File size: 7,854 Bytes
8e0b903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import math
import random

import cv2
import numpy as np

from ..augmentations import box_candidates
from ..general import resample_segments, segment2box
from ..metrics import bbox_ioa


def mixup(im, labels, segments, seg_cls, semantic_masks, im2, labels2, segments2, seg_cls2, semantic_masks2):
    # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
    r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
    im = (im * r + im2 * (1 - r)).astype(np.uint8)
    labels = np.concatenate((labels, labels2), 0)
    segments = np.concatenate((segments, segments2), 0)
    seg_cls = np.concatenate((seg_cls, seg_cls2), 0)
    semantic_masks = np.concatenate((semantic_masks, semantic_masks2), 0)
    return im, labels, segments, seg_cls, semantic_masks


def random_perspective(im,

                       targets=(),

                       segments=(),

                       semantic_masks = (),

                       degrees=10,

                       translate=.1,

                       scale=.1,

                       shear=10,

                       perspective=0.0,

                       border=(0, 0)):
    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
    # targets = [cls, xyxy]

    height = im.shape[0] + border[0] * 2  # shape(h,w,c)
    width = im.shape[1] + border[1] * 2

    # Center
    C = np.eye(3)
    C[0, 2] = -im.shape[1] / 2  # x translation (pixels)
    C[1, 2] = -im.shape[0] / 2  # y translation (pixels)

    # Perspective
    P = np.eye(3)
    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)

    # Rotation and Scale
    R = np.eye(3)
    a = random.uniform(-degrees, degrees)
    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
    s = random.uniform(1 - scale, 1 + scale)
    # s = 2 ** random.uniform(-scale, scale)
    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

    # Shear
    S = np.eye(3)
    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)

    # Translation
    T = np.eye(3)
    T[0, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * width)  # x translation (pixels)
    T[1, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * height)  # y translation (pixels)

    # Combined rotation matrix
    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
        if perspective:
            im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
        else:  # affine
            im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))

    # Visualize
    # import matplotlib.pyplot as plt
    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
    # ax[0].imshow(im[:, :, ::-1])  # base
    # ax[1].imshow(im2[:, :, ::-1])  # warped

    # Transform label coordinates
    n = len(targets)
    new_segments = []
    new_semantic_masks = []
    if n:
        new = np.zeros((n, 4))
        segments = resample_segments(segments)  # upsample
        for i, segment in enumerate(segments):
            xy = np.ones((len(segment), 3))
            xy[:, :2] = segment
            xy = xy @ M.T  # transform
            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2])  # perspective rescale or affine

            # clip
            new[i] = segment2box(xy, width, height)
            new_segments.append(xy)

        semantic_masks = resample_segments(semantic_masks)
        for i, semantic_mask in enumerate(semantic_masks):
            #if i < n:
            #    xy = np.ones((len(segments[i]), 3))
            #    xy[:, :2] = segments[i]
            #    xy = xy @ M.T  # transform
            #    xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2])  # perspective rescale or affine

            #    new[i] = segment2box(xy, width, height)
            #    new_segments.append(xy)

            xy_s = np.ones((len(semantic_mask), 3))
            xy_s[:, :2] = semantic_mask
            xy_s = xy_s @ M.T  # transform
            xy_s = (xy_s[:, :2] / xy_s[:, 2:3] if perspective else xy_s[:, :2])  # perspective rescale or affine

            new_semantic_masks.append(xy_s)

        # filter candidates
        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01)
        targets = targets[i]
        targets[:, 1:5] = new[i]
        new_segments = np.array(new_segments)[i]
        new_semantic_masks = np.array(new_semantic_masks)

    return im, targets, new_segments, new_semantic_masks


def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)


def copy_paste(im, labels, segments, seg_cls, semantic_masks, p=0.5):
    # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
    n = len(segments)
    if p and n:
        h, w, _ = im.shape  # height, width, channels
        im_new = np.zeros(im.shape, np.uint8)

        # calculate ioa first then select indexes randomly
        boxes = np.stack([w - labels[:, 3], labels[:, 2], w - labels[:, 1], labels[:, 4]], axis=-1)  # (n, 4)
        ioa = bbox_ioa(boxes, labels[:, 1:5])  # intersection over area
        indexes = np.nonzero((ioa < 0.30).all(1))[0]  # (N, )
        n = len(indexes)
        for j in random.sample(list(indexes), k=round(p * n)):
            l, box, s = labels[j], boxes[j], segments[j]
            labels = np.concatenate((labels, [[l[0], *box]]), 0)
            segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
            seg_cls.append(l[0].astype(int))
            semantic_masks.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
            cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)

        result = cv2.flip(im, 1)  # augment segments (flip left-right)
        i = cv2.flip(im_new, 1).astype(bool)
        im[i] = result[i]  # cv2.imwrite('debug.jpg', im)  # debug

    return im, labels, segments, seg_cls, semantic_masks