanket', 'branch', 'bridge', 'building-other', 'bush', 'cabinet', 'cage',
  'cardboard', 'carpet', 'ceiling-other', 'ceiling-tile', 'cloth', 'clothes', 'clouds', 'counter', 'cupboard',
  'curtain', 'desk-stuff', 'dirt', 'door-stuff', 'fence', 'floor-marble', 'floor-other', 'floor-stone', 'floor-tile',
  'floor-wood', 'flower', 'fog', 'food-other', 'fruit', 'furniture-other', 'grass', 'gravel', 'ground-other', 'hill',
  'house', 'leaves', 'light', 'mat', 'metal', 'mirror-stuff', 'moss', 'mountain', 'mud', 'napkin', 'net', 'paper',
  'pavement', 'pillow', 'plant-other', 'plastic', 'platform', 'playingfield', 'railing', 'railroad', 'river', 'road',
  'rock', 'roof', 'rug', 'salad', 'sand', 'sea', 'shelf', 'sky-other', 'skyscraper', 'snow', 'solid-other', 'stairs',
  'stone', 'straw', 'structural-other', 'table', 'tent', 'textile-other', 'towel', 'tree', 'vegetable', 'wall-brick',
  'wall-concrete', 'wall-other', 'wall-panel', 'wall-stone', 'wall-tile', 'wall-wood', 'water-other', 'waterdrops',
  'window-blind', 'window-other', 'wood',
  # other
  'other',
  # unlabeled
  'unlabeled'
]


# Download script/URL (optional)
download: |
  from utils.general import download, Path


  # Download labels
  #segments = True  # segment or box labels
  #dir = Path(yaml['path'])  # dataset root dir
  #url = 'https://github.com/WongKinYiu/yolov7/releases/download/v0.1/'
  #urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')]  # labels
  #download(urls, dir=dir.parent)

  # Download data
  #urls = ['http://images.cocodataset.org/zips/train2017.zip',  # 19G, 118k images
  #        'http://images.cocodataset.org/zips/val2017.zip',  # 1G, 5k images
  #        'http://images.cocodataset.org/zips/test2017.zip']  # 7G, 41k images (optional)
  #download(urls, dir=dir / 'images', threads=3)