File size: 41,676 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
import argparse
import os
import platform
import sys
from copy import deepcopy
from pathlib import Path

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLO root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
if platform.system() != 'Windows':
    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import *
from models.experimental import *
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
from utils.plots import feature_visualization
from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
                               time_sync)
from utils.tal.anchor_generator import make_anchors, dist2bbox

try:
    import thop  # for FLOPs computation
except ImportError:
    thop = None


class Detect(nn.Module):
    # YOLO Detect head for detection models
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)
        self.stride = torch.zeros(self.nl)  # strides computed during build

        c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128))))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
        self.cv3 = nn.ModuleList(
            nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

    def forward(self, x):
        shape = x[0].shape  # BCHW
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:
            return x
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x)

    def bias_init(self):
        # Initialize Detect() biases, WARNING: requires stride availability
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)


class DDetect(nn.Module):
    # YOLO Detect head for detection models
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)
        self.stride = torch.zeros(self.nl)  # strides computed during build

        c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128))))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch)
        self.cv3 = nn.ModuleList(
            nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

    def forward(self, x):
        shape = x[0].shape  # BCHW
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:
            return x
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape

        box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        y = torch.cat((dbox, cls.sigmoid()), 1)
        return y if self.export else (y, x)

    def bias_init(self):
        # Initialize Detect() biases, WARNING: requires stride availability
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)


class DualDetect(nn.Module):
    # YOLO Detect head for detection models
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch) // 2  # number of detection layers
        self.reg_max = 16
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)
        self.stride = torch.zeros(self.nl)  # strides computed during build

        c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128))))  # channels
        c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128))))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
        self.cv3 = nn.ModuleList(
            nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
        self.cv4 = nn.ModuleList(
            nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:])
        self.cv5 = nn.ModuleList(
            nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
        self.dfl = DFL(self.reg_max)
        self.dfl2 = DFL(self.reg_max)

    def forward(self, x):
        shape = x[0].shape  # BCHW
        d1 = []
        d2 = []
        for i in range(self.nl):
            d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
            d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
        if self.training:
            return [d1, d2]
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
            self.shape = shape

        box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
        dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
        return y if self.export else (y, [d1, d2])

    def bias_init(self):
        # Initialize Detect() biases, WARNING: requires stride availability
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)
        for a, b, s in zip(m.cv4, m.cv5, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)


class DualDDetect(nn.Module):
    # YOLO Detect head for detection models
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch) // 2  # number of detection layers
        self.reg_max = 16
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)
        self.stride = torch.zeros(self.nl)  # strides computed during build

        c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128))))  # channels
        c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), max((ch[self.nl], min((self.nc * 2, 128))))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
        self.cv3 = nn.ModuleList(
            nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
        self.cv4 = nn.ModuleList(
            nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4), nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:])
        self.cv5 = nn.ModuleList(
            nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
        self.dfl = DFL(self.reg_max)
        self.dfl2 = DFL(self.reg_max)

    def forward(self, x):
        shape = x[0].shape  # BCHW
        d1 = []
        d2 = []
        for i in range(self.nl):
            d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
            d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
        if self.training:
            return [d1, d2]
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
            self.shape = shape

        box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
        dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
        return y if self.export else (y, [d1, d2])
        #y = torch.cat((dbox2, cls2.sigmoid()), 1)
        #return y if self.export else (y, d2)
        #y1 = torch.cat((dbox, cls.sigmoid()), 1)
        #y2 = torch.cat((dbox2, cls2.sigmoid()), 1)
        #return [y1, y2] if self.export else [(y1, d1), (y2, d2)]
        #return [y1, y2] if self.export else [(y1, y2), (d1, d2)]

    def bias_init(self):
        # Initialize Detect() biases, WARNING: requires stride availability
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)
        for a, b, s in zip(m.cv4, m.cv5, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)


class TripleDetect(nn.Module):
    # YOLO Detect head for detection models
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch) // 3  # number of detection layers
        self.reg_max = 16
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)
        self.stride = torch.zeros(self.nl)  # strides computed during build

        c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128))))  # channels
        c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128))))  # channels
        c6, c7 = max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), max((ch[self.nl * 2], min((self.nc * 2, 128))))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
        self.cv3 = nn.ModuleList(
            nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
        self.cv4 = nn.ModuleList(
            nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:self.nl*2])
        self.cv5 = nn.ModuleList(
            nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
        self.cv6 = nn.ModuleList(
            nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, 4 * self.reg_max, 1)) for x in ch[self.nl*2:self.nl*3])
        self.cv7 = nn.ModuleList(
            nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
        self.dfl = DFL(self.reg_max)
        self.dfl2 = DFL(self.reg_max)
        self.dfl3 = DFL(self.reg_max)

    def forward(self, x):
        shape = x[0].shape  # BCHW
        d1 = []
        d2 = []
        d3 = []
        for i in range(self.nl):
            d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
            d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
            d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
        if self.training:
            return [d1, d2, d3]
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
            self.shape = shape

        box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
        dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
        dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
        return y if self.export else (y, [d1, d2, d3])

    def bias_init(self):
        # Initialize Detect() biases, WARNING: requires stride availability
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)
        for a, b, s in zip(m.cv4, m.cv5, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)
        for a, b, s in zip(m.cv6, m.cv7, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)


class TripleDDetect(nn.Module):
    # YOLO Detect head for detection models
    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch) // 3  # number of detection layers
        self.reg_max = 16
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.inplace = inplace  # use inplace ops (e.g. slice assignment)
        self.stride = torch.zeros(self.nl)  # strides computed during build

        c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), \
                                max((ch[0], min((self.nc * 2, 128))))  # channels
        c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), \
                                max((ch[self.nl], min((self.nc * 2, 128))))  # channels
        c6, c7 = make_divisible(max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), 4), \
                                max((ch[self.nl * 2], min((self.nc * 2, 128))))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), 
                          nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
        self.cv3 = nn.ModuleList(
            nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
        self.cv4 = nn.ModuleList(
            nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4), 
                          nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:self.nl*2])
        self.cv5 = nn.ModuleList(
            nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
        self.cv6 = nn.ModuleList(
            nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3, g=4), 
                          nn.Conv2d(c6, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl*2:self.nl*3])
        self.cv7 = nn.ModuleList(
            nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
        self.dfl = DFL(self.reg_max)
        self.dfl2 = DFL(self.reg_max)
        self.dfl3 = DFL(self.reg_max)

    def forward(self, x):
        shape = x[0].shape  # BCHW
        d1 = []
        d2 = []
        d3 = []
        for i in range(self.nl):
            d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
            d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
            d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
        if self.training:
            return [d1, d2, d3]
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
            self.shape = shape

        box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
        dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
        dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        #y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
        #return y if self.export else (y, [d1, d2, d3])
        y = torch.cat((dbox3, cls3.sigmoid()), 1)
        return y if self.export else (y, d3)

    def bias_init(self):
        # Initialize Detect() biases, WARNING: requires stride availability
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)
        for a, b, s in zip(m.cv4, m.cv5, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)
        for a, b, s in zip(m.cv6, m.cv7, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (5 objects and 80 classes per 640 image)


class Segment(Detect):
    # YOLO Segment head for segmentation models
    def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
        super().__init__(nc, ch, inplace)
        self.nm = nm  # number of masks
        self.npr = npr  # number of protos
        self.proto = Proto(ch[0], self.npr, self.nm)  # protos
        self.detect = Detect.forward

        c4 = max(ch[0] // 4, self.nm)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)

    def forward(self, x):
        p = self.proto(x[0])
        bs = p.shape[0]

        mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
        x = self.detect(self, x)
        if self.training:
            return x, mc, p
        return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))


class DSegment(DDetect):
    # YOLO Segment head for segmentation models
    def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
        super().__init__(nc, ch[:-1], inplace)
        self.nl = len(ch)-1
        self.nm = nm  # number of masks
        self.npr = npr  # number of protos
        self.proto = Conv(ch[-1], self.nm, 1)  # protos
        self.detect = DDetect.forward

        c4 = max(ch[0] // 4, self.nm)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch[:-1])

    def forward(self, x):
        p = self.proto(x[-1])
        bs = p.shape[0]

        mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
        x = self.detect(self, x[:-1])
        if self.training:
            return x, mc, p
        return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))


class DualDSegment(DualDDetect):
    # YOLO Segment head for segmentation models
    def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
        super().__init__(nc, ch[:-2], inplace)
        self.nl = (len(ch)-2) // 2
        self.nm = nm  # number of masks
        self.npr = npr  # number of protos
        self.proto = Conv(ch[-2], self.nm, 1)  # protos
        self.proto2 = Conv(ch[-1], self.nm, 1)  # protos
        self.detect = DualDDetect.forward

        c6 = max(ch[0] // 4, self.nm)
        c7 = max(ch[self.nl] // 4, self.nm)
        self.cv6 = nn.ModuleList(nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, self.nm, 1)) for x in ch[:self.nl])
        self.cv7 = nn.ModuleList(nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nm, 1)) for x in ch[self.nl:self.nl*2])

    def forward(self, x):
        p = [self.proto(x[-2]), self.proto2(x[-1])]
        bs = p[0].shape[0]

        mc = [torch.cat([self.cv6[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2),
              torch.cat([self.cv7[i](x[self.nl+i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)]  # mask coefficients
        d = self.detect(self, x[:-2])
        if self.training:
            return d, mc, p
        return (torch.cat([d[0][1], mc[1]], 1), (d[1][1], mc[1], p[1]))


class Panoptic(Detect):
    # YOLO Panoptic head for panoptic segmentation models
    def __init__(self, nc=80, sem_nc=93, nm=32, npr=256, ch=(), inplace=True):
        super().__init__(nc, ch, inplace)
        self.sem_nc = sem_nc
        self.nm = nm  # number of masks
        self.npr = npr  # number of protos
        self.proto = Proto(ch[0], self.npr, self.nm)  # protos
        self.uconv = UConv(ch[0], ch[0]//4, self.sem_nc+self.nc)
        self.detect = Detect.forward

        c4 = max(ch[0] // 4, self.nm)
        self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)


    def forward(self, x):
        p = self.proto(x[0])
        s = self.uconv(x[0])
        bs = p.shape[0]

        mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2)  # mask coefficients
        x = self.detect(self, x)
        if self.training:
            return x, mc, p, s
        return (torch.cat([x, mc], 1), p, s) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p, s))
    

class BaseModel(nn.Module):
    # YOLO base model
    def forward(self, x, profile=False, visualize=False):
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _profile_one_layer(self, m, x, dt):
        c = m == self.model[-1]  # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  module")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (RepConvN)) and hasattr(m, 'fuse_convs'):
                m.fuse_convs()
                m.forward = m.forward_fuse  # update forward
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()
        return self

    def info(self, verbose=False, img_size=640):  # print model information
        model_info(self, verbose, img_size)

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment, DSegment, DualDSegment, Panoptic)):
            m.stride = fn(m.stride)
            m.anchors = fn(m.anchors)
            m.strides = fn(m.strides)
            # m.grid = list(map(fn, m.grid))
        return self


class DetectionModel(BaseModel):
    # YOLO detection model
    def __init__(self, cfg='yolo.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg, encoding='ascii', errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, (Detect, DDetect, Segment, DSegment, Panoptic)):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, DSegment, Panoptic)) else self.forward(x)
            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
            # check_anchor_order(m)
            # m.anchors /= m.stride.view(-1, 1, 1)
            self.stride = m.stride
            m.bias_init()  # only run once
        if isinstance(m, (DualDetect, TripleDetect, DualDDetect, TripleDDetect, DualDSegment)):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            forward = lambda x: self.forward(x)[0][0] if isinstance(m, (DualDSegment)) else self.forward(x)[0]
            m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))])  # forward
            # check_anchor_order(m)
            # m.anchors /= m.stride.view(-1, 1, 1)
            self.stride = m.stride
            m.bias_init()  # only run once

        # Init weights, biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')

    def forward(self, x, augment=False, profile=False, visualize=False):
        if augment:
            return self._forward_augment(x)  # augmented inference, None
        return self._forward_once(x, profile, visualize)  # single-scale inference, train

    def _forward_augment(self, x):
        img_size = x.shape[-2:]  # height, width
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, 1), None  # augmented inference, train

    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            p[..., :4] /= scale  # de-scale
            if flips == 2:
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3:
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p

    def _clip_augmented(self, y):
        # Clip YOLO augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][:, :-i]  # large
        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][:, i:]  # small
        return y


Model = DetectionModel  # retain YOLO 'Model' class for backwards compatibility


class SegmentationModel(DetectionModel):
    # YOLO segmentation model
    def __init__(self, cfg='yolo-seg.yaml', ch=3, nc=None, anchors=None):
        super().__init__(cfg, ch, nc, anchors)


class ClassificationModel(BaseModel):
    # YOLO classification model
    def __init__(self, cfg=None, model=None, nc=1000, cutoff=10):  # yaml, model, number of classes, cutoff index
        super().__init__()
        self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)

    def _from_detection_model(self, model, nc=1000, cutoff=10):
        # Create a YOLO classification model from a YOLO detection model
        if isinstance(model, DetectMultiBackend):
            model = model.model  # unwrap DetectMultiBackend
        model.model = model.model[:cutoff]  # backbone
        m = model.model[-1]  # last layer
        ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels  # ch into module
        c = Classify(ch, nc)  # Classify()
        c.i, c.f, c.type = m.i, m.f, 'models.common.Classify'  # index, from, type
        model.model[-1] = c  # replace
        self.model = model.model
        self.stride = model.stride
        self.save = []
        self.nc = nc

    def _from_yaml(self, cfg):
        # Create a YOLO classification model from a *.yaml file
        self.model = None


def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLO model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        RepConvN.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
            Conv, AConv, ConvTranspose, 
            Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
            ELAN1, RepNCSPELAN4, SPPELAN}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, SPPCSPC}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m is Shortcut:
            c2 = ch[f[0]]
        elif m is ReOrg:
            c2 = ch[f] * 4
        elif m is CBLinear:
            c2 = args[0]
            c1 = ch[f]
            args = [c1, c2, *args[1:]]
        elif m is CBFuse:
            c2 = ch[f[-1]]
        # TODO: channel, gw, gd
        elif m in {Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment, DSegment, DualDSegment, Panoptic}:
            args.append([ch[x] for x in f])
            # if isinstance(args[1], int):  # number of anchors
            #     args[1] = [list(range(args[1] * 2))] * len(f)
            if m in {Segment, DSegment, DualDSegment, Panoptic}:
                args[2] = make_divisible(args[2] * gw, 8)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml')
    parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--profile', action='store_true', help='profile model speed')
    parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
    opt = parser.parse_args()
    opt.cfg = check_yaml(opt.cfg)  # check YAML
    print_args(vars(opt))
    device = select_device(opt.device)

    # Create model
    im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
    model = Model(opt.cfg).to(device)
    model.eval()

    # Options
    if opt.line_profile:  # profile layer by layer
        model(im, profile=True)

    elif opt.profile:  # profile forward-backward
        results = profile(input=im, ops=[model], n=3)

    elif opt.test:  # test all models
        for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
            try:
                _ = Model(cfg)
            except Exception as e:
                print(f'Error in {cfg}: {e}')

    else:  # report fused model summary
        model.fuse()