Spaces:
Sleeping
Sleeping
File size: 16,439 Bytes
8e0b903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils.metrics import bbox_iou
from utils.torch_utils import de_parallel
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
# return positive, negative label smoothing BCE targets
return 1.0 - 0.5 * eps, 0.5 * eps
class BCEBlurWithLogitsLoss(nn.Module):
# BCEwithLogitLoss() with reduced missing label effects.
def __init__(self, alpha=0.05):
super().__init__()
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
self.alpha = alpha
def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
pred = torch.sigmoid(pred) # prob from logits
dx = pred - true # reduce only missing label effects
# dx = (pred - true).abs() # reduce missing label and false label effects
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
loss *= alpha_factor
return loss.mean()
class FocalLoss(nn.Module):
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
super().__init__()
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
self.gamma = gamma
self.alpha = alpha
self.reduction = loss_fcn.reduction
self.loss_fcn.reduction = 'none' # required to apply FL to each element
def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
# p_t = torch.exp(-loss)
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
pred_prob = torch.sigmoid(pred) # prob from logits
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
modulating_factor = (1.0 - p_t) ** self.gamma
loss *= alpha_factor * modulating_factor
if self.reduction == 'mean':
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else: # 'none'
return loss
class QFocalLoss(nn.Module):
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
super().__init__()
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
self.gamma = gamma
self.alpha = alpha
self.reduction = loss_fcn.reduction
self.loss_fcn.reduction = 'none' # required to apply FL to each element
def forward(self, pred, true):
loss = self.loss_fcn(pred, true)
pred_prob = torch.sigmoid(pred) # prob from logits
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
loss *= alpha_factor * modulating_factor
if self.reduction == 'mean':
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else: # 'none'
return loss
class ComputeLoss:
sort_obj_iou = False
# Compute losses
def __init__(self, model, autobalance=False):
device = next(model.parameters()).device # get model device
h = model.hyp # hyperparameters
# Define criteria
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
# Focal loss
g = h['fl_gamma'] # focal loss gamma
if g > 0:
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
m = de_parallel(model).model[-1] # Detect() module
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
self.nc = m.nc # number of classes
self.nl = m.nl # number of layers
self.anchors = m.anchors
self.device = device
def __call__(self, p, targets): # predictions, targets
bs = p[0].shape[0] # batch size
loss = torch.zeros(3, device=self.device) # [box, obj, cls] losses
tcls, tbox, indices = self.build_targets(p, targets) # targets
# Losses
for i, pi in enumerate(p): # layer index, layer predictions
b, gj, gi = indices[i] # image, anchor, gridy, gridx
tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device) # tgt obj
n_labels = b.shape[0] # number of labels
if n_labels:
# pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
pxy, pwh, _, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
# Regression
# pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
# pwh = (0.0 + (pwh - 1.09861).sigmoid() * 4) * anchors[i]
# pwh = (0.33333 + (pwh - 1.09861).sigmoid() * 2.66667) * anchors[i]
# pwh = (0.25 + (pwh - 1.38629).sigmoid() * 3.75) * anchors[i]
# pwh = (0.20 + (pwh - 1.60944).sigmoid() * 4.8) * anchors[i]
# pwh = (0.16667 + (pwh - 1.79175).sigmoid() * 5.83333) * anchors[i]
pxy = pxy.sigmoid() * 1.6 - 0.3
pwh = (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
loss[0] += (1.0 - iou).mean() # box loss
# Objectness
iou = iou.detach().clamp(0).type(tobj.dtype)
if self.sort_obj_iou:
j = iou.argsort()
b, gj, gi, iou = b[j], gj[j], gi[j], iou[j]
if self.gr < 1:
iou = (1.0 - self.gr) + self.gr * iou
tobj[b, gj, gi] = iou # iou ratio
# Classification
if self.nc > 1: # cls loss (only if multiple classes)
t = torch.full_like(pcls, self.cn, device=self.device) # targets
t[range(n_labels), tcls[i]] = self.cp
loss[2] += self.BCEcls(pcls, t) # cls loss
obji = self.BCEobj(pi[:, 4], tobj)
loss[1] += obji * self.balance[i] # obj loss
if self.autobalance:
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
if self.autobalance:
self.balance = [x / self.balance[self.ssi] for x in self.balance]
loss[0] *= self.hyp['box']
loss[1] *= self.hyp['obj']
loss[2] *= self.hyp['cls']
return loss.sum() * bs, loss.detach() # [box, obj, cls] losses
def build_targets(self, p, targets):
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
nt = targets.shape[0] # number of anchors, targets
tcls, tbox, indices = [], [], []
gain = torch.ones(6, device=self.device) # normalized to gridspace gain
g = 0.3 # bias
off = torch.tensor(
[
[0, 0],
[1, 0],
[0, 1],
[-1, 0],
[0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
],
device=self.device).float() * g # offsets
for i in range(self.nl):
shape = p[i].shape
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
# Match targets to anchors
t = targets * gain # shape(3,n,7)
if nt:
# Matches
r = t[..., 4:6] / self.anchors[i] # wh ratio
j = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t'] # compare
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
t = t[j] # filter
# Offsets
gxy = t[:, 2:4] # grid xy
gxi = gain[[2, 3]] - gxy # inverse
j, k = ((gxy % 1 < g) & (gxy > 1)).T
l, m = ((gxi % 1 < g) & (gxi > 1)).T
j = torch.stack((torch.ones_like(j), j, k, l, m))
t = t.repeat((5, 1, 1))[j]
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
else:
t = targets[0]
offsets = 0
# Define
bc, gxy, gwh = t.chunk(3, 1) # (image, class), grid xy, grid wh
b, c = bc.long().T # image, class
gij = (gxy - offsets).long()
gi, gj = gij.T # grid indices
# Append
indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, grid_y, grid_x indices
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
tcls.append(c) # class
return tcls, tbox, indices
class ComputeLoss_NEW:
sort_obj_iou = False
# Compute losses
def __init__(self, model, autobalance=False):
device = next(model.parameters()).device # get model device
h = model.hyp # hyperparameters
# Define criteria
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
# Focal loss
g = h['fl_gamma'] # focal loss gamma
if g > 0:
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
m = de_parallel(model).model[-1] # Detect() module
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
self.nc = m.nc # number of classes
self.nl = m.nl # number of layers
self.anchors = m.anchors
self.device = device
self.BCE_base = nn.BCEWithLogitsLoss(reduction='none')
def __call__(self, p, targets): # predictions, targets
tcls, tbox, indices = self.build_targets(p, targets) # targets
bs = p[0].shape[0] # batch size
n_labels = targets.shape[0] # number of labels
loss = torch.zeros(3, device=self.device) # [box, obj, cls] losses
# Compute all losses
all_loss = []
for i, pi in enumerate(p): # layer index, layer predictions
b, gj, gi = indices[i] # image, anchor, gridy, gridx
if n_labels:
pxy, pwh, pobj, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 2) # target-subset of predictions
# Regression
pbox = torch.cat((pxy.sigmoid() * 1.6 - 0.3, (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i]), 2)
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(predicted_box, target_box)
obj_target = iou.detach().clamp(0).type(pi.dtype) # objectness targets
all_loss.append([(1.0 - iou) * self.hyp['box'],
self.BCE_base(pobj.squeeze(), torch.ones_like(obj_target)) * self.hyp['obj'],
self.BCE_base(pcls, F.one_hot(tcls[i], self.nc).float()).mean(2) * self.hyp['cls'],
obj_target,
tbox[i][..., 2] > 0.0]) # valid
# Lowest 3 losses per label
n_assign = 4 # top n matches
cat_loss = [torch.cat(x, 1) for x in zip(*all_loss)]
ij = torch.zeros_like(cat_loss[0]).bool() # top 3 mask
sum_loss = cat_loss[0] + cat_loss[2]
for col in torch.argsort(sum_loss, dim=1).T[:n_assign]:
# ij[range(n_labels), col] = True
ij[range(n_labels), col] = cat_loss[4][range(n_labels), col]
loss[0] = cat_loss[0][ij].mean() * self.nl # box loss
loss[2] = cat_loss[2][ij].mean() * self.nl # cls loss
# Obj loss
for i, (h, pi) in enumerate(zip(ij.chunk(self.nl, 1), p)): # layer index, layer predictions
b, gj, gi = indices[i] # image, anchor, gridy, gridx
tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device) # obj
if n_labels: # if any labels
tobj[b[h], gj[h], gi[h]] = all_loss[i][3][h]
loss[1] += self.BCEobj(pi[:, 4], tobj) * (self.balance[i] * self.hyp['obj'])
return loss.sum() * bs, loss.detach() # [box, obj, cls] losses
def build_targets(self, p, targets):
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
nt = targets.shape[0] # number of anchors, targets
tcls, tbox, indices = [], [], []
gain = torch.ones(6, device=self.device) # normalized to gridspace gain
g = 0.3 # bias
off = torch.tensor(
[
[0, 0],
[1, 0],
[0, 1],
[-1, 0],
[0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
],
device=self.device).float() # offsets
for i in range(self.nl):
shape = p[i].shape
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
# Match targets to anchors
t = targets * gain # shape(3,n,7)
if nt:
# # Matches
r = t[..., 4:6] / self.anchors[i] # wh ratio
a = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t'] # compare
# a = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
# t = t[a] # filter
# # Offsets
gxy = t[:, 2:4] # grid xy
gxi = gain[[2, 3]] - gxy # inverse
j, k = ((gxy % 1 < g) & (gxy > 1)).T
l, m = ((gxi % 1 < g) & (gxi > 1)).T
j = torch.stack((torch.ones_like(j), j, k, l, m)) & a
t = t.repeat((5, 1, 1))
offsets = torch.zeros_like(gxy)[None] + off[:, None]
t[..., 4:6][~j] = 0.0 # move unsuitable targets far away
else:
t = targets[0]
offsets = 0
# Define
bc, gxy, gwh = t.chunk(3, 2) # (image, class), grid xy, grid wh
b, c = bc.long().transpose(0, 2).contiguous() # image, class
gij = (gxy - offsets).long()
gi, gj = gij.transpose(0, 2).contiguous() # grid indices
# Append
indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, grid_y, grid_x indices
tbox.append(torch.cat((gxy - gij, gwh), 2).permute(1, 0, 2).contiguous()) # box
tcls.append(c) # class
# # Unique
# n1 = torch.cat((b.view(-1, 1), tbox[i].view(-1, 4)), 1).shape[0]
# n2 = tbox[i].view(-1, 4).unique(dim=0).shape[0]
# print(f'targets-unique {n1}-{n2} diff={n1-n2}')
return tcls, tbox, indices
|