File size: 16,439 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import torch
import torch.nn as nn
import torch.nn.functional as F

from utils.metrics import bbox_iou
from utils.torch_utils import de_parallel


def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    # return positive, negative label smoothing BCE targets
    return 1.0 - 0.5 * eps, 0.5 * eps


class BCEBlurWithLogitsLoss(nn.Module):
    # BCEwithLogitLoss() with reduced missing label effects.
    def __init__(self, alpha=0.05):
        super().__init__()
        self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')  # must be nn.BCEWithLogitsLoss()
        self.alpha = alpha

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        pred = torch.sigmoid(pred)  # prob from logits
        dx = pred - true  # reduce only missing label effects
        # dx = (pred - true).abs()  # reduce missing label and false label effects
        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
        loss *= alpha_factor
        return loss.mean()


class FocalLoss(nn.Module):
    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super().__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = torch.sigmoid(pred)  # prob from logits
        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = (1.0 - p_t) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss


class QFocalLoss(nn.Module):
    # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super().__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)

        pred_prob = torch.sigmoid(pred)  # prob from logits
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = torch.abs(true - pred_prob) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss


class ComputeLoss:
    sort_obj_iou = False

    # Compute losses
    def __init__(self, model, autobalance=False):
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets

        # Focal loss
        g = h['fl_gamma']  # focal loss gamma
        if g > 0:
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

        m = de_parallel(model).model[-1]  # Detect() module
        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
        self.ssi = list(m.stride).index(16) if autobalance else 0  # stride 16 index
        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
        self.nc = m.nc  # number of classes
        self.nl = m.nl  # number of layers
        self.anchors = m.anchors
        self.device = device

    def __call__(self, p, targets):  # predictions, targets
        bs = p[0].shape[0]  # batch size
        loss = torch.zeros(3, device=self.device)  # [box, obj, cls] losses
        tcls, tbox, indices = self.build_targets(p, targets)  # targets

        # Losses
        for i, pi in enumerate(p):  # layer index, layer predictions
            b, gj, gi = indices[i]  # image, anchor, gridy, gridx
            tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device)  # tgt obj

            n_labels = b.shape[0]  # number of labels
            if n_labels:
                # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1)  # faster, requires torch 1.8.0
                pxy, pwh, _, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 1)  # target-subset of predictions

                # Regression
                # pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
                # pwh = (0.0 + (pwh - 1.09861).sigmoid() * 4) * anchors[i]
                # pwh = (0.33333 + (pwh - 1.09861).sigmoid() * 2.66667) * anchors[i]
                # pwh = (0.25 + (pwh - 1.38629).sigmoid() * 3.75) * anchors[i]
                # pwh = (0.20 + (pwh - 1.60944).sigmoid() * 4.8) * anchors[i]
                # pwh = (0.16667 + (pwh - 1.79175).sigmoid() * 5.83333) * anchors[i]
                pxy = pxy.sigmoid() * 1.6 - 0.3
                pwh = (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i]
                pbox = torch.cat((pxy, pwh), 1)  # predicted box
                iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze()  # iou(prediction, target)
                loss[0] += (1.0 - iou).mean()  # box loss

                # Objectness
                iou = iou.detach().clamp(0).type(tobj.dtype)
                if self.sort_obj_iou:
                    j = iou.argsort()
                    b, gj, gi, iou = b[j], gj[j], gi[j], iou[j]
                if self.gr < 1:
                    iou = (1.0 - self.gr) + self.gr * iou
                tobj[b, gj, gi] = iou  # iou ratio

                # Classification
                if self.nc > 1:  # cls loss (only if multiple classes)
                    t = torch.full_like(pcls, self.cn, device=self.device)  # targets
                    t[range(n_labels), tcls[i]] = self.cp
                    loss[2] += self.BCEcls(pcls, t)  # cls loss

            obji = self.BCEobj(pi[:, 4], tobj)
            loss[1] += obji * self.balance[i]  # obj loss
            if self.autobalance:
                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()

        if self.autobalance:
            self.balance = [x / self.balance[self.ssi] for x in self.balance]
        loss[0] *= self.hyp['box']
        loss[1] *= self.hyp['obj']
        loss[2] *= self.hyp['cls']
        return loss.sum() * bs, loss.detach()  # [box, obj, cls] losses

    def build_targets(self, p, targets):
        # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
        nt = targets.shape[0]  # number of anchors, targets
        tcls, tbox, indices = [], [], []
        gain = torch.ones(6, device=self.device)  # normalized to gridspace gain

        g = 0.3  # bias
        off = torch.tensor(
            [
                [0, 0],
                [1, 0],
                [0, 1],
                [-1, 0],
                [0, -1],  # j,k,l,m
                # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
            ],
            device=self.device).float() * g  # offsets

        for i in range(self.nl):
            shape = p[i].shape
            gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]]  # xyxy gain

            # Match targets to anchors
            t = targets * gain  # shape(3,n,7)
            if nt:
                # Matches
                r = t[..., 4:6] / self.anchors[i]  # wh ratio
                j = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t']  # compare
                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
                t = t[j]  # filter

                # Offsets
                gxy = t[:, 2:4]  # grid xy
                gxi = gain[[2, 3]] - gxy  # inverse
                j, k = ((gxy % 1 < g) & (gxy > 1)).T
                l, m = ((gxi % 1 < g) & (gxi > 1)).T
                j = torch.stack((torch.ones_like(j), j, k, l, m))
                t = t.repeat((5, 1, 1))[j]
                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
            else:
                t = targets[0]
                offsets = 0

            # Define
            bc, gxy, gwh = t.chunk(3, 1)  # (image, class), grid xy, grid wh
            b, c = bc.long().T  # image, class
            gij = (gxy - offsets).long()
            gi, gj = gij.T  # grid indices

            # Append
            indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))  # image, grid_y, grid_x indices
            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
            tcls.append(c)  # class

        return tcls, tbox, indices


class ComputeLoss_NEW:
    sort_obj_iou = False

    # Compute losses
    def __init__(self, model, autobalance=False):
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets

        # Focal loss
        g = h['fl_gamma']  # focal loss gamma
        if g > 0:
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

        m = de_parallel(model).model[-1]  # Detect() module
        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
        self.ssi = list(m.stride).index(16) if autobalance else 0  # stride 16 index
        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
        self.nc = m.nc  # number of classes
        self.nl = m.nl  # number of layers
        self.anchors = m.anchors
        self.device = device
        self.BCE_base = nn.BCEWithLogitsLoss(reduction='none')

    def __call__(self, p, targets):  # predictions, targets
        tcls, tbox, indices = self.build_targets(p, targets)  # targets
        bs = p[0].shape[0]  # batch size
        n_labels = targets.shape[0]  # number of labels
        loss = torch.zeros(3, device=self.device)  # [box, obj, cls] losses

        # Compute all losses
        all_loss = []
        for i, pi in enumerate(p):  # layer index, layer predictions
            b, gj, gi = indices[i]  # image, anchor, gridy, gridx
            if n_labels:
                pxy, pwh, pobj, pcls = pi[b, :, gj, gi].split((2, 2, 1, self.nc), 2)  # target-subset of predictions

                # Regression
                pbox = torch.cat((pxy.sigmoid() * 1.6 - 0.3, (0.2 + pwh.sigmoid() * 4.8) * self.anchors[i]), 2)
                iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze()  # iou(predicted_box, target_box)
                obj_target = iou.detach().clamp(0).type(pi.dtype)  # objectness targets

                all_loss.append([(1.0 - iou) * self.hyp['box'],
                                 self.BCE_base(pobj.squeeze(), torch.ones_like(obj_target)) * self.hyp['obj'],
                                 self.BCE_base(pcls, F.one_hot(tcls[i], self.nc).float()).mean(2) * self.hyp['cls'],
                                 obj_target,
                                 tbox[i][..., 2] > 0.0])  # valid

        # Lowest 3 losses per label
        n_assign = 4  # top n matches
        cat_loss = [torch.cat(x, 1) for x in zip(*all_loss)]
        ij = torch.zeros_like(cat_loss[0]).bool()  # top 3 mask
        sum_loss = cat_loss[0] + cat_loss[2]
        for col in torch.argsort(sum_loss, dim=1).T[:n_assign]:
            # ij[range(n_labels), col] = True
            ij[range(n_labels), col] = cat_loss[4][range(n_labels), col]
        loss[0] = cat_loss[0][ij].mean() * self.nl  # box loss
        loss[2] = cat_loss[2][ij].mean() * self.nl  # cls loss

        # Obj loss
        for i, (h, pi) in enumerate(zip(ij.chunk(self.nl, 1), p)):  # layer index, layer predictions
            b, gj, gi = indices[i]  # image, anchor, gridy, gridx
            tobj = torch.zeros((pi.shape[0], pi.shape[2], pi.shape[3]), dtype=pi.dtype, device=self.device)  # obj
            if n_labels:  # if any labels
                tobj[b[h], gj[h], gi[h]] = all_loss[i][3][h]
            loss[1] += self.BCEobj(pi[:, 4], tobj) * (self.balance[i] * self.hyp['obj'])

        return loss.sum() * bs, loss.detach()  # [box, obj, cls] losses

    def build_targets(self, p, targets):
        # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
        nt = targets.shape[0]  # number of anchors, targets
        tcls, tbox, indices = [], [], []
        gain = torch.ones(6, device=self.device)  # normalized to gridspace gain

        g = 0.3  # bias
        off = torch.tensor(
            [
                [0, 0],
                [1, 0],
                [0, 1],
                [-1, 0],
                [0, -1],  # j,k,l,m
                # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
            ],
            device=self.device).float()  # offsets

        for i in range(self.nl):
            shape = p[i].shape
            gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]]  # xyxy gain

            # Match targets to anchors
            t = targets * gain  # shape(3,n,7)
            if nt:
                # # Matches
                r = t[..., 4:6] / self.anchors[i]  # wh ratio
                a = torch.max(r, 1 / r).max(1)[0] < self.hyp['anchor_t']  # compare
                # a = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
                # t = t[a]  # filter

                # # Offsets
                gxy = t[:, 2:4]  # grid xy
                gxi = gain[[2, 3]] - gxy  # inverse
                j, k = ((gxy % 1 < g) & (gxy > 1)).T
                l, m = ((gxi % 1 < g) & (gxi > 1)).T
                j = torch.stack((torch.ones_like(j), j, k, l, m)) & a
                t = t.repeat((5, 1, 1))
                offsets = torch.zeros_like(gxy)[None] + off[:, None]
                t[..., 4:6][~j] = 0.0  # move unsuitable targets far away
            else:
                t = targets[0]
                offsets = 0

            # Define
            bc, gxy, gwh = t.chunk(3, 2)  # (image, class), grid xy, grid wh
            b, c = bc.long().transpose(0, 2).contiguous()  # image, class
            gij = (gxy - offsets).long()
            gi, gj = gij.transpose(0, 2).contiguous()  # grid indices

            # Append
            indices.append((b, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)))  # image, grid_y, grid_x indices
            tbox.append(torch.cat((gxy - gij, gwh), 2).permute(1, 0, 2).contiguous())  # box
            tcls.append(c)  # class

            # # Unique
            # n1 = torch.cat((b.view(-1, 1), tbox[i].view(-1, 4)), 1).shape[0]
            # n2 = tbox[i].view(-1, 4).unique(dim=0).shape[0]
            # print(f'targets-unique {n1}-{n2} diff={n1-n2}')

        return tcls, tbox, indices